Математика и Информатика

https://doi.org/10.53656/math2023-5-2-ont

2023/5, стр. 452 - 464

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević
OrcID: 0000-0003-3861-0173
Google Scholar: mAM_zx4AAAAJ
E-mail: bektesevic@mef.unsa.ba
Faculty of Mechanical Engineering
University of Sarajevo
Sarajevo Bosnia and Herzegovina
Vahidin Hadžiabdić
OrcID: 0000-0001-6879-4087
Google Scholar: BOonaGEAAAAJ
E-mail: hadziabdic@mef.unsa.ba
Faculty of Mechanical Engineering
University of Sarajevo
Sarajevo Bosnia and Herzegovina
Midhat Mehuljić
OrcID: 0000-0001-8211-3620
Google Scholar: BbjoqngAAAAJ
E-mail: mehuljic@mef.unsa.ba
Faculty of Mechanical Engineering
University of Sarajevo
Sarajevo Bosnia and Herzegovina
Sadjit Metović
OrcID: 0000-0002-9681-7781
Google Scholar: zR8IzYMAAAAJ&hl=en
E-mail: metovic@mef.unsa.ba
Faculty of Mechanical Engineering
University of Sarajevo
Sarajevo Bosnia and Herzegovina
Haris Lulić
Google Scholar: zT32IFsAAAAJ&hl=hr
E-mail: lulic@mef.unsa.ba
Faculty of Mechanical Engineering
University of Sarajevo
Sarajevo Bosnia and Herzegovina

Резюме: We study the local dynamics and global character of third-order polynomial difference in the first octant of initial conditions with infinite number of prime period-three solutions (three cycles). It is also presented the case when the observed difference equation may be extended to the whole \(\mathbb{R}^{3}\).

Ключови думи: basins of attraction; difference equation; equilibrium; stability; periodthree solution

1. Introduction

Let \(f\left(x_{n}, x_{n-1}, x_{n-2}\right)=a x_{n}^{k}+a x_{n-1}^{k}+a x_{n-2}^{k}+b\), where \(a, b \gt 0\) and \(k \in\) \(\mathbb{N}\). In this paper we study the local stability of equilibriums, theglobal stability character, the periodic behavior and the boundedness of solutions of polynomial third-order difference equation of type

(1)\[ x_{n+1}=x_{n-2} f\left(x_{n}, x_{n-1}, x_{n-2}\right) \]

with initial conditions \(x_{-2}, x_{-1}, x_{0}\) in the first octant. So our results will be more special, as well as more precise and hence easy to be applied. In our research of dynamics of (1) we develop a new method of proofs and omit the we ll-known theory of monotone maps (specially developed for planar maps applied to po lynomial maps), and in particular competitive and cooperative maps, which guarantee the existence and uniqueness of the stable and unstable manifolds for the fixed and periodic points (Kulenović & Merino 2010). Furthermore, the difference equation (1) has infinitely many period-three solutions and we expose the explicit form of the surface that separates the first octant into two basins of attraction of a locally stable zero equilibrium and the point at infinity. The most investigated types of difference equations are polynomial difference equations and polynomial maps in the plane \(\mathbb{R}^{2}\). Also, it is very important to mentionthat the polynomial difference equations with simple form but rich dynamic were observed in the complex domain (Milnor 2000; Morosawa et al. 2000).

The basins of attraction may have very complicated structures even for very simple-looking maps (the chaotic maps may have Cantor sets as a basin of attraction, (Kulenović & Merino 2002)). The first results on polynomial difference equations, based on elementary proofs, we can find in (Amleh et al. Part I 2008) and (Amleh et al. Part II 2008). More precisely, all obtained results described only a part (box) of the basins of attraction of equilibrium(s) and period-two solutions. The theory of monotone maps (cooperative and competitive maps) was developed (Brett & Kulenović 2009), (Kulenović & Merino 2010), which provided the existence and uniqueness of the stable, unstable, and central manifolds (onedimensional curve) for the equilibrium(s) and periodic points. All their results can be extended and generalized.

From theorems proved in (Brett & Kulenović 2009), (Kulenović & Merino 2010), applied on polynomial maps, follow the results of general second-order polynomial difference equations (Bektešević et al. 2014). All the solutions from the described in (Bektešević et al. 2014) regions of initial conditions (basins of attractions) in the first quadrant tend to equilibrium points, period-two solutions or at infinity, except for the case of infinitely many period-two solutions. In (Bektešević et al. 2018), the case of infinitely many period-two solutions is completely investigated and the corresponding difference equation is a special case of the equation

\[ x_{n+1}=a x_{n} x_{n-1}+a x_{n-1}^{2}+b x_{n-1} . \]

Further (Bektešević et al. 2021) we have extended and improved our research to the difference equation

\[ x_{n+1}=a x_{n}^{m} x_{n-1}+a x_{n-1}^{m+1}+b x_{n-1} \] for \(m \gt 1\). Since the difference equation \(x_{n+1}=x_{n-1}^{m+1} x_{n}^{m}\) can be solved explicitly (Elaydi 2005), in (Bektešević et al. 2022) we have considered the difference equation of type

\[ x_{n+1}=x_{n-1} P\left(x_{n-1}\right) P\left(x_{n}\right), \] where \(P(0) \gt 0\) and \(P(x)\) is polynomial with nonnegative coefficients and initial conditions \(x_{-1}\) and \(x_{0}\) are arbitrary nonnegative numbers. This difference equation represents an example of a difference equation for which the boundary of the region of initial conditions when all solutions tend to infinity can be found explicitly and represent a planar curve.

In the planar case, all definitions of stability of equilibrium points and the main result for studying local stability of equilibrium(s) can be found in (Kulenović & Ladas 2001). The special case of rational difference equation, with linear terms in numerator and denominator, investigated by (Kulenović & Ladas 2001) is a polynomial difference equation that can be solved exactly. The monograph (Kulenović & Ladas 2001) includes well-known difference equations such as Riccati difference equations (forbidden set problem), Pielou’s discrete delay logistic model, Lyness’s equation, and also contains a large number of open problems and conjectures. (Camouzis & Ladas 2008) is represented by the third-order rational difference equation with linear terms in numerator and denominator with nonnegative parameters and initial conditions. The book (Kulenović & Ladas 2001) contains the basic results for the development of theory difference equations of order greater than two. All definitions of stability and known results for linearized stability analysis and global dynamics are obtained from (Agarwal 1992), (Alligood et al. 1997), (Devaney 1992), (Elaydi 2000), (Elaydi 2005), (Guckenheimer & Holmes 1983), (Hale & Kocak 1991).

We first list some results needed for the proofs of our theorems.

Suppose that the function \(F=F\left(u_{0}, u_{1}, \ldots, u_{k}\right)\) is continuously differentiable in some open neighborhood of an equilibrium point \(\bar{x}\). Denote by \(q_{i}=\tfrac{\partial F}{\partial u_{i}}(\bar{x}, \bar{x}, \bar{x})\), \(i=0,1, \ldots, k\), the partial derivative of \(F\) with respect to \(u_{i}\), evaluated at the point \(\bar{x}\) of the difference equation of order \(k+1\)

(2)\[ x_{n+1}=F\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1, \ldots \]

Then the equation

(3)\[ y_{n+1}=q_{0} y_{n}+q_{1} y_{n-1}+\cdots+q_{k} y_{n-k}, \quad n=0,1, \ldots \]

is called the linearized equation of (2) around the equilibrium point \(\bar{x}\), and the equation

(4)\[ \lambda^{k+1}-q_{0} \lambda^{k}-\cdots-q_{k-1} \lambda-q_{k}=0 \]

is called the characteristic equation of (3).

The following, known as Linearized Stability Theorem, is very useful in determining the local stability character of the equilibrium point \(\bar{x}\) of (2).

Theorem 1.2.1 (see Camouzis & Ladas 2008): Assume that the function \(F\) is a continuously differentiable function defined on some open neighborhood of an equilibrium point \(\bar{x}\). Then the following statements are true:

a. If all the roots of (4) have an absolute value less than one, then the equilibrium point \(\bar{x}\) of (2) is locally asymptotically stable.

b. If at least one root of (4) has an absolute value greater than one, then the equilibrium point \(\bar{x}\) of (2) is unstable.

If there exists a root of (4) with absolute value equal to one, then the equilibrium point \(\bar{x}\) is called non-hyperbolic. Otherwise, the equilibrium point \(\bar{x}\) of (2) is called hyperbolic.

The next theorem gives a sufficient condition for all roots of an equation to lie inside a unit disk.

Theorem 1.2.5 (see Camouzis & Ladas 2008): If \(q_{0}, q_{1}, \ldots, q_{k}\) are the real numbers such that \(\left|q_{0}\right|+\left|q_{1}\right|+\cdots+\left|q_{k}\right| \lt 1\) then all roots of (4) lie inside the unit disk.

The next theorem is known as the comparison result. It is very useful toestablish bounds for the solutions of nonlinear equations in terms of the solutions of equations with known behavior.

Theorem 1.4.1 (see Camouzis & Ladas 2008): Let \(I\) be a real interval, let \(k\) be a positive integer, and let \(F: I^{k+1} \rightarrow I\) be an increasing in all its arguments function. Assume that the real sequences \(\left\{x_{n}\right\}_{n=-k}^{\infty},\left\{y_{n}\right\}_{n=-k}^{\infty}\) and \(\{z\}_{n=-k}^{\infty}\) are such that \(x_{n} \leq y_{n} \leq z_{n}\) for all \(-k \leq n \leq 0\), and satisfiy the inequalities or

\[ x_{n+1} \leq F\left(x_{n}, \ldots, x_{n-k}\right), y_{n+1}=F\left(y_{n}, \ldots, y_{n-k}\right), z_{n+1} \geq F\left(z_{n}, \ldots, z_{n-k}\right) \] for each \(n=0,1, \ldots\) Then \(x_{n} \leq y_{n} \leq z_{n}\) for all \(n \gt 0\).

2. Equilibrium points

Proposition 1: Equation (1) always has the zero equilibrium and an unique positive equilibrium iff \(b \in(0,1)\).

Proof: Fixed points of (1) are the nonnegative solutions of the equation

\[ \bar{x}\left(3 a \bar{x}^{k}+b-1\right)=0 \] so, (1) always has zero equilibrium. Clearly, (1) has an unique positive equilibrium \(\bar{x}_{+}\)iff

\[ 3 a \bar{x}^{k}=1-b \gt 0 \]

3. Analysis of local stability

Set \(F(x, y, z)=z f(x, y, z)\), where \(f\) is given by (1). Then \(F\) is continuously differentiable,

\[ \tfrac{\partial F}{\partial x}=z \tfrac{\partial f}{\partial x}=a k z x^{k-1}, \tfrac{\partial F}{\partial y}=z \tfrac{\partial f}{\partial y}=a k z y^{k-1}, \]

and

\[ \tfrac{\partial F}{\partial z}=f(x, y, z)+z \tfrac{\partial f}{\partial z}=f(x, y, z)+a k z^{k} \] Let \(\bar{x}\) be an equilibrium of (1) and

\[ \begin{gathered} q_{1}(\bar{x})=\tfrac{\partial F}{\partial x}(\bar{x}, \bar{x}, \bar{x})=a k \bar{x}^{k}, q_{2}(\bar{x})=\tfrac{\partial F}{\partial y}(\bar{x}, \bar{x}, \bar{x})=a k \bar{x}^{k} \\ q_{3}(\bar{x})=\tfrac{\partial F}{\partial z}(\bar{x}, \bar{x}, \bar{x})=a(k+3) \bar{x}^{k}+b \end{gathered} \] denote partial derivatives of the function \(F(x, y, z)\) evaluated in \((\bar{x}, \bar{x}, \bar{x})\). Then the equation

\[ y_{n+1}=q_{1} y_{n}+q_{2} y_{n-1}+q_{3} y_{n-2}, \quad n \in \mathbb{N}_{0} \]

is called the linearized equation of (1) and the equation

(5)\[ \lambda^{3}-q_{1} \lambda^{2}-q_{2} \lambda-q_{3}=0 \]

is the corresponding characteristic equation.

Proposition 2: The zero equilibrium of (1) is one of the following: a) locally asymptotically stable if \(b \in(0,1)\);

b) nonhyperbolic and locally stable if \(b=1\);

c) unstable if \(b \gt 1\).

Proof: For zero equilibrium \(\bar{x}=0\) of (1) we have:

\[ q_{1}(0)=0, q_{2}(0)=0 \text { and } q_{3}(0)=b \]

a) Since \(\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|=b \lt 1\), by applying Theorem 1.2.5, we deduce that all roots of the characteristic equation lie inside the unit disk, so in a view of Theorem 1.2.1 the zero equilibrium is locally asymptotically stable.

b) If \(b=1\), then characteristic equation (5) associated with zero equilibrium is \(\lambda^{3}=1\). The statement of proposition follows from Theorem 1.2.1.

c) If \(b \gt 1\), then characteristic equation (5) associated with zero equilibrium is \(\lambda^{3}=b\), where \(\lambda=\sqrt[3]{b} \gt 1\). The statement of proposition follows from Theorem 1.2.1.

Proposition 3: If \(b \in(0,1)\), then the positive equilibrium of (1) is unstable and nonhyperbolic.

Proof: For positive equilibrium of (1) we have \(3 a \bar{x}^{k}=1-b\) and

\[ \begin{gathered} q_{1}(\bar{x})=\tfrac{k(1-b)}{3} \gt 0, \quad q_{2}(\bar{x})=\tfrac{k(1-b)}{3} \gt 0 \\ q_{3}(\bar{x})=\tfrac{(k+3)(1-b)}{3}+b \gt 1 \end{gathered} \]

In this case, characteristic equation (5) can be written

\[ \left(\text { as } \lambda^{2}+\lambda+1\right)\left(\lambda-\tfrac{k(1-b)+3}{3}\right)=0 \] and it has exactly one positive root \(\lambda_{1}=1+\tfrac{k(1-b)}{3} \gt 1\) and two complex roots \(\lambda_{2,3}\) such that \(\left|\lambda_{2,3}\right|=1\). Now, the statement of proposition is a consequence of Theorem 1.2.1.

Proposition 4: If \(b \gt 1\), then every solution of (1) tends to infinity.

Proof: Every solution \(\left\{x_{n}\right\}\) of (1) satisfies the inequality

\[ x_{n+1}=x_{n-2} f\left(x_{n}, x_{n-1}, x_{n-2}\right) \geq b x_{n-2} \] which is because the comparison result from Theorem 1.4.1 implies that \(x_{n} \geq y_{n}\), where \(y_{n}\) is the solution of \(y_{n+1}=b y_{n-2}\). We will find the solution of the last difference equation in the form \(\lambda^{n}\), where in general \(\lambda\) is a complex number. Substituting this value into \(y_{n+1}=b y_{n-2}\) we have the following polynomial cubic equation \(\lambda^{3}=b\), or equivalently

\[ \lambda^{3}-(\sqrt[3]{b})^{3}=(\lambda-\sqrt[3]{b})\left(\lambda^{2}+\lambda \sqrt[3]{b}+(\sqrt[3]{b})^{2}\right)=0 \]

After straightforward calculation we get

\[ \lambda_{1}=\sqrt[3]{b} \text { and } \lambda_{2,3}=\sqrt[3]{b} \tfrac{-1 \pm \sqrt{3} i}{2} \] Since, \[ \tfrac{-1+\sqrt{3} i}{2}=\cos \tfrac{2 \pi}{3}+i \sin \tfrac{2 \pi}{3} \] then general solution of the diffrence equation is given by

\[ \begin{aligned} y_{n}=\alpha_{1}(\sqrt[3]{b})^{n}+\alpha_{2} & (\sqrt[3]{b})^{n}\left(\tfrac{-1+\sqrt{3} i}{2}\right)^{n}+\alpha_{3}(\sqrt[3]{b})^{n}\left(\tfrac{-1-\sqrt{3} i}{2}\right)^{n} \\ = & \alpha_{1}(\sqrt[3]{b})^{n}+\alpha_{2}(\sqrt[3]{b})^{n}\left(\cos \tfrac{2 \pi}{3}+i \sin \tfrac{2 \pi}{3}\right)^{n} \\ + & \alpha_{3}(\sqrt[3]{b})^{n}\left(\cos \tfrac{2 \pi}{3}-i \sin \tfrac{2 \pi}{3}\right)^{n} \end{aligned} \] According to the De Moivre's Theorem, \[ \begin{aligned} y_{n}=\alpha_{1}(\sqrt[3]{b})^{n} & +\alpha_{2}(\sqrt[3]{b})^{n}\left(\cos \tfrac{2 n \pi}{3}+i \sin \tfrac{2 n \pi}{3}\right) \\ & +\alpha_{3}(\sqrt[3]{b})^{n}\left(\cos \tfrac{2 n \pi}{3}-i \sin \tfrac{2 n \pi}{3}\right) \end{aligned} \] which become

\[ y_{n}=\alpha_{1}(\sqrt[3]{b})^{n}+\left(\alpha_{2}+\alpha_{3}\right)(\sqrt[3]{b})^{n} \cos \tfrac{2 n \pi}{3}+i\left(\alpha_{2}-\alpha_{3}\right)(\sqrt[3]{b})^{n} \sin \tfrac{2 n \pi}{3} \] Finally \[ y_{n}=c_{1}(\sqrt[3]{b})^{n}+(\sqrt[3]{b})^{n}\left(c_{2} \cos \tfrac{2 n \pi}{3}+c_{3} \sin \tfrac{2 n \pi}{3}\right) \]

Where \(c_{1}=\alpha_{1}, c_{2}=\alpha_{2}+\alpha_{3}, c_{3}=i\left(\alpha_{2}-\alpha_{3}\right) \in \mathbb{R}\) are such that \(y_{n} \geq 0\) for all \(n \in \mathbb{N}\). Hence, \(y_{n} \rightarrow \infty\) which implies \(x_{n} \rightarrow \infty\).

4. Periodic solutions of prime period three

Proposition 5: Equation (1) has infinitely many prime period-three solutions. All period-three solutions belong the surface \(f(x, y, z)=1\) except the point ( \(\bar{x}_{+}, \bar{x}_{+}, \bar{x}_{+}\)) where \(\bar{x}_{+}\)is the positive equilibrium of (1).

Proof: The period-three solutions \(\phi, \psi, \omega\) of (1) satisfy the system

\[ \phi=\phi f(\omega, \psi, \phi), \psi=\psi f(\phi, \omega, \psi), \omega=\omega f(\psi, \phi, \omega) \]

Since \(f(\omega, \psi, \phi)=f(\phi, \omega, \psi)=f(\psi, \phi, \omega)\) and \(0 \leq \phi \lt \psi \lt \omega\), we deduce that \(f(\phi, \omega, \psi)=1\). Therefore, every point of the set \(\mathcal{S}=\{(x, y, z): f(x, y, z)=\) \(1\} \backslash\left\{\left(\bar{x}_{+}, \bar{x}_{+}, \bar{x}_{+}\right)\right\}\)is a prime period-three solution of (1). Thus the surface \(f(x, y, z)=1\) separates the first octant of the initial condition into two regions and \(\mathcal{J}=\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y \geq 0, z \geq 0\right\}\).

5. Main result, Analysis of global stability

The next our main result describes the global behavior of all solutions of (1).

Theorem 1: Consider the difference equation (1) with initial conditions \(x_{-2}, x_{-1}, x_{0} \in \mathcal{J}\) and \(b \in(0,1)\). Then (1) has a zero equilibrium and a unique positive equilibrium \(\bar{x}_{+}\). The surface \(\mathcal{S}\) separates the set \(\mathcal{J}\) into two regions: the region below the surface \(\mathcal{S}\) is the basin of attraction of the point \(E_{0}(0,0,0)\) and the region above the surface \(\mathcal{S}\) is the basin of attraction of the point at infinity and every point on \(\mathcal{S}\) except \(E_{+}\left(\bar{x}_{+}, \bar{x}_{+}, \bar{x}_{+}\right)\)is a period-three solution of (1).

Proof: According to Proposition 1, the equation (1) has zero equilibrium and unique positive equilibrium \(\bar{x}_{+}=\sqrt[k]{\tfrac{1-b}{3 a}}\). By applying Proposition 2 we conclude that the zero equilibrium is locally asymptotically stable (sink). According to Proposition 3, the positive equilibrium \(\bar{x}_{+}\)is an unstable nonhyperbolic point. From Proposition 5 it follows that the equation (1) has infinitely many prime period-three solutions and all of them belong to the set \(\mathcal{S}\).

We also clame that the surface \(f(x, y, z)=1\) is a graph of the decreasing function \(z=z(x, y)\) in both variables on set \(\mathcal{J}\). Indeed, from \(f(x, y, z)=1\) weget \(z=\sqrt[k]{c-x^{k}-y^{k}}\), where \(c=\tfrac{1-b}{3 a}\) and \(\tfrac{\partial z}{\partial x}=\tfrac{-k x^{k-1}}{\sqrt[k]{\left(c-x^{k}-y^{k}\right)^{k-1}}} \leq 0, \tfrac{\partial z}{\partial y}=\tfrac{-k y^{k-1}}{\sqrt[k]{\left(c-x^{k}-y^{k}\right)^{k-1}}} \leq 0\).

It is easy to see that the function \(f(x, y, z)\) is an increasing function in each of its arguments \(x, y, z\). Now, let \(\left\{x_{n}\right\}\) be a solution of (1) for initial values \(x_{-2}, x_{-1}, x_{0} \in \mathcal{J}\) such that the point \(\left(x_{-2}, x_{-1}, x_{0}\right)\) lies below the surface \(\mathcal{S}\). That yield s \(f\left(x_{-2}, x_{-1}, x_{0}\right) \lt 1\). One can easily see that \(f(x, y, z)\) is a symmetric function, and so

\[ f(x, y, z)=f(y, x, z)=f(z, y, x)=f(x, z, y) . \]

Thus, because of the monotonicity of \(f\) in all of its arguments, we get

\[ \begin{gathered} x_{1}=x_{-2} f\left(x_{0}, x_{-1}, x_{-2}\right)=x_{-2} f\left(x_{-2}, x_{-1}, x_{0}\right) \lt x_{-2} \\ x_{2}=x_{-1} f\left(x_{1}, x_{0}, x_{-1}\right) \lt x_{-1} f\left(x_{-2}, x_{0}, x_{-1}\right) \\ =x_{-1} f\left(x_{-2}, x_{-1}, x_{0}\right) \lt x_{-1} \\ x_{3}=x_{0} f\left(x_{2}, x_{1}, x_{0}\right) \lt x_{0} f\left(x_{-1}, x_{-2}, x_{0}\right)=x_{0} f\left(x_{-2}, x_{-1}, x_{0}\right) \\ \lt x_{0} \end{gathered} \] Therefore, \(\left(x_{-2}, x_{-1}, x_{0}\right)\) and \(\left(x_{1}, x_{2}, x_{3}\right)\) are two “North-East ordered” points:

\[ \left(x_{-2}, x_{-1}, x_{0}\right) \preccurlyeq_{N E}\left(x_{1}, x_{2}, x_{3}\right) \]

This means that the point \(\left(x_{1}, x_{2}, x_{3}\right)\) also belows to the surface \(\mathcal{S}\) and hence \(f\left(x_{1}, x_{2}, x_{3}\right) \lt 1\). Similarly, one can find that

\[ \begin{gathered} x_{4}=x_{1} f\left(x_{3}, x_{2}, x_{1}\right)=x_{1} f\left(x_{1}, x_{2}, x_{3}\right) \lt x_{1} \\ x_{5}=x_{2} f\left(x_{4}, x_{3}, x_{2}\right) \lt x_{2} f\left(x_{1}, x_{3}, x_{2}\right)=x_{2} f\left(x_{1}, x_{2}, x_{3}\right) \lt x_{2} \\ x_{6}=x_{3} f\left(x_{5}, x_{4}, x_{3}\right) \lt x_{3} f\left(x_{2}, x_{1}, x_{3}\right)=x_{3} f\left(x_{1}, x_{2}, x_{3}\right) \lt x_{3} \end{gathered} \]

Continuing in this way we obtain that

\[ (0,0,0) \preccurlyeq_{N E} \ldots \preccurlyeq_{N E} E_{m} \preccurlyeq_{N E} \ldots \preccurlyeq_{N E} E_{2} \preccurlyeq_{N E} E_{1} \preccurlyeq_{N E} E_{0} \] where \(E_{m}\left(x_{-2+3 m}, x_{-1+3 m}, x_{3 m}\right)\) for \(m \in \mathbb{N}_{0}\). All this leads that those subsequences \(\left\{x_{3 n}\right\},\left\{x_{3 n+1}\right\}\) and \(\left\{x_{3 n+2}\right\}\) are monotonically decreasing and bounded below by zero. Since below the surface \(\mathcal{S}\) there is no period-three solution, we deduce that \(x_{3 n} \rightarrow 0, x_{3 n+1} \rightarrow 0\), , and \(x_{3 n+2} \rightarrow 0\).

On the other hand, suppose that \(\left\{x_{n}\right\}\) is a solution of (1) with initial values \(x_{-2}, x_{-1}, x_{0} \in \mathcal{J}\), such that the point \(\left(x_{-2}, x_{-1}, x_{0}\right)\) lies above the surface \(\mathcal{S}\). Then \(f\left(x_{-2}, x_{-1}, x_{0}\right) \gt 1\). In view of the method used above,

\[ E_{0} \preccurlyeq_{N E} E_{1} \preccurlyeq_{N E} E_{2} \preccurlyeq_{N E} \ldots \preccurlyeq_{N E} E_{m} \preccurlyeq_{N E} \ldots, \] where \(E_{m}\left(x_{-2+3 m}, x_{-1+3 m}, x_{3 m}\right), m \in \mathbb{N}_{0}\). Hence, the subsequences \(\left\{x_{3 n}\right\}\), \(\left\{x_{3 n+1}\right\}\), and \(\left\{x_{3 n+2}\right\}\) of solution \(\left\{x_{n}\right\}\) of (1) are monotonically increasing and tend to the point at infinity.

Let \(\mathcal{B}(0,0,0), \mathcal{B}\left(\bar{x}_{+}, \bar{x}_{+}, \bar{x}_{+}\right), \mathcal{B}(\infty)\) denote the basins of attraction of zero equilibrium, positive equilibrium of (1), and the point at infinity, respectively. Finally \[ \begin{gathered} \mathcal{B}(0,0,0)=\{(x, y, z) \in \mathcal{J}: f(x, y, z) \lt 1\}, \mathcal{B}(\infty)=\{(x, y, z) \in \mathcal{J}: f(x, y, z) \gt 1\} \\ \mathcal{B}\left(\bar{x}_{+}, \bar{x}_{+}, \bar{x}_{+}\right)=\left\{\left(\bar{x}_{+}, \bar{x}_{+}, \bar{x}_{+}\right)\right\} \end{gathered} \]

In some special cases, we can extend our research to the whole space \(\mathbb{R}^{3}\).

Theorem 2: Consider the difference equation (1) for \(k=2\), where initial conditions \(\left(x_{-2}, x_{-1}, x_{0}\right) \in \mathbb{R}^{3}\) and \(b \in(0,1)\). Then (1) has a zero equilibrium, a positive equilibrium \(\bar{x}_{+},\) and a negative equilibrium \(\bar{x}_{+}\), and a negative equilibrium \(\bar{x}_{-}=\bar{x}_{+}\). In this case, the surface \(\mathcal{S}\) is a sphere:

\[ x^{2}+y^{2}+z^{2}=\tfrac{1-b}{a} \]

which separates the set \(\mathbb{R}^{3}\) into two regions: the region inside the sphere \(\mathcal{S}\) is the basin of attraction of the point \(E_{0}(0,0,0)\) and the region outside the sphere \(\mathcal{S}\) is the basin of attraction of the point at infinity. Every point on \(\mathcal{S}\) except \(E_{+}\left(\bar{x}_{+}, \bar{x}_{+}, \bar{x}_{+}\right)\) and \(E_{-}\left(\bar{x}_{-}, \bar{x}_{-}, \bar{x}_{-}\right)\)is a period-three solution of (1).

Proof: Because of Theorem 1, the equation (1) has a locally asymptotically stable zero equilibrium, unstable nonhyperbolic equilibrium \(\bar{x}_{+}=\sqrt{\tfrac{1-b}{3 a}}\), and infinitely many the prime period-three solutions that belong to sphere \(\mathcal{S}\). One can show that the negative equilibrium \(\bar{x}_{-}\)has the same characteristic equation as the positive equilibrium \(\bar{x}_{+}\). By applying Proposition 3, we prove that the negative equilibrium \(\bar{x}_{-}\)is also an unstable nonhyperbolic point.

Let \(A_{0}\left(x_{-2}, x_{-1}, x_{0}\right)\) be the interior point of sphere \(\mathcal{S}\). Denote by \(d(A, B)\) the distance between two points \(A\) and \(B\). According to Theorem 1, every solution \(\left\{x_{n}\right\}\) tends to the zero equilibrium provided \(A_{0} \in \mathcal{J}\). Now consider the two sequences of the points \(\left\{A_{n}\left(x_{n-2}, x_{n-1}, x_{n}\right)\right\}\) and real numbers \(\left\{\rho_{n}\right\}\), where \(\rho_{n}=d\left(A_{n}, E_{0}\right)=\) \(\sqrt{x_{n}^{2}+x_{n-1}^{2}+x_{n-2}^{2}}, n \in \mathbb{N}_{0}\). If we assume that point \(A_{n}\) is the interior point of sphere \(\mathcal{S}\), then

\[ x_{n}^{2}+x_{n-1}^{2}+x_{n-2}^{2} \lt \tfrac{1-b}{a} \text { or } \rho_{n}^{2} \lt \tfrac{1-b}{a} \]

So

\[ \rho_{n+1}^{2}=x_{n+1}^{2}+x_{n}^{2}+x_{n-1}^{2} \] and from (1) we find \(x_{n+1}^{2}\), which implies consequently

\[ \begin{gathered} \rho_{n+1}^{2}=x_{n-2}^{2}\left(a\left(x_{n}^{2}+x_{n-1}^{2}+x_{n-2}^{2}\right)+b\right)^{2}+x_{n}^{2}+x_{n-1}^{2}, \\ \rho_{n+1}^{2}=x_{n-2}^{2}\left(a \rho_{n}^{2}+b\right)^{2}+x_{n}^{2}+x_{n-1}^{2}, \\ \rho_{n+1}^{2} \lt x_{n-2}^{2}\left(a \tfrac{1-b}{a}+b\right)^{2}+x_{n}^{2}+x_{n-1}^{2}, \\ \rho_{n+1}^{2} \lt x_{n-2}^{2}+x_{n}^{2}+x_{n-1}^{2}=\rho_{n}^{2} . \end{gathered} \]

Hence \(\rho_{n+1} \leq \rho_{n}\), and the point \(A_{n+1}\) is also an interior point of sphere \(\mathcal{S}\) closer to point \(E_{0}\) than \(A_{n}\). By applying mathematical induction with \(A_{0}\) being an interior point of the sphere \(\mathcal{S}\), we obtain that all \(A_{n}\) are interior points of \(\mathcal{S}\) satisfying

\[ \rho_{0} \gt \rho_{1} \gt \cdots \gt \rho_{n} \gt \rho_{n+1} \gt \cdots, \quad\left(\rho_{k}=d\left(A_{k}, E_{0}\right)\right) . \]

So the sequence of distances \(\left\{\rho_{n}\right\}\) is decreasing, bounded below by zero and hence convergent. Since there is no interior period-three solution of (1) in sphere \(\mathcal{S}\), the subsequences \(\left\{\left|x_{3 n}\right|\right\},\left\{\left|x_{3 n+1}\right|\right\}\) and \(\left\{\left|x_{3 n+2}\right|\right\}\) must approach the zero equilibrium.

The case when \(A_{0}\left(x_{-2}, x_{-1}, x_{0}\right)\) is an outer point of sphere \(\mathcal{S}\) is similar and will be omitted. One can show that \(\rho_{n+1} \gt \rho_{n} \gt \tfrac{1-b}{a}\) for all \(n \in \mathbb{N}_{0}\), which means that the subsequences \(\left\{\left|x_{3 n}\right|\right\},\left\{\left|x_{3 n+1}\right|\right\}\), and \(\left\{\left|x_{3 n+2}\right|\right\}\) are monotonically increasing. Since on the sphere \(\mathcal{S}\) is no period-three solution or equilibrium point of (1), we deduce that \(\left\{\left|x_{3 n}\right|\right\},\left\{\left|x_{3 n+1}\right|\right\}\), and \(\left\{\left|x_{3 n+2}\right|\right\}\) must tend to infinity. The figures 1 and 2 are visual illustrations of Theorem 1 for \(k=1\) and Theorem 2 for \(k=2\).

Figure 1

Figure 2

6. Conclusions

In general, the polynomial difference equations and their applications are a great source of ideas for finding an approximate solution of difference equations at all in this dynamic area of research. In the planar (two-dimensional) case, the theory of monotonic maps guarantees the existence of unique stable manifold (onedimensional increasing/decreasing smooth curve). This manifold passes through the positive equilibrium point (saddle point or a nonhyperbolic point) which separates the first quadrant of initial conditions into two disjoint regions. By now we are not able to find the equation of a stable manifold, but able to find asymptotic approximations of this equation. Moreover, bringing the above considered map to the normal form around the equilibrium solutions, cosidering the period-two solutions and using the method of undetermined coefficients makes possible to obtain some local approximations of the considered manifold. In the threedimensional case, no theory provides to us with stable and unstable manifolds through equilibrium points, so we are forced to develop another method and techniques of research to understand the dynamics of third-order polynomial difference equations.

Results in this paper may be used for observation and investigation of difference equations of type

(6)\[ x_{n+1}=x_{n-2} f\left(x_{n}, x_{n-1}, x_{n-2}\right), \]

where \(f\left(x_{n}, x_{n-1}, x_{n-2}\right)=a_{1} x_{n}^{k}+a_{2} x_{n-1}^{k}+a_{3} x_{n-2}^{k}+b\) with \(a_{1}, a_{2}, a_{3}, b \gt 0\) and \(k \in \mathbb{N}\).

If \(m=\min \left\{a_{1}, a_{2}, a_{3}\right\}\) and \(M=\max \left\{a_{1}, a_{2}, a_{3}\right\}\), then

\[ f_{1}\left(x_{n}, x_{n-1}, x_{n-2}\right) \leq f\left(x_{n}, x_{n-1}, x_{n-2}\right) \leq f_{2}\left(x_{n}, x_{n-1}, x_{n-2}\right) \] where

\[ \begin{gathered} f_{1}\left(x_{n}, x_{n-1}, x_{n-2}\right)=m x_{n}^{k}+m x_{n-1}^{k}+m x_{n-2}^{k}+b, \\ f_{2}\left(x_{n}, x_{n-1}, x_{n-2}\right)=M x_{n}^{k}+M x_{n-1}^{k}+M x_{n-2}^{k}+b . \end{gathered} \]

By applying Theorem 1.4.1 (Comparison result) on difference equations

\[ \begin{aligned} & x_{n+1}=x_{n-2} f_{1}\left(x_{n}, x_{n-1}, x_{n-2}\right) \\ & x_{n+1}=x_{n-2} f\left(x_{n}, x_{n-1}, x_{n-2}\right) \\ & x_{n+1}=x_{n-2} f_{2}\left(x_{n}, x_{n-1}, x_{n-2}\right) \end{aligned} \] one can find a part of basins of attraction of zero equilibrium and point at infinity of (6). If \(k=1\), surface \(\mathcal{S}\) from Theorem 1 becomes a real plane in \(\mathbb{R}^{3}\).

REFERENCES

AGARWAL R., 1992. Difference Equations and Inequalities, Theory, Methods and Applications, Marcel Dekker Inc., New York.

ALLIGOOD K. T., SAUER T & YORKE J. A., 1997. CHAOS An Introduction to Dynamical Systems, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.

AMLEH A. M., CAMOUZIS E. & LADAS G., 2008. On the dynamics of rational difference equation, Part I, International Journal of Difference Equation, vol.3, no. 1, pp. 1 – 35.

AMLEH A. M., CAMOUZIS E. & LADAS G., 2008. On the dynamics of rational difference equation, Part II, International Journal of Difference Equation, vol. 3, no. 2, pp. 195 – 225.

BEKTEŠEVIĆ J., HADŽIABDIĆ V., MEHULJIĆ M., METOVIĆ S. & PERVAN N., 2022. The Global Behavior of a Certain Difference Polynomial Equation. International Journal of Difference Equation, vol. 2, no. 17, pp. 305 – 317.

BEKTEŠEVIĆ J., HADŽIABDIĆ V., MEHULJIĆ M. & MUJIĆ N., 2018. The Global Behavior of a Quadratic Difference Equation. Filomat, vol. 32, no. 18, pp. 6203 – 6210.

BEKTEŠEVIĆ J., HADŽIABDIĆ V. & MEHULJIĆ M., 2021. The Global Behavior of a Certain Difference Polynomial Equation. Filomat,vol. 35, no. 11, pp. 3901 – 3908.

BEKTEŠEVIĆ J., KULENOVIĆ M. R. S. & PILAV E., 2014. Global Dynamics of Quadratic Second Order Difference Equation in the First Quadrant. Applied Mathematics and Computation, vol. 227, pp. 50 – 65.

BRETT A. & KULENOVIĆ M. R. S., 2009. Basins of attraction of equilibrium points of monotone difference equations. Sarajevo Journal of Mathematics vol. 5, no. 18, pp. 211 – 233.

CAMOUZIS E. & LADAS G., 2008. Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures. London: Chapman and Hall/CRC Boca Raton.

DEVANEY R. L., 1992. A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison-Wesley, Reading, MA

ELAYDI S., 2000. Discrete Chaos, Chapman, and Hall/CRC Boca Raton, FL

ELAYDI S., 2005. An Introduction to Difference Equations (Third Edition). New York: Springer Science + Business Media.

GUCKENHEIMER J. & HOLMES P., 1983. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo

HALE J. & KOCAK H., 1991. Dynamics and Bifurcations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo

KULENOVIĆ M. R. S. & LADAS G., 2001. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures. London: Chapman and Hall/CRC Boca Raton.

KULENOVIĆ M. R. S. & MERINO O., 2002. Discrete Dynamical Systems and Difference Equations with Mathematica. London: Chapman & Hall/CRC, Boca Raton.

KULENOVIĆ M. R. S. & MERINO O., 2010. Invariant manifolds for competitive discrete systems in the plane. International Journal of Bifurcation and Chaos, vol. 20, no. 8, pp. 2471 – 2486.

MILNOR J., 2000. Dynamics in One Complex Variable. New York: Stony Brook.

MOROSAWA S., NISHIMURA Y., TANIGUCHI M. & UEDA T., 2000. Holomorphic dynamics. Cambridge University Press UK.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева