Математика и Информатика

https://doi.org/10.53656/math2025-1-3-apo

2025/1, стр. 35 - 50

APOLLONIAN SPHERE AND PROPERTIES OF STEREOGRAPHIC PROJECTION AROUND THE LEMOINE POINT

Vladislav Natchev
OrcID: 0009-0008-9568-413X
E-mail: v.natchev2007@gmail.com
American College of Sofia
Sofia Bulgaria

Резюме: The definition and some of the properties of the Apollonian circle in the plane find their analogies in the Euclidean three-dimensional space. Thus, we manage to introduce a new concept in solid geometry that we call an “Apollonian sphere”. It appears that the Apollonian sphere not only possesses classical properties similar to the Apollonian circle such as orthogonality and coaxiality, but also analogies of its lesser-known connection with the Lemoine point and the circumcenter. We also discover two notable properties of stereographic projection that we prove with an Apollonian sphere. They include collinearity of the projection point with the Lemoine points of the projection and the projected triangles or with the centers of their Apollonian circles. Moreover, we connect the newly introduced concepts and the rich configurations they generate with Olympiad geometry.

Ключови думи: Apollonian sphere; stereographic projection; harmonic tetrahedron; Lemoine point; center of Apollonian circle; Olympiad geometry

1. Introduction

The first goal of the paper is to look for and investigate the properties of the 3D space version of the Apollonian circle that we name an “Apollonian sphere”. The second goal of the article is to search for applications of the Apollonian sphere in 3D space, which brings us to the discovery of two notable properties of stereographic projection. The third goal of the paper is to find applications of the Apollonian sphere and the newly discovered properties of stereographic projection in Olympiad geometry.

In Section 2, we define the Apollonian sphere, and we look at its properties. In Section 3, we prove two new properties of stereographic projection via an Apollonian sphere, constituting of collinearity of notable points (Lemoine points/centers of Apollonian circles) from the projection and the projected triangles with the projection point. Finally, in Section 4, we examine the applications of the new concepts and configurations in Olympiad geometry. We formulate an Olympiad problem based on the discovered properties of stereographic projection, and we provide an original solution to another one via an Apollonian sphere \({ }^{1}\).

2. Apollonian Sphere

The familiar properties of the Apollonian circle in the plane such as orthogonality and coaxiality, (Andreescu et al. 2016, pp. 275 – 279), find their analogies in 3D space. We call the resulting figure an “Apollonian sphere”. In stereometry, however, we investigate more in-depth connections with notable points, lines, and planes, which we discuss in Section 2.

Theorem 2.1. Let \(\triangle A B C\) be a scalene triangle. Then the locus of points \(X\), satisfying \(\tfrac{X A}{X B}=\tfrac{C A}{C B}\), is a sphere \(\Sigma_{C}\), which we will call the Apollonian sphere for the triangle corresponding to the vertex \(C\).

Figure 1

Proof. 1) Existence. Let \(C L_{1}\) and \(C L_{2}\) be the interior and the exterior angle bisector of \(\angle A C B\) in \(\triangle A B C\) (see fig. 1). Let \(M\) be the midpoint of \(L_{1} L_{2}\), and let us construct the sphere \(\Sigma_{C}(M, r)\) where

\[ r=M C=M L_{1}=M L_{2} \] Let point \(X \in \Sigma_{C}\), and let us construct the plane passing through point \(X\) and the line \(A B\). We note that

\[ \tfrac{B L_{1}}{L_{1} A}: \tfrac{B L_{2}}{L_{2} A}=\tfrac{B C}{C A}: \tfrac{B C}{C A}=1 \Rightarrow\left(B, L_{1}, A, L_{2}\right)=1 . \]

But \(\angle L_{2} X L_{1}=90^{\circ}\left(L_{1} L_{2}\right.\)– diameter in \(\left.\Sigma_{C}\right)\). From the properties of the harmonic division, (Boev 2010, p. 80), it follows that \(X L_{1}\) is an angle bisector of \(\angle A X B \Rightarrow \tfrac{X A}{X B}=\tfrac{A L_{1}}{L_{1} B}=\tfrac{A C}{B C}\).

2) Uniqueness. Let point \(Y\) satisfy \(\tfrac{Y A}{Y B}=\tfrac{A C}{B C}\). Point \(Y\) and the line \(A B\) form a plane. But \(\tfrac{A C}{B C}=\tfrac{A L_{1}}{B L_{1}} \Rightarrow \tfrac{Y A}{Y B}=\tfrac{A L_{1}}{B L_{1}} \Rightarrow Y L_{1}\) is an angle bisector of \(\angle A Y B\), and \(\left(B, L_{1}, A, L_{2}\right)=1\). From the properties of the harmonic division, (Boev 2010, p. 80), it follows that \(\angle L_{1} Y L_{2}=90^{\circ} \Rightarrow Y \in \Sigma_{C}\left(M, r=M L_{1}\right)\).

We will prove an analogue in 3D space of the coaxiality of the Apollonian circle.

Theorem 2.2. The three Apollonian spheres for a given scalene \(\triangle A B C\) intersect at a circle.

Figure 2

Proof. Let us construct the spheres \(\Sigma_{C}\) and \(\Sigma_{B}\) (see fig. 2). They are intersecting since the corresponding Apollonian circles are intersecting, and they are great circles in the Apollonian spheres. Let \(\Sigma_{C} \cap \Sigma_{B}=\sigma\), and let point \(X \in \sigma \xrightarrow{2.1 .}\) \[ \tfrac{X A}{X B}=\tfrac{C A}{C B} \quad \cap \quad \tfrac{X C}{X A}=\tfrac{B C}{B A} . \]

If we multiply the two equations, we get that \(\tfrac{X C}{X B}=\tfrac{A C}{A B}\). By Theorem 2.1., it follows that point \(X \in \Sigma_{A}\). The same applies for each point on \(\sigma\).

Note. As the centers of the three Apollonian spheres coincide with the centers of the three Apollonian circles, we know from planimetry that the centers lie on a line (the Lemoine axis).

The next statement is the stereometric equivalent of the orthogonality of the Apollonian circle.

Theorem 2.3. The Apollonian spheres for a given scalene \(\triangle A B C\) are orthogonal to every sphere passing through points \(A, B\), and \(C\).

Proof. Firstly, we will introduce the following fundamental Lemma:

Lemma: Let point \(M\) lie on a circle \(k\) that lies on a sphere \(\Sigma\). Let \(t\) be the tangent line to \(k\) at \(M\), and let \(\pi_{M}\) be the tangent plane to \(\Sigma\) at \(M\). Then the line \(t\) lies on the plane \(\pi_{M}\).

Back to our main problem: let us take an arbitrary sphere \(\Sigma\) passing through points \(A, B\), and \(C\) (see fig. 3). We will prove that \(\Sigma_{C} \perp \Sigma\) (analogously for the other two Apollonian spheres). It is clear that the spheres \(\Sigma_{C}\) and \(\Sigma\) are intersecting. Let \(\Sigma_{C} \cap \Sigma=\omega\), and let us arbitrarily take point \(X \in \omega\). As \(X \in \Sigma_{C}\), by Theorem 2.1., \(\tfrac{X A}{X B}=\tfrac{C A}{C B}(*)\).

Let us define the points as in Theorem 2.1. Point \(X\) and the line \(A B\) determine a plane

Figure 3

\[ \tfrac{X A}{X B} \stackrel{(*)}{=} \tfrac{C A}{C B}=\tfrac{A L_{1}}{L_{1} B} \Rightarrow X L_{1} \text { is an angle bisector of } \angle A X B . \]

Let us denote \(\angle A B X\) by \(\varphi\), and \(\angle A X B\) by \(2 \psi\). It is clear that we have the equalities \(\angle A X L_{1}=\angle B X L_{1}=\psi\). Therefore,

\[ \angle M X L_{1}=\angle M X A+\angle A X L_{1}=\angle M X A+\psi . \] But as an exterior angle for \(\triangle X B L_{1}\),

\[ \angle M L_{1} X=\angle L_{1} X B+\angle L_{1} B X=\psi+\varphi . \]

It remains to be considered that since \(M X=M L_{1}\), then we have the equality \(\angle M X L_{1}=\angle M L_{1} X \Rightarrow\)

\[ \angle M X A+\psi=\psi+\varphi \Leftrightarrow \angle M X A=\varphi . \]

Therefore, \(M X\) is the tangent line for the circle \(k[A B X]\), and \(k[A B X] \in \Sigma\). Applying the Lemma, it follows that the tangent plane \(\pi_{X}\) to \(\Sigma\) at point \(X\) passes through the center of \(\Sigma_{C}\), point \(M\). Similarly, the result applies for every point \(Y \in \omega\) : the tangent plane \(\pi_{Y}\) to \(\Sigma\) at point \(Y\) passes through the center of \(\Sigma_{C}\), point \(M \Rightarrow \Sigma_{C} \perp \Sigma\).

The next theorem is a 3D equivalent of the connection of the Apollonian circle with the notable points of the triangle. In this stereometric configuration, we prove the existence of new notable elements, and we examine their

Theorem 2.4. Let \(\triangle A B C\) be a scalene triangle with circumcenter \(O\), Lemoine point \(L\), and Apollonian spheres \(\Sigma_{A}(M), \Sigma_{B}(N)\), and \(\Sigma_{C}(P)\). Let the sphere \(\Sigma\) pass through points \(A, B\), and \(C\). Let \(\Sigma\) intersect \(\Sigma_{A}, \Sigma_{B}\), ΣB, and \(\Sigma_{C}\) at the circles \(k^{\prime}, k^{\prime \prime}\), and \(k^{\prime \prime \prime}\), lying on the planes \(\alpha, \beta\), and \(\gamma\), respectively. Let us denote the line through the points \(M, N\), and \(P\) by \(s\). Then the following facts apply:

a) \(\alpha \cap \beta \cap \gamma=\) line \(q\); b) \(L \in q\); c) \(s \perp q\);

d) The orthogonal projection of line \(q\) onto the plane through \(\triangle A B C\) passes through \(O\).

Proof.

a) The orthogonality in Theorem 2.3. leads to the polar reciprocation,

(Prasolov 2010b, pp. 51-53), between the centers of the Apollonian spheres and their radical planes with \(\Sigma\) with respect to \(\Sigma\) (see fig. 4). Therefore, \(\pi_{\Sigma}(M)=\alpha, \pi_{\Sigma}(N)=\beta\), and \(\pi_{\Sigma}(P)=\gamma\). But points \(M, N\), and \(P\) are collinear. Thus, \(\alpha \cap \beta \cap \gamma=\) line \(q\).

Figure 4

Corollary. The lines \(s\) and \(q\) are polar (Smith 1893, p. 40).

b) Without loss of generality, let us take the circles \(k^{\prime}\) and \(k^{\prime \prime}\) (fig. 5).

Circles \(k^{\prime}\) and \(k\) (the circumcircle of \(\triangle A B C\) ) lie on a sphere (\(\Sigma\) ) and have a common point (\(A\) ), and as it is clear that they do not coincide, then they have a second common point, point \(A_{1}\). But \(A_{1} \in k^{\prime} \in \Sigma_{A}\), and \(A_{1}\) lies on the plane through \(\triangle A B C\). Therefore, \(A_{1}\) lies on the Apollonian circle corresponding to the vertex \(A\). Therefore, from planimetry, (Andreescu et al. 2016, p. 277), we know that \(A A_{1}\) is a symmedian in \(\triangle A B C\).

Circles \(k^{\prime \prime}\) and \(k\) lie on a sphere (\(\Sigma\) ) and have a common point (\(B\) ), and as it is clear that they do not coincide, then they have a second common point, point \(B_{1}\). B But \(B_{1} \in k^{\prime \prime} \in \Sigma_{B}\), and \(B_{1}\) lies on the plane through \(\triangle A B C\). Therefore, \(B_{1}\) lies on the Apollonian circle corresponding to the vertex \(B\). Therefore, from planimetry, we know that \(B B_{1}\) is a symmedian in \(\triangle A B C\).

Figure 5

Therefore, \(A A_{1} \cap B B_{1}=L\).

It remains to be considered that as \(L \in \alpha\), and \(L \in \beta\), then \(L \in q\) (the intersection of the two planes).

Note. Another approach to proving the geometric fact is via properties of polar reciprocation. From planimetry, (Andreescu et al. 2016, p. 279), we know that \(L\) is the pole of the line \(s\), and from a), we know that the lines \(s\) and \(q\) are polar, meaning that \(L \in q\).

Figure 6

c) Let \(k^{\prime} \cap k^{\prime \prime}=\{K, T\}\) (fig. 6). Then we know that \(K \in\) \((\alpha \cap \beta)\), and \(T \in(\alpha \cap \beta)\), from where it follows that \(K T \equiv q\). We note that \(q \in \gamma\), that is, \(K T \in \gamma\). But \(\{K, T\} \in\) \(\Sigma \Rightarrow\{K, T\} \in(\gamma \cap \Sigma) \equiv k^{\prime \prime \prime}\). Also \(\{K, T\} \in k^{\prime}, k^{\prime \prime}, k^{\prime \prime \prime} \in\) \(\Sigma_{A}, \Sigma_{B}, \Sigma_{C} \Rightarrow\{K, T\} \in \Sigma_{A} \cap\) \(\Sigma_{B} \cap \Sigma_{C}\), which by Theorem 2.2., is a circle, which we will denote by \(\Omega\), and the plane passing through it - by \(\mu\). Therefore, \(K T \in \mu . K T \equiv q \Rightarrow q \in \mu\). But \(\mu\) is the radical plane of the three Apollonian spheres. Therefore, the line through their centers \((s)\) is) is perpendicular to \(\mu\). Thus, it is perpendicular to every line in it, and \(q\) is a line in it. Therefore, \(s \perp q\).

Note. The statement could also be proved via the property of the polar reciprocation in 3D space that two polar lines with respect to a given sphere are perpendicular, as we know from a) that the lines \(s\) and \(q\) are polar.

Figure 7

d) Let us denote the orthogonal projection of the line \(q\) onto the plane passing through \(\triangle A B C, \delta_{A B C}\), δABC, by \(t\) (fig. 7). From planimetry, we know that the Lemoine axis is perpendicular to the Brocard axis: \(s \perp O L\). We notice that \(s \perp \mu\), and \(s \in \delta_{A B C}\), from where it follows that \(\delta_{A B C} \perp \mu\). From the orthogonality of the two planes, we deduce that \(t \in \mu\) since \(t\) is their intersection. From \(s \perp \mu\), it follows that \(s \perp t\). As \(L \in \delta_{A B C}\) and \(L \in q\), it is clear that \(L \in t\). But there is a single line in \(\delta_{A B C}\), perpendicular to \(s\) and passing through \(L\), and \(O L\) is such. Therefore, \(O L \equiv t \Leftrightarrow O \in t\).

Note. The statement that \(s \perp t\) could also be derived by the threeperpendiculars theorem since \(s \perp q\).

3. Two Notable Properties of Stereographic Projection

Alongside the analogies from the plane in 3D space, the Apollonian sphere finds additional applications in proving new notable properties of stereographic projection. Stereographic projection is a projection of a sphere upon a plane such that the center of the projection lies on the sphere, and the plane is perpendicular to the diameter of the sphere through the given point. For stereographic projection, it is well known that the center of projection, the centroid of the projection triangle, and the centroid of the projected triangle are not collinear, as well as for their orthocenters and circumcenters, but it appears that the centers of the Apollonian circles and the Lemoine point fulfill this property.

Theorem 3.1. Let under stereographic projection with a projection point \(O\), a reference sphere \(\Sigma\), and a projection plane \(\mu, \triangle A B C\) map to \(\triangle A^{\prime} B^{\prime} C^{\prime}\). Then point \(O\), the center of an Apollonian circle for \(\triangle A B C\), and the center of the corresponding Apollonian circle for \(\triangle A^{\prime} B^{\prime} C^{\prime}\) are collinear.

Proof. Firstly, we will introduce the following Lemma (Prasolov 2010, p. 313):

Lemma: Let under inversion with a point of inversion \(O\), the circle \(k\) map to the circle \(k^{\prime}\). Let the sphere \(\Sigma\) pass through point \(O\) and the circle \(k\). Then point \(O\), the pole of the plane passing through the circle \(k\) with respect to the sphere \(\Sigma\), and the center of \(k^{\prime}\) are collinear.

Back to our main problem: as by condition, \(\Sigma\) is a reference sphere, and \(\mu\) a projection plane, then, by definition of stereographic projection, it follows that the plane \(\mu\) is perpendicular to the diameter in \(\Sigma\) through \(O\). Therefore, there exists a single sphere \(i(O, r)\) with a center point \(O\) such that the plane \(\mu\) is the radical plane of the spheres \(\Sigma\) and \(i\). Therefore, under inversion \(p\) with an inversion sphere \(i(O, r), \Sigma \xrightarrow{\mathrm{p}} \mu\) (and so \(A \xrightarrow{\mathrm{p}} A^{\prime}, B \xrightarrow{\mathrm{p}} B^{\prime}\), and \(C \xrightarrow{\mathrm{p}} C^{\prime}\) ).

Figure 8

Let point \(M\) be the center of an Apollonian circle for \(\triangle A B C\), and let \(O M \cap \mu=S\) (see Fig. 8). We will prove that point \(S\) is a center of an Apollonian circle for \(\triangle A^{\prime} B^{\prime} C^{\prime}\).

Let us denote an Apollonian circle for \(\triangle A B C\) by \(k_{C}\), and the corresponding Apollonian circle for \(\triangle A^{\prime} B^{\prime} C^{\prime}\) by \(\Gamma\). Let us also construct the Apollonian sphere \(\Sigma_{C}\) for \(\triangle A B C\). As we have taken \(k_{C}\) with a ratio \(\tfrac{C A}{C B}\), then, \(\Sigma_{C}\) and \(\Gamma\) will refer to the ratios \(\tfrac{C A}{C B}\) and \(\tfrac{C^{\prime} A^{\prime}}{C^{\prime} B^{\prime}}\), respectively. We note that point \(M\) is also the center of \(\Sigma_{C}\) (the Apollonian circles are great circles in the Apollonian spheres). Let \(\Sigma \cap \Sigma_{C}=k_{0}\).

Firstly, we will prove that \(k_{0} \xrightarrow{\mathrm{p}} \Gamma(*)\).

Figure 9

Let us take an arbitrary point \(X\) from \(k_{0}\), and let \(X \xrightarrow{\mathrm{p}} X^{\prime}\) (see fig. 9). It suffices to show that \(X^{\prime} \in \Gamma\).

\(\begin{aligned} & X \in k_{0} \in \Sigma \Rightarrow X^{\prime} \in \mu \equiv \Sigma^{\prime} \Rightarrow O X \cap \mu=X^{\prime} \\ & X \in k_{0} \in \Sigma_{C} \xrightarrow{2.1 .} \\ & \tfrac{X A}{X B}=\tfrac{C A}{C B}~~~~ {(1)} \end{aligned}\)

Without loss of generality, let \(r=1\).

The lines \(A^{\prime} O\) and \(X^{\prime} O\) form a plane. We have that \(O A \cdot O A^{\prime}=r^{2}=1=\)

\(O X \cdot O X^{\prime} \Rightarrow \tfrac{O A}{O X}=\tfrac{O X^{\prime}}{O A^{\prime}}\) and \(\angle A O X=\angle X^{\prime} O A^{\prime} \Rightarrow \triangle O A X \sim \triangle O X^{\prime} A^{\prime} \Rightarrow\)

\(\tfrac{A X}{X^{\prime} A^{\prime}}=\tfrac{O A}{O X^{\prime}} \Leftrightarrow X^{\prime} A^{\prime}=\tfrac{A X \cdot O X^{\prime}}{O A} ~~~~ {(2)}\)

The lines \(B^{\prime} O\) and \(X^{\prime} O\) form a plane. We have that \(O B \cdot O B^{\prime}=r^{2}=1=\)

\(O X \cdot O X^{\prime} \Rightarrow \tfrac{O B}{O X}=\tfrac{O X^{\prime}}{O B^{\prime}}\) and \(\angle B O X=\angle X^{\prime} O B^{\prime} \Rightarrow \triangle O B X \sim \triangle O X^{\prime} B^{\prime} \Rightarrow\)

\(\tfrac{B X}{X^{\prime} B^{\prime}}=\tfrac{O B}{O X^{\prime}} \Leftrightarrow X^{\prime} B^{\prime}=\tfrac{B X \cdot O X^{\prime}}{O B}~~~~ {(3)}\) By (2) and (3)

\[ \tfrac{X^{\prime} A^{\prime}}{X^{\prime} B^{\prime}}=\tfrac{A X}{B X} \cdot \tfrac{O B}{O A} \stackrel{(1)}{=} \tfrac{C A}{C B} \cdot \tfrac{O B}{O A} . \] But point \(C^{\prime} \in \Gamma\), and by applying the metric property of inversion, (Johnson 1960, p. 48), it follows that:

\[ \begin{aligned} \tfrac{C^{\prime} A^{\prime}}{C^{\prime} B^{\prime}} & =\tfrac{\tfrac{C A}{O C \cdot O A}}{\tfrac{C B}{O C \cdot O B}}=\tfrac{C A}{C B} \cdot \tfrac{O B}{O A} \\ & \Rightarrow \tfrac{X^{\prime} A^{\prime}}{X^{\prime} B^{\prime}}=\tfrac{C^{\prime} A^{\prime}}{C^{\prime} B^{\prime}} \end{aligned} \] It remains to be considered that \(X^{\prime} \in \mu\). Therefore, from planimetry, we know that point \(X^{\prime}\) lies on the Apollonian circle in the plane \(\mu\) with a ratio \(\tfrac{C^{\prime} A^{\prime}}{C^{\prime} B^{\prime}} \equiv \Gamma . \Rightarrow X^{\prime} \in \Gamma\) that we wanted to prove.

Secondly, we will prove that point \(M\) is the pole of the plane passing through the circle \(k_{0}\) with respect to \(\Sigma\). (∗∗)

By Theorem 2.3., we know that \(\Sigma_{C} \perp \Sigma\), and by construction, \(k_{0}=\Sigma_{C} \cap \Sigma\). This, combined with the fact that point \(M\) is the center of \(\Sigma_{C}\), proves the statement.

By \((*)\) and \((* *) \xrightarrow{\text { Lemma }}\) The points \(O, M\), and the center of \(\Gamma\) are collinear. Therefore, the line \(O M\) intersects the plane through the circle \(\Gamma\) at its center. But \(\Gamma\) and \(\triangle A^{\prime} B^{\prime} C^{\prime}\) lie on a plane (\(\mu\) ). Consequently, \(O M\) intersects \(\mu\) at the center of the Apollonian circle for \(\triangle A^{\prime} B^{\prime} C^{\prime}\), and by construction, \(O M \cap \mu=S\) point \(S\) is the center of \(\Gamma\) that we wanted to show.

Note. Point \(M\) does not project onto point \(S\).

Let us prove the following notable fact as well, which resembles and is partly based on the previous one.

Theorem 3.2. Let under stereographic projection with a projection point \(O\), a reference sphere \(\Sigma\), and a projection plane \(\mu, \triangle A B C\) map to \(\triangle A^{\prime} B^{\prime} C^{\prime}\). Then point \(O\), the Lemoine point for \(\triangle A B C\), and the Lemoine point for \(\triangle A^{\prime} B^{\prime} C^{\prime}\) are collinear.

Proof. Firstly, we will introduce and prove the following Lemma.

Lemma: Let \(p\) be an inversion with an inversion circle \(i(O, R)\), and let \(k\) be a circle not passing through \(O\), on which lie the points \(A, B, C, D, E\), and \(F\) such that \(A D \cap B E \cap C F=Q\). Let under \(p\), the points \(A, B, C, D, E\), and \(F\) map to the points \(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}\), and \(F^{\prime}\). Then the lines \(A^{\prime} D^{\prime}, B^{\prime} E^{\prime}\), \(C^{\prime} F^{\prime}\), and \(O Q\) concur at one point.

Proof. Let us denote the inverse point of \(Q\) by \(Q^{\prime}\) (see fig. 10).

By condition, the circle \(k\) does not pass through the center of inversion, point \(O\). Therefore, it will be mapped again to a circle. And so the points lying on \(k\) will be sent to points lying on \(k^{\prime}\)– the image of \(k\). Thus, the points \(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}\), and \(F^{\prime}\) lie on a circle, \(k^{\prime}\).

We know that under inversion \(p\), the line \(A D\) will be sent to a circle, passing through \(O\). Therefore, the points \(A^{\prime}, Q^{\prime}, D^{\prime}\), and \(O\) lie on a circle, which we will denote by \(k_{1}\). Analogously, the points \(B^{\prime}, Q^{\prime}, E^{\prime}\), and \(O\) lie on the circle \(k_{2}\), and the points \(C^{\prime}, Q^{\prime}, F^{\prime}\), and \(O\) lie on the circle \(k_{3}\).

Let us consider the circles \(k^{\prime}, k_{1}\), and \(k_{2}\). As the three are intersecting at three pairs of points, then their common chords are intersecting at one point (Prasolov 2010a, p. 269). Therefore, \(Q^{\prime} O \cap B^{\prime} E^{\prime} \cap A^{\prime} D^{\prime}=S\).

Analogously, we consider the circles \(k^{\prime}, k_{2}\), and \(k_{3}\), which also intersect at three pairs of points, meaning that their common chords are intersecting at one point. Thus, \(Q^{\prime} O \cap C^{\prime} F^{\prime} \cap B^{\prime} E^{\prime}=S^{\prime}\).

But \(S^{\prime}=Q^{\prime} O \cap B^{\prime} E^{\prime}=S \Rightarrow S^{\prime} \equiv S \Rightarrow\) As \(O Q \equiv O Q^{\prime}, O Q \cap A^{\prime} D^{\prime} \cap\) \(B^{\prime} E^{\prime} \cap C^{\prime} F^{\prime}=S\), which we wanted to show.

Figure 10

Figure 11

Back to our main proof: as by condition, \(\Sigma\) is a reference sphere, and \(\mu\)a projection plane, then, by definition of stereographic projection, it follows that the plane \(\mu\) is perpendicular to the diameter in \(\Sigma\) through \(O\). Therefore, there exists a single sphere \(i(O, r)\) with a center point \(O\) such that the plane \(\mu\) is the radical plane of the spheres \(\Sigma\) and \(i\). Therefore, under inversion \(p\) with an inversion sphere \(i(O, r), \Sigma \xrightarrow{\mathrm{p}} \mu\) (and so \(A \xrightarrow{\mathrm{p}} A^{\prime}, B \xrightarrow{\mathrm{p}} B^{\prime}\), and \(C \xrightarrow{\mathrm{p}} C^{\prime}\) ).

Let point \(L\) be the Lemoine point for \(\triangle A B C\), and let \(O L \cap \mu=T\) (see fig. 11). We will prove that point \(T\) is the Lemoine point for \(\triangle A^{\prime} B^{\prime} C^{\prime}\).

Let us define \(k_{C}, \Gamma, \Sigma_{C}\), Γ, ΣC, and \(k_{0}\) as in Theorem 3.1. Let us denote the circumcircles of \(\triangle A B C\) and \(\triangle A^{\prime} B^{\prime} C^{\prime}\) by \(k_{A B C}\) and \(k_{A^{\prime} B^{\prime} C^{\prime}}\), respectively. Since a circle not passing through the center of inversion is sent to a circle, and the p points \(A, B\), and \(C\) are sent to the points \(A^{\prime}, B^{\prime}\), and \(C^{\prime}\), then, \(k_{A B C} \xrightarrow{\mathrm{p}} k_{A^{\prime} B^{\prime} C^{\prime}}\).

Let \(k_{A B C} \cap k_{C}=\{C, X\}\). P oint \(X \in k_{C} \Rightarrow X \in \Sigma_{C}\). But point \(X \in k_{A B C} \Rightarrow X \in \Sigma\). Therefore, point \(X \in\left(\Sigma_{C} \cap \Sigma\right)=k_{0}\). Hence, as \(k_{A B C} \xrightarrow{\mathrm{p}} k_{A^{\prime} B^{\prime} C^{\prime}}\), and \(X \in k_{A B C}\), then \(X^{\prime}\) (the inverse point of \(X\) ) \(\in k_{A^{\prime} B^{\prime} C^{\prime}}\).

However, since by Theorem 3.1., \(k_{0} \xrightarrow{\mathrm{p}} \Gamma\), and \(X \in k_{0}\), then \(X^{\prime} \in \Gamma\). Consequently, \(X^{\prime} \in\left(k_{A^{\prime} B^{\prime} C^{\prime}} \cap \Gamma\right)\), and so \(k_{A^{\prime} B^{\prime} C^{\prime}} \cap \Gamma=\left\{C^{\prime}, X^{\prime}\right\}\).

It remains to be considered that from planimetry, we know that \(C X\) and \(C^{\prime} X^{\prime}\) are symmedians in \(\triangle A B C\) and \(\triangle A^{\prime} B^{\prime} C^{\prime}\), respectively. Analogously, we define the points \(Y\) and \(Z\), from which it follows that \(B Y\) and \(A Z\) are symmedians in \(\triangle A B C\), and \(B^{\prime} Y^{\prime}\) and \(A^{\prime} Z^{\prime}\)– in \(\triangle A^{\prime} B^{\prime} C^{\prime}\). Furthermore, this means that \(C X \cap B Y \cap A Z=L\), and \(C^{\prime} X^{\prime} \cap B^{\prime} Y^{\prime} \cap A^{\prime} Z^{\prime}=T^{\prime}\), which are Lemoine points for \(\triangle A B C\) и \(\triangle A^{\prime} B^{\prime} C^{\prime}\), respectively, and we also know that the points \(A, B, C, X, Y, Z\) lying on a circle are mapped to the points \(A^{\prime}, B^{\prime}, C^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime}\), and the lines formed by the opposite points concur at one point (\(L\) and \(T^{\prime}\), respectively) \(\xrightarrow{\text { Lemma }} T^{\prime} \in O L\). But \(T^{\prime} \in \mu\), and the line \(O L\) intersects the plane \(\mu\) at a single point, which by construction is point \(T\).

Therefore, T T , which we wanted to prove.

Note. Point \(L\) does not project onto point \(T\).

4. Applications in Olympiad Geometry

The Apollonian sphere and its key results seen in Section 3 connect with Olympiad geometry. Firstly, we discover a configuration of Olympiad-level complexity by finding the planimetric equivalent of the aforementioned notable facts around stereographic projection. Secondly, we provide an original solution to another Olympiad problem using the Apollonian sphere.

We could reformulate the statements in Theorems 3.1. and 3.2. by the following way: “Let us take in 3D space the intersecting circles \(k_{1}, k_{2}\), and \(k_{3}\) such that \(k_{1} \cap k_{2}=\{A, D\}, k_{2} \cap k_{3}=\{B, E\}\), and \(k_{1} \cap k_{3}=\{C, F\}\). Let \(A D \cap B E \cap C F=O\). Then point \(O\), the center of an Apollonian circle/Lemoine point for \(\triangle A B C\), and the center of the corresponding Apollonian circle/Lemoine point for \(\triangle D E F\) are collinear.” Point \(O\) lies on the radical line of the three circles, and so it will have the same power with respect to them, \(S\). Therefore, we can take an inversion with an inversion sphere with a center point \(O\) and a radius \(\sqrt{S}\), at which \(\triangle A B C\) will map to \(\triangle D E F\). It is clear that there exists a stereographic projection with a projection point \(O\), a reference sphere passing through the points \(A, B, C\), C, and \(O\), and a projection plane passing through the points \(D, E\), and \(F\). As a result, the restatement is valid.

As a consequence, for the particular case when the three circles lie on a plane, we will get the following problem:

Problem 4.1. Let us take in the plane the intersecting circles \(k_{1}, k_{2}\), and \(k_{3}\) such that \(k_{1} \cap k_{2}=\{A, D\}, k_{2} \cap k_{3}=\{B, E\}\), and \(k_{1} \cap k_{3}=\{C, F\}\). Let \(A D \cap B E \cap C F=O\). Prove that point \(O\), the Lemoine point for \(\triangle A B C\), and the Lemoine point for \(\triangle D E F\) are collinear (fig. 12).

Figure 12

Figure 13

Using Apollonian sphere, we give an authentic solution to the following Olympiad problem.

Problem 4.2. (30-th Bulgarian Mathematical Olympiad 1981, Fourth Round, Second Day, Sixth Problem) Planes \(\alpha, \beta, \gamma, \delta\) are tangent to the circumsphere of a tetrahedron \(A B C D\) at points \(A, B, C, D\), respectively. Line \(p\) is the intersection of \(\alpha\) and \(\beta\), and line \(q\) is the intersection of \(\gamma\) and \(\delta\). Prove that if lines \(p\) and \(C D\) meet, then lines \(q\) and \(A B\) lie on a plane.

Proof. Let \(\Sigma\) denote the circumsphere of \(A B C D\). Let us take \(\triangle B C D\) with interior and exterior angle bisectors of \(\angle C B D B L_{1}\) and \(B L_{2}\), respectively (see fig. 13). Let point \(M\) be the midpoint of \(L_{1} L_{2}\). It is clear that we have \(\Sigma_{B}\left(M, r=M B=M L_{1}=M L_{2}\right)\). Since by condition, the points \(B, C, D \in \Sigma\) and by construction, \(\Sigma_{B}\) is an Apollonian sphere for \(\triangle B C D\), then by Theorem 2.3., it follows that \(\Sigma_{B} \perp \Sigma\). Therefore, \(M \in \beta\). B But point \(M \in C D\), and \(C D \cap \beta\) at a single point as by condition, \(C D \cap \beta \cap \alpha\), then \(M \in \alpha \Rightarrow A \in \Sigma_{B} \xrightarrow{\text { 2.1. }} \tfrac{A C}{A D}=\tfrac{B C}{B D} \Leftrightarrow \tfrac{A C}{B C}=\tfrac{A D}{B D}=\zeta\).

If \(\zeta=1, \gamma \| A B\), and \(\delta \| A B\), meaning that \(q \| A B\), and so \(q\) and \(A B\) lie on a plane.

If \(\zeta \neq 1\), by Theorem 2.1., point \(C\) lies on the Apollonian sphere for \(\triangle B A D\) with a ratio \(\tfrac{D A}{D B}, \Sigma_{D}\). Let us take \(\triangle B A D\) with interior and exterior angle bisectors of \(\angle B D A D J_{1}\) and \(D J_{2}\), respectively. Let point \(N\) be the midpoint of \(J_{1} J_{2}\). It is clear that \(\Sigma_{D}\left(N, r=N D=N J_{1}=N J_{2}\right)\). By Theorem 2.3., \(\Sigma_{D} \perp \Sigma \Rightarrow N \in \delta\), and \(N \in \gamma \Rightarrow N \in(\delta \cap \gamma) \equiv q \Rightarrow N \in q\). But by construction, \(N \in A B \Rightarrow A B \cap q=N \Rightarrow A B\) and \(q\) lie on a plane.

Note: This tetrahedron is the 3D equivalent of the harmonic quadrilateral, (Boev 2010, pp. 76 – 87), due to its distinctive connection between tangency and metric relation, and so we can call it a harmonic tetrahedron.

5. Conclusion

As we see, the Apollonian sphere is the equivalent of the Apollonian circle in 3D space due to the similarity of their definitions and some of their properties, namely orthogonality and coaxiality. Additionally, we find a stereometric parallel of the connection between the Apollonian circle and the notable points of the triangle. We examine the intersecting planes of the Apollonian spheres with a sphere through the given triangle, which helps us establish the connection between the Apollonian sphere, the Lemoine point, and the circumcenter of the triangle. The planes intersect at a line, \(q\), that we prove is polar and thus, perpendicular to the central axis of the spheres, and its orthogonal projection coincides with the Brocard axis.

The Apollonian sphere holds significant applicability in solid geometry. Using it, we prove the two newly discovered notable properties of stereographic projection illustrated in Section 3. We prove collinearity between the two centers of corresponding Apollonian circles or two Lemoine points with the projection center. We note that under stereographic projection the two Lemoine points and the two centers of corresponding Apollonian circles are not image and preimage. That is why we call their properties notable. In the proof of the given stereometric construction, we use the Apollonian sphere both to prove that its common circle with the reference sphere projects onto the second Apollonian circle (in Theorem 3.1 and 3.2) and to prove that the center of the first Apollonian circle is the pole of the plane through the common circle between the Apollonian sphere and the reference sphere with respect to the reference sphere (in Theorem 3.1).

We establish the connection of these new geometric constructions with Olympiad geometry, as seen in Section 4. First, we reformulate the two theorems from Section 3 such that we include the particular case when the configuration is planimetric, which we separate as an Olympiad problem. Second, we apply the Apollonian sphere to another Olympiad problem, which gives us an authentic proof of it.

Consequently, in this paper, we managed to: define the concept Apollonian sphere (Theorem 2.1), discover and prove its properties (Theorems 2.2, 2.3, and 2.4), find the geometric configurations around the two notable properties of stereographic projection, (Theorems 3.1 and 3.2), prove them via an Apollonian sphere, formulate an Olympiad problem derived from those properties (Problem 4.1), and an original solution to another Olympiad problem via an Apollonian sphere (Problem 4.2).

In conclusion, we define a new concept, and after revealing its properties, we show its significance in geometry through the revelation of new configurations. We also formulate an Olympiad problem and solve another one using the newly discovered concepts. The aforementioned configurations would also be crucial both for the development of Olympiad geometry and for stimulating others to develop further on the topic.

Acknowledgments

I want to express my gratitude to Ch. Assist. Prof. Stoyan Boev (American University in Bulgaria) for his help in navigating the development of the various stages in the paper and for his advice on improving and refining it. I want to thank him for the given knowledge in the field of synthetic geometry without which the development of such a project would be impossible.

I want to thank my long-time mathematics teacher, Ms. Rumyana Karadjova, who has always ignited the flame for knowledge in mathematics. She is the person who has never stopped stimulating my interest in mathematics all these years. I thank her for her dedication, patience, knowledge, and expertise in this field. I further thank her for her contributions to this paper in terms of providing me with useful materials and literature, connected to inversion and polar reciprocation in solid geometry.

I thank my mathematics teacher, Dr. Katerina Velcheva, who encourages me to deepen my knowledge in the field. I am grateful for her support and for what I have learned from her.

I would also like to thank Mr. Stanislav Chobanov for his assistance in developing the paper through his valuable advice, comments, and recommendations.

I also thank HSSIMI and SchI-BAS for their support and encouragement to engage in research.

NOTES

1. All statements in this paper refer to the Euclidean three-dimensional space unless otherwise stated.

REFERENCES

ANDREESCU, T., KORSKY, S., POHOATA, C., 2016. Apollonian Circles and Isodynamic Points. Lemmas in Olympiad Geometry, pp. 275 – 279. XYZ Press. ISBN-13: 978-0-9885622-3-3.

BOEV, S., 2010. Harmonic division. Olympiad themes 2010. Unimat SMB, pp. 75 – 88 (In Bulgarian). ISSN 1314-0493.

JOHNSON, R., 1960. Coaxal Circles and Inversion. Advanced Euclidean Geometry, p. 48. Dover.

PRASOLOV, V., 2010. Inversion and stereographic projection: Properties of inversion. Problems in solid geometry, p. 313 (In Russian). MCCME. ISBN 978-5-94057-605-1.

PRASOLOV, V., 2010a. Some methods of solving problems: Exit into space. Problems in solid geometry, p. 269 (In Russian). MCCME. ISBN 978-5-94057-605-1.

PRASOLOV, V., 2010b. Sphere: Pole and polar plane. Problems in solid geometry, pp. 51 – 53 (In Russian). MCCME. ISBN 978-5-94057-605-1.

SMITH, C., 1893. Polar lines with respect to a conicoid. An Elementary Treatise On Solid Geometry, p. 40. London Macmillan.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева