Математика и Информатика

2020/5, стр. 484 - 500

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina
E-mail: l.zelenina@narfu.ru
Researcher ID: 0000-0002-0155-3139
Department of Applied Mathematics and High Performance Computing
Higher School of Information Technologies and Automated Systems
Northern (Arctic) Federal University named after M.V. Lomonosov
Arkhangelsk Russia
L.E. Khaimina
E-mail: l.khaimina@narfu.ru
Researcher ID: 0000-0003-4552-0440
Department of Applied Informatics and Information Security
Higher School of Information Technologies and Automated Systems
Northern Arctic Federal University named after M.V. Lomonosov
Arkhangelsk Russia
E.S. Khaimin
E-mail: e.khaymin@narfu.ru
ResearcherID: 0000-0003-0523-3623
Department of Applied Informatics and Information Security
Higher School of Information Technologies and Automated Systems
Northern Arctic Federal University named after M.V. Lomonosov
Arkhangelsk Russia
D.I. Antufiev
E-mail: antufjev.d@edu.narfu.ru
Department of Applied Mathematics and High Performance Computing
Higher school of Information Technologies and Automated Systems
Northern Arctic Federal University named after M.V. Lomonosov
Arkhangelsk Russia
I.M. Zashikhina
E-mail: i.zashikhina@narfu.ru
Researcher ID: 0000-0002-8217-2302
Department of Philosophy and Sociology
Higher School of Social Sciences Humanities and International Communication
Northern (Arctic) Federal University named after M.V. Lomonosov
Arkhangelsk Russia

Резюме: The article deals with the problem of character recognition using an artificial neural network. Based on the selected data, a model of a convolutional neural network was built, parameters were selected, and the result of training the network was demonstrated. A mobile application with an embedded neural network model has been developed. The process of connecting an API for displaying information on recognized characters has been described. A mobile application with the functionality of recognizing Japanese characters is implemented.

Ключови думи: convolutional neural network; character recognition; mobile application; application programming interface (API)

Optical Character Recognition Task

Optical Character Recognition (OCR) is the use of technology to recognize printed or handwritten text characters in digital images of documents, such as scanned paper documents (Khaustov, Grigoriev & Spitsyn, 2013).. The basic OCR process involves examining the text of a document and translating characters into code that can be used to process the data. OCR systems consist of a combination of hardware and software that is used to convert physical documents into machine-readable text. Hardware is used to copy or read a text, whereas software usually handles advanced processing. Software can also take advantage of artificial intelligence (AI) to implement more advanced intelligent character recognition (ICR) techniques, such as identifying languages or handwriting styles.

Let’s consider the process of character recognition based on neural networks with the further implementation of the results in the form of a mobile application for learning Japanese characters.

Despite the fact that the pronunciation of letters and words in Japanese is simple, the language has a complex spelling system. It consists of two alphabets and hieroglyphs. Learning kanji (漢字)) is one of the hardest steps in mastering the Japanese language. In total, there are about ten thousand different hieroglyphs. For everyday use, there is a list of joyo kanji (commonly used kanji). The list contains 2,136 hieroglyphs. For a language learner, there is no single correct approach to learning hieroglyphs. The task is complicated by the fact that most Japanese characters may be read differently. The dependence on the word, the position of the hieroglyph in the word, or the context determine the correct reading. Therefore, the developed application will aim at learning hieroglyphs, and not at mere translation. The application can be used, for example, when reading literature, for recognizing inscriptions on the street, etc. Accordingly, the application will be used on mobile devices.

We will use an artificial neural network for character recognition.

Description of the convolutional neural network model

Choosing a dataset for training a neural network

The training data was obtained from the ETL Character Database1), which is a collection of images of about 1.2 million handwritten and typewritten digits, symbols, Latin alphabets and Japanese characters collected in 9 datasets (ETL-1 to ETL-9). This database was compiled by the Electrical Engineering Laboratory (now reorganized as the National Institute of Advanced Industrial Science and Technology (AIST)) in collaboration with the Japan Electronics Development Association, universities and other research organizations for character recognition research between 1973 and 1984.

The ETL-9B kit was used for training. The ETL-9B set itself is divided into 5 files (ETL9B_1, ETL9B_2… ETL9B_5). Each file contains 121,440 copies of handwritten hieroglyphs. All 5 datasets were used to train the neural network, i.e. the total number of copies was 607,200. The dataset also contains handwritten copies of Japanese letters from the Hiragana and Katakana alphabet. Since handwritten copies from the alphabet are not hieroglyphs, all the copies from the alphabet were deleted before submitting data to the neural network. The number of different hieroglyphs (classification classes) is 2965. Therefore, the already trained neural network will have to classify 2965 different hieroglyphs of the Japanese language.

Each file from a dataset is a collection of samples in byte format. Figure 1 shows the byte representation of one item.

Fig. 1. Byte representation of a sample

One copy from the set consists of:

– 2 bytes of integer type – individual instance number,

– 2 bytes of binary type – hieroglyph code in JIS X 0208 (spelling),

– 4 bytes of ASCII string type – standard pronunciation of a hieroglyph,

– 504 bytes – a hieroglyph image. Each image is an array of zeros and ones, where 0 is a black pixel, 1 is a white pixel.

Figure 2 shows the image of one item.

Fig. 2. Image of one sample

Since all items are black and white and represent 0 and 1, they do not need normalization. Therefore, it is advisable to paint the data for supplying a ready-made neural network for prediction black and white and normalize them to the sample from the data (pixelate).

Building a neural network model

To select the type of neural network, it is possible to compare the architecture of the Convolutional Neural Network (CNN) with the architecture of the Recurrent Neural Network (RNN). Dataset of Japanese handwritten characters was used as input, and two tests were carried out for each type of architecture with a different number of eras and a single sample. Categorical cross-entropy was used as an error function in all tests. Optimization algorithm – Adam (Kosolapov, 2018).

ModelNumber of trainedparametersAccuracyLossAccuracy ofvalidity sampleRNN(epochs=4,batch_size = 512)Tr.Par: 2 534 905Non-Tr.Par:00.85920.50870.8565RNN(epochs = 16,batch_size = 256)Tr.Par: 2 534 905Non-Tr.Par:00.91760.28120.8828CNN(epochs = 4,batch_size= 512)Tr.Par: 1102133Non-Tr.Par:00.94240.18830.8887CNN(epochs=16,batch_size = 256)Tr.Par: 1102133Non-Tr.Par:00.98600.04250.9251

Fig.3. Outcome of architectures’ comparison

According to the data presented, the accuracy is higher for the convolutional neural network (Golikov, 2018). In addition, CNN uses fewer parameters for optimization.

Due to the fact that the average number of items per class (items for one character) was small ( 180), convolutional layers and pool layers were added.

Fig. 4. Convolutional neural network

Model layer architecture:

– x3 Conv_Layers – (32.5); (32.5); (64.5).

– x3 MaxPool_Layers – (2); (2); (2)

– Flatten_Layer – Dense (2965, “softmax”).

The neural network is implemented in Python using the TensorFlow library. Figure 5 demonstrates the creation. model = Sequential(layers=[

Conv2D(filters=32,kernel_size=5,activation=’relu’, input_shape=(64,64,1,),data_format=’channels_last’, ),

MaxPool2D(pool_size=2,), Conv2D(filters=32,kernel_size=5,activation=’relu’,), MaxPool2D(pool_size=2,), Conv2D(filters=64,kernel_size=5,activation=’relu’,), MaxPool2D(pool_size=2,), Flatten()

model = Sequential(layers=[Conv2D(filters=32,kernel_size=5,activation='relu',input_shape=(64,64,1,),data_format='channels_last', ),MaxPool2D(pool_size=2,),Conv2D(filters=32,kernel_size=5,activation='relu',),MaxPool2D(pool_size=2,),Conv2D(filters=64,kernel_size=5,activation='relu',),MaxPool2D(pool_size=2,),Flatten()

Fig. 5. Sample of listing for creating a convolutional neural network model

This model is a three-layer convolutional neural network, each convolutional layer is connected to the maximum pool layer. The first convolutional layer has 32 filters, with a filter kernel dimension of 5x5. Also, the dimensions of the input image must be supplied to the first convolutional layer. The input image has the dimension (64,64,1) where 64 is the height and width of the image (number of pixels), therefore, each image transmits 4096 pixels to the input of the network, 1 is the color depth of the image. In this set, all images are black and white. In models where color images are submitted for training, parameter 3 will be passed. In the case of color images, each set of 64x64 pixels will display color intensity in RGB, pixel intensity in red, green, and blue colors, respectively. Rectified Linear Unit (ReLU) was selected for all convolutional layers.

The last convolutional layer has an increased number of filters (64), since increasing the number of filters for each subsequent convolutional layer is a good trick to improve the accuracy of the convolutional neural network.

Layer Flatten, converts the aspect ratio from a two-dimensional array to one-dimensional. The layer extracts lines of pixels from the image and arranges them in a single row. This layer has no training parameters; it only reformats the data.

Lastly, 256 number of nodes (or neurons) and n-number of nodes are transferred into the fully connected Dense neural layers. The second layer returns an array of n-probability scores, giving a total of 1. Each value contains a score indicating the probability of a hieroglyph belonging to one of n classes, where n = 2965.

Fig. 6. Structure of a convolutional neural network’s model

Count of all parameters for a convolutional neural network with three convolutional layers = 1102133.

When compiling the model and initializing the final parameters, adamOptimizer method, a stochastic optimization method was used. Accuracy was determined as a metric.

Selection of neural network parameters

The TensorBoard library was used to select the best model parameters. The visualization of the model indicators allows you to identify the presence of the model’s overfitting. To estimate the parameters, the model was run on 9 different variations of the parameters. The conv_layers parameter took the values 1, 2, 3. The epochs parameter took the values 32, 64, 128. The graphs below show the 4 best sets of parameters - [3.32], [3, 128], [3.64], [2, 32], where the first parameter is the number of layers, the second parameter is the dimension of the kernel.

Fig. 7. Model’s accuracy

The model [3,128] is shown in gray. In terms of accuracy, the model shows a too high accuracy result. The model with parameters [3, 32] is shown in blue. The accuracy of this model indicates the true accuracy of the non-retrained model more clearly. Based on the four best models described above, we can assume that the most optimal value for the conv_layers parameter can be considered 3.

Figure 8 demonstrates the loss function plot of the top four models.

Fig. 8. Loss functions model

The model [3, 128] marked in gray, shows a low level of losses, as well as a too high level of accuracy. This may indicate model’s overfitting.

Figure 9 shows a plot of the loss function for the validation set. Analysis and estimation of losses of the data that were not used in the optimization of the neural network parameters can also help in determining the overfitting of the model.

Fig. 9. Plot of the loss function for the validation set

Based on the data in the graph in Figure 9, we can conclude that the model with parameters [3, 128] has undergone retraining.

The model with parameters [3, 32] showed a good result of accuracy both on the entire sample and on the validation sample. For this model, a good result of the loss function was also determined. Also, at the same time, we can conclude that the model is not overfitted, judging by the graph of the loss of the validation sample. Therefore, the final parameters of the model were chosen [3, 32].

Neural network training result

After identifying the most appropriate parameters for the convolutional neural network and directly training the model shows the following results:

– accuracy – 0.9864

– loss (loss) – 0.0420

– val_loss (loss on the validation sample) – 0.1049

– val_accuracy (accuracy on the validation set) – 0.9358

Based on the low value of the loss function on the validation data set, we can say that the model has not undergone retraining.

For the final testing of the model, a part of another dataset consisting of handwritten hieroglyphs was issued for prediction. A model error will be recorded for each hieroglyph.

The result of the check is an object, containing the number of errors in the first prediction of the network for each hieroglyph. Figure 10 shows a part of the check vocabulary.

Fig. 10. Assessment of the model’s accuracy

To analyze the operation of the constructed neural network, we will determine the number of all errors relative to the size of the full dataset. For this, it is necessary to estimate the number of errors as the first best prediction. The share of erroneous predictions (it is an error if it does not fall into the top 1) is 0.062. For the final test, it is necessary to evaluate the error as the failure to predict the best 6 results. The share of erroneous predictions (it is an error if it does not fall into the top 6) is 0.003.

Based on the above tests, we can say that the convolutional neural network model is trained well. In the application, after the computational work of the neural network, the user will be offered the six best prediction options to choose from.

Mobile application development

The developed application belongs to the class of native applications.

Native apps are specific apps for a specific mobile platform. Since a native app is built for the use on a specific device and its OS, it can use hardware and software specific to the device. Native apps can provide optimized performance and take advantage of the phone’s built-in features like GPS, camera, compass, etc.

With the help of a camera, images can be obtained, which are then transmitted to the neural network for processing and obtaining information. For the convenience of formatting the image received from the camera, you will need to use tools that can directly interact with the camera and allow to scale the resulting image to the desired size for the neural network. It should also be noted that the computational complexity of a trained neural network model is more expedient to use through the API that will communicate with the neural network model.

The TensorFlow Lite toolkit is used to embed a neural network model on a mobile device. To implement the task, the Java programming language and development for the Android platform were used.

Using TensorFlow Lite to work with neural networks with mobile applications After successfully training the neural network, the model is converted to tflite format. Thanks to the conversion, the model is only 4.20 MB in size, which is a good advantage for a mobile application. This model helps to meet the requirement of a small application memory footprint. The ready-made converted model must be added to the Android Studio project in the assets directory.

Since the model does not take up much space and is not difficult to compute for a mobile device, the optimization of the model through a converter can be neglected.

To work with a neural network, you need to create an object of the Interpreter class, the interpreter will configure the API for the interaction of the computing processor of the mobile device with the neural network model.

Interpreter initialization is implemented inside the exception handler to detect errors and check if the interpreter is connected correctly.

After connecting the model and the file with the classes of hieroglyphs, the model can be launched.

Camera app operation

To access the application to the camera of a mobile device, you must register the use of the feature in the XML file AndroidManifest.xml.

For the subsequent use of the camera in the application, it is necessary to initialize requests for permission to use:

– cameras,

– saving data (images) in the device memory, – eading data (images) in the device memory.

To verify that all permissions to use the camera have been successfully obtained, you need to check the permission code that is sent from the code block to initialize the camera permission requests.

If the user has not received all the permissions, they will receive a message stating that the application must be set to use the designated functions. After the notification, the application stops its functioning.

After obtaining the permission to use the camera, the user must activate the event that facilitates the camera’s photo mode.

The application does not use any additional settings at the camera’s launch. The standard camera of the device is launched (cameras from the built-in Camera application on Android). An example of a camera display is shown by Figure 11.

Fig. 11. Camera Activity

The launched camera activity is the same as the built-in Android camera. Photos taken through the facilitated camera activity are saved in the memory of the mobile device. After a snapshot, the application immediately transfers the last captured image to the Crop activity.

Android Crop is an Android library project that provides a simple image cropping action based on the code from AOSP. The library allows you to resize the image to a square size. This is done due to the fact that the neural network model accepts images with a size of 64x64 pixels. A square image is easier to scan to the dimensions described above. A non-square image is almost impossible to resize up to 64x64 without negative effects.

The parameters of the previously initialized requests for permissions to write and read data from the device’s native camera are passed to the parameters of the image formatting activity. In the activity, the user needs to scale the square so that the image includes only the hieroglyph. Figure 12 demonstrates this type of activity.

Fig. 12. Formatting activity

In this activity, the user can change the size of the square or the position of the photo so that the image with the hieroglyph only is transmitted to the neural network.

Before transmitting the image to the neural network model, the image must be processed and translated first into a number format, then into a byte format.

After the converting of the image to byte format, the filled object is transferred to the neural network model for prediction.

Neural network model data feed and prediction

When the user clicks the Define button (Figure 13), the function of launching the neural network model and the function of showing all the best predictions are launched. For the top three predictions, the probability of the prediction is also indicated. The probability display helps to determine the correctness of the neural network model operation. If the first value is small (<25%), then most likely an error has occurred in determining the background, or the image is subject to noise, or the provided image is low quality.

To make the interface more user-friendly, the top 6 predictions of the neural network model are shown as buttons. Each button has a character from the best selection written on it. The interface for classification of hieroglyphs is shown in Figure 13.

Fig. 13. Hieroglyphs’ classification interface

By clicking on the corresponding button, the user goes to the interface for displaying information on hieroglyphs. The user also has the right to choose another suggested hieroglyph if he thinks that the model was mistaken in the first best version or of his own will. Pressing the “back” button returns the user to the starting activity of the application.

API connection for displaying information on hieroglyphs

It was chosen to use a web database in order to display the information on the found hieroglyphs. The embedded database can take up a lot of memory, so it is best to use a remote database connection.

The Kanjiapi.dev API (https://kanjiapi.dev/) was chosen as an API that provides data in JSON format for more than 13,000 characters using data from an extensive kanji dictionary.

The Retrofit library was used to connect to the above API. Retrofit is an HTTP client for working with API. It allows to convert HTTP API into an object of Java language classes2).

The most important details of kanji were included in the information on the interface for classification of hieroglyphs, namely:

– the meaning of the hieroglyph (keywords),

– reading options (Kun-Yomi, On-Yomi),

– the inscription of the hieroglyph,

– important words which contain the hieroglyph (words must be sorted and displayed according to the priority specified in the database).

To receive data through the API, one needs to create a POJO (Plain Old Java Object) class, which will implement the objects that manifest the fields of JSON files and methods for objects’ reception. On connecting, the Retrofit library will automatically create a class object for the structure of the current JSON file, and then fill its fields with data.

The structure of the received JSON files for the hieroglyph’s data and the words containing this hieroglyph are shown in Figures 14 and 15.

Fig. 14. JSON structure of kanji/{kanji} file

For the convenience of working with the data received through the API, the POJO class will be implemented for all fields of the resulting file, even if the fields are not used in the information display activity.

For each field of the POJO class, it is also necessary to create methods to access all the fields of the class (getter_class). Figure 15 shows the structure of a JSON file, which displays all possible words, containing a search character in the {kanji} field.

Fig. 15. JSON structure of the file/ words {kanji}

As you can see from the file structure, each word variant has a priorities field, which is a set of lines that contains information on the popularity of the word in Japanese. To avoid typing too many words on the screen of the mobile device, words will be shown only if the priorities field is not empty, which reduces the list of words to the most important in the language. The data itself is transferred as a set of objects. Therefore, they must be received as a set of objects from the API, in contrast to the information on hieroglyphs. The interface for displaying information on hieroglyphs is shown in Figure 16.

Fig. 16. The page’s interface for displaying information on hieroglyphs

As mentioned earlier, the words with priority only are displayed. For each word, the system displays how it is read according to the alphabet. Further, for each word, its translation is displayed. All TextView objects for displaying pronunciation (KunYomi, On-Yomi) and the field for displayed words are scrollable for readability.

Conclusion

We have considered the process of character recognition based on a convolutional neural network. A mobile application with the functionality of recognizing Japanese characters is implemented.

NOTES

1. ETL Character Database. Accessed online: http://etlcdb.db.aist.go.jp/

2. Retrofit Converter A type-safe HTTP client for Android and Java. Accessed online: https://square.github.io/retrofit/

REFERENCES

Golikov, I. (2018). Convolutional neural network, part 1: structure, topology, activation functions and training set. Accessed online: https:// habr.com/ru/post/348000/

Khaustov, P.A., Grigoriev, D.S. & Spitsyn, V.G. (2013). Development of an optical character recognition system based on the combined use of a probabilistic neural network and wavelet transform. Bulletin of the Tomsk Polytechnic University.No. 5 p. 101-105. Accessed online: https://www.elibrary.ru/item.asp?id=20958295/

Kosolapov, K. (2018). Neural networks, fundamental principles of work, diversity and topology. Accessed online: https://habr.com/ru/ post/416071/

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева