Математика и Информатика

2014/5, стр. 447 - 461

ИНФОРМАТИКА В ШКОЛАХ РОССИИ

Резюме:

Ключови думи:

Введение

Общеобразовательный обязательный курс информатики существует в отечественной школе с 1985 г. – более 25 лет. За это время его содержание получило значительное развитие, полностью изменившее первоначальные представления о его роли и месте информатики в системе образования. Однако в силу известного психологического эффекта (влияние на сознание и деятельность людей броских лозунгов, известных фамилий, модных брендов и др.) у многих людей, в том числе и причастных к принятию решений, остались в памяти только шумная компания 1980-х гг. по обеспечению «компьютерной грамотности» и постоянно воспроизводимое словосочетание «информационные технологии».

Общую объективную тенденцию развития курса информатики как обязательного школьного предмета за четверть века можно выразить так: «от компьютерной грамотности к общеобразовательному предмету, от общеобразовательного предмета к «метапредмету». Рассмотрим последовательно компоненты названной триады.

1. Компьютерная грамотность

1.1. Формальным поводом закрепления информатики как обязательного школьного предмета стало Постановление ЦК КПСС и Совета Министров СССР 1984 г. «Об обеспечении компьютерной грамотности молодежи». Наполнение этого термина конкретным содержанием и выстраивание системы обеспечения «компьютерной грамотности» было поручено научным коллективам, в том числе и НИИСиМО (Научно-исследовательский институт содержания и методов обучения АПН СССР, в настоящее время – ИСМО РАО). Основным идеологом школьной информатики в этот период стал академик А. П. Ершов (1931-1988). Его личность и идеи оказали существенное влияние на последующее развитие курса информатики. Итог этого влияния трудно оценить однозначно. С одной стороны, информатика получила мощный импульс для своего развития, с другой – ее ориентация на алгоритмизацию, программирование, освоение компьютеров далеко не полностью отвечала целям общего образования.

Вопреки распространенному мнению о «творческом потенциале компьютера», освоение алгоритмов и в особенности современных программных средств во многом способствует развитию шаблонного мышления. Границы мира учащегося заметно приближаются к границам возможностей среды Windows или еще какой-либо иной среды компьютерной деятельности. Обучение навыкам алгоритмизации имеет непреходящее значение для развития личности. Но преподавать информатику исключительно в подобном «формате» – значит лишать школьников будущего, поскольку всякая по-настоящему человеческая деятельность не укладывается в шаблоны.

Об этом ярко и парадоксально сказал современный математик и философ В. Н. Тростников: «...на самом деле жизнь не подчинена никакой логике; она противоположна алгоритму! Возьмем то, что противоречит любой логике, – юмор, дурачество, остроты. Известно, что чем человек умнее, сильнее, жизнеспособнее, тем больше он ценит эти вещи, – по-видимому, как раз за нелогичность... Сигнал «я распоряжаюсь алгоритмами, а не они мною» мгновенно схватывается другой живой душой... Капризная и кокетливая женщина, о которой не знаешь, шутит она или говорит правду... показывает, что она личность, хозяйка над логикой, а не ее раба...» (Тростников, 1997).

Тем не менее, алгоритмы составляют важную часть нашей жизни. В противовес мнению В. Н. Тростникова, можно привести мысль известного математика ХХ века А. Уайтхеда о том, что развитие цивилизации определяется количеством созданных алгоритмов (Whitehead, 1953).

В обоих высказываниях содержится правда, поэтому изучение алгоритмов и программирования, на наш взгляд, целесообразно осуществлять, основываясь на «золотой середине» между крайними точками зрения.

1.2. Постепенно компьютерная грамотность стала ассоциироваться с информационными технологиями, которые большинству людей и представляются сутью информатики. Чтобы лучше понять смысл заключенной здесь проблемы, вначале вкратце остановимся на соотношении науки и технологии, основываясь на подходе, принятом в философии и науковедении.

Современная наука, т. е. наука Нового времени, возникла около 400 лет назад и отличается от античной созерцательной науки именно своей прагматической направленностью, технологичностью. Например, исключительную популярность в XVI-XVII вв. получила идея «всеобщей -математики» (mathesis universalis), которая получила дальнейшее развитие в трудах Г. В. Лейбница, а позднее стала краеугольным камнем математической логики. В соединении с принципом символического исчисления (заметим, также вполне «технологическим») она стала одной из основ информатики.

Примечательно высказывание Т. Гоббса – одного из идеологов науки Нового времени: «Знание есть только путь к силе. Теоремы (которые в геометрии являются путем исследования) служат только решению проблем. И всякое умозрение, в конечном счете, имеет целью какое-нибудь действие или практический успех» (Гоббс, 1980, с. 77). Аналогичным образом оценивали западноевропейскую науку крупнейшие мыслители XX в. М. Хайдеггер и К. Ясперс.

Современное естественнонаучное и математическое образование, основываясь на традициях новоевропейской науки, целиком воспринимает и ее технологичность. Например, в школьном курсе математики подчеркивается важность освоения различных алгоритмов: алгоритма Евклида, алгоритма деления отрезка на две равные части и т. д. В курс химии включено описание различных технологий: производства аммиака, чугуна, стали и других веществ. Таким образом, изучение основ наук как таковых это уже во многом изучение основ различных технологий. Разумеется, не менее важную роль играет при этом и формирование научного мировоззрения. Однако оно ни в коей мере не является «оторванной от жизни» теорией.

В современном курсе информатики это направление связано с развитием ИКТ – компетенций. Согласно (Ракитина, 2002) можно выделить следующие компетенции:

– компетенция в сфере познавательной деятельности: понимание сущности информационного подхода при исследовании объектов различной природы; знание основных этапов системно-информационного анализа; владение основными интеллектуальными операциями, такими как анализ, сравнение, обобщение, синтез, выявление причинно-следственных связей и др.;

– компетенция в сфере коммуникативной деятельности: понимание особенностей использования формальных языков; знание современных средств коммуникации и важнейших характеристик каналов связи; владение основными средствами телекоммуникаций; знание этических норм общения и основных положений правовой информатики;

– технологическая компетенция: понимание сущности технологического подхода к организации деятельности; знание особенностей автоматизированных технологий информационной деятельности; умение выявлять основные этапы и операции в технологии решения задачи, владение навыками выполнения унифицированных операций, составляющих основу различных информационных технологий;

– компетенция в сфере социальной деятельности: понимание необходимости заботы о сохранении и преумножении общественных информационных ресурсов; готовность и способность нести личную ответственность за достоверность распространяемой информации; уважение прав других и умение отстаивать свои права в вопросах информационной безопасности личности;

Как нам представляется, этот список целесообразно пополнить новым видом компетенций, который условно можно назвать семиотическими компетенциями (semios – знак). Они отражают значимость знакового, языкового аспекта в решении слабо формализуемых задач, которые, как правило, не допускают возможность использования для их решения стандартных программных и аппаратных средств. Такие задачи решаются путем «мозгового штурма», что особенно важно в кризисных ситуациях. Содержание семиотических компетенций, на наш взгляд, сводится к следующему:

– создание тезауруса предметной области данной задачи и тем самым способствовать ее осмыслению и структурированию.

– представление данной предметной области определенной системой знаков, понятных всем участникам коллективного решения данной задачи;

– организации взаимодействия всех участников коллективного решения задачи.

2. Общеобразовательный предмет естественнонаучного цикла

Переход курса информатики в качественно новое состояние в середине 1990-х гг. был обусловлен двумя причинами:

– дальнейшим развитием самой информатики, главным вектором которого стала ее «фундаментализация»;

– необходимостью реализации системного принципа В. С. Леднева, согласно которому содержание общеобразовательного предмета определяется совокупной структурой предмета обучения и структурой обобщенной (инвариантной) деятельности человека.

Иными словами было необходимо вернуть информатику к общеобразовательным традициям, заложенным еще в 1960-70 гг.

Согласно концепции академика РАО В. С. Леднева (1932-2004), содержание образования определяется двумя детерминантами: структурой деятельности и структурой объекта изучения, которым является окружающая действительность (Леднев, 1991, с. 23). Поэтому возникновение в системе школьного образования нового общеобразовательного курса всегда подчиняется объективным закономерностям. Это было блестяще доказано самим В. С. Ледневым, еще в 1961 г. обосновавшим необходимость введения в школу общего кибернетического образования. Такое образование должно было включить в себя изучение соответствующего общеобразовательного курса наряду с изучением информационных процессов и управления в рамках других школьных дисциплин.

Согласно достаточно устоявшейся точке зрения, информатика является фундаментальной естественнонаучной дисциплиной, изучающей закономерности протекания информационных процессов в системах различной природы, а также методы и средства автоматизации этих процессов.

Понимание информатики как естественнонаучной дисциплины привносит в нее определенную логику, отражающую основные компоненты познания:

– предмет познания (феномен);

– инструмент познания (модель);

– область применения (где используются результаты познания).

Исследования, проведенные в Лаборатории дидактики информатики ИСМО РАО, позволили раскрыть содержание названной триады по отношению к информатике. Было показано, что основным феноменом, отражающим информационный компонент реальности, являются информационные процессы, основным инструментом познания – информационные модели, а областями применения, которые целесообразно рассматривать в рамках общеобразовательной школы – сферы управления, технологий, социума. Для основной школы (5-9 классы) такой подход представляется важным, поскольку именно в 7-9 классах формируются начала естественнонаучного мировоззрения на основе фундаментальных представлений о веществе, энергии и информации.

Именно этот подход был положен в основу Образовательного стандарта 2004 г. и реализован в ряде учебников и учебных пособий, созданных в Лаборатории дидактики информатики (С. А. Бешенков, Н. В. Матвеева, Е. А. Ракитина, Э. В. Миндзаева, Г. М. Нурмухамедов и др.).

Особая роль в этом подходе отводилась информационным моделям. В решении практически любой задачи содержится этап моделирования. Более того, понятие модели является ключевым для всего процесса познания и человеческого бытия в целом. Так, например, в школьном курсе физики рассматривается много разнообразных уравнений, которые представляют собой модели изучаемых явлений или процессов. Понятие модели играет принципиально важную роль даже в областях, казалось бы, далеких от физики, химии, информатики. Смысл такого литературного жанра, как басня или притча состоит в переносе реальных отношений между людьми на отношения между животными или вымышленными персонажами. Справедливо было бы сказать, что всякое литературное произведение может рассматриваться как информационная модель, ибо она фокусирует внимание читателя на определенных сторонах человеческой жизни.

Информационные модели создают основу для качественного перехода общеобразовательного курса информатики в ранг «метапредмета». Поскольку исследования в этом направлении только начинаются, а его результаты, по-видимому, будут представлять интерес и для других школьных предметов, рассмотрим это новое качество информатики более подробно.

Заметим, существует определенная сложность в понимании самого термина «метапредметность». Префикс «мета» традиционно означает рекурсивное и рефлексивное применение соответствующего понятия (например, «метатеория» – теория, анализирующая структуру и методы какой-либо другой теории, «метаязык» – язык, на котором осуществляется рассмотрение какого-либо другого языка и т.д.). Поэтому «метапредметность» означает нечто совершенно иное чем «надпредметность» или «общепредметность» (термины Федерального государственного образовательного стандарта). На наш взгляд, вопрос требует более глубокого осмысления, поэтому в рамках данного текста мы будем опираться на интуитивное понимание «метапредметности».

3. Информатика как «метапредмет»

Видение информатики как технологической и естественнонаучной дисциплины далеко не исчерпывают ее образовательного потенциала. Напротив, как показывают многочисленные философские, социологические и педагогические исследования, информатика отражает наиболее существенные и важные черты современной цивилизации.

Одну из важнейших тенденций нашего времени можно обобщенно выразить термином «виртуализация». Его суть заключается в том, что приблизительно с начала 1920-х гг. стал активно конструироваться искусственный универсум, имеющий часто противоречивое отношение к реальному миру. Теоретической основой подобных конструкций явилась возможность принципиального разделения знака и обозначаемого им предмета. «Мысль одно, дело другое, образ действия третье – между ними колесо причинности не вертится» – так в свое время иллюстрировал эту мысль Ф. Ницше (Ницше, 1990, с. 16). Позже был сформулирован «основной тезис формализации», который с теоретической позиции позволяет осмыслить процессы виртуализации. (Бешенков et al., 1995 , с. 62).

Знаки и составленные из них тексты приобрели в ХХ в. решающее значение для науки, культуры и человеческой жизни в целом. Сегодня человек практически полностью погружен в мир знаков и текстов, которые являются умозрительными (и далеко не всегда позитивными) конструкциями, имеющими весьма слабые связи с реальностью в широком понимании этого термина. В результате человек часто не знает и не понимает окружающего мира, прежде всего мира физической реальности. Проявлением этого являются отчуждение человека от этой реальности, неспособность всегда адекватно воспринимать природные феномены, факты культурной и общественной жизни.

Применительно к математике эту особенность информационной цивилизации выразил выдающийся математик современности академик В. И. Арнольд (19372010): «Продолжающаяся, как утверждают, 50 лет аксиоматизация и алгебраизация математики привела к неудобочитаемости столь большого числа математических текстов, что стала реальностью всегда угрожающая математике полная утрата контакта с физикой и естественными науками… Характерным признаком аксиоматически-дедуктивного стиля являются немотивированные определения, скрывающие фундаментальные идеи и методы; подобно притчам, их разъясняют лишь ученикам наедине» (Арнольд, 1978, с. 8).

Эта ситуация отражается и в системе образования. Школьник может успешно решать разнообразные задачи, но он как правило не умеет грамотно интерпретировать полученные им результаты – т. е. действовать вне выбранной знаковой системы. Например, в процессе решения задачи по определению диаметра земного шара ученик вполне может получить в ответе 1,5 км, не испытывая при этом потребности в верификации результата. Подобных примеров можно привести множество.

В этой связи вспоминаются замечательные книги Я. И. Перельмана, например, его «Занимательная арифметика», где ставилась задача развития интуиции числа, его связи с реальностью («Много или мало – миллион шагов?»). Забвение необходимости развития такой интуиции приводит к деформации процесса познания и, в конечном счете, всей сферы человеческого бытия.

В качестве еще одного примера можно сравнить учебники по физике Ю. Б. Румера (1929 г.) и И. К. Кикоина (1970-80 гг.). Объективная реальность, отраженная в этих учебниках, одна и та же. Но представленные в них знаковые системы существенно отличаются. В учебнике Румера прослеживается явное желание связать знаковую систему с реальностью. Напротив, в учебнике Кикоина столь же явным является стремление оставаться внутри знаковой системы. В том же ключе можно рассматри- вать тенденцию замены лабораторных работ формальными выкладками (т. н. «меловая физика») и в последнее время – виртуальными компьютерными экспериментами. Подобная тенденция имеет всеобщий характер (можно сравнить, учебники по геометрии А. П. Киселева и А. В. Погорелова – результат будет примерно тем же).

Таким образом, движущими силами развития общеобразовательного курса информатики на современном этапе (развитие его метапредметного аспекта) являются:

а) феномен виртуализации – визитная карточка современной информационной цивилизации. Без осмысления виртуализации невозможна социализация учащихся в современном мире и вообще осмысленная жизнь и деятельность человека; б) каскад кризисных явлений современного мира, имеющих главным образом информационную (знаковую) природу. Стало очевидным, что их преодоление невозможно без накопления определенного интеллектуального потенциала, способного генерировать принципиально новые идеи, методы, теории. Сформировать этот потенциал в рамках элитарного образования невозможно – необходим выход на уровень общего образования. «Матапредметность» информатики позволяет заложить один из основных «кирпичей» в фундамент для развития такого потенциала; в) внутренний фактор, связанный с необходимостью развития межпредметных связей внутри системы учебных предметов не только естественнонаучного, но и гуманитарного циклов. Только в этом случае возможно формирование у школьников целостной картины мира, что, несомненно, является одной из важнейших задач общего образования. В этом плане информатика является идеальным инструментом установления таких связей.

Рассмотрим некоторые примеры учета этих факторов в рамках метапредметного курса информатики. Здесь можно не только конкретно и детально рассмотреть феномен виртуализации, но и сформулировать систему задач и упражнений нового типа, имеющих, как нам представляется, важное образовательное и воспитательное значение.

Пример 1. Пристрастие учащихся (и вообще многих людей) к современным кинофильмам во многом обусловлено эффектом новизны, что активно эксплуатируется их создателями. В то же время такая новизна является внешней, «виртуальной» – большинство фильмов построены по четкой схеме.

В эксперименте, проведенном в гимназии № 2 г. Железнодорожного Московской области, учащимся предлагалось самостоятельно создать новую серию о Джеймсе Бонде. Для этого они должны были проанализировать известные им серии, определить схему сюжета (она везде одна и та же) и, пользуясь этой схемой, самостоятельно придумать новую серию. В качестве комментария учащимся сообщалось, что подобной деятельностью занимались многие люди, хорошо понимающие механизмы массовой культуры. Классический пример – известный специалист по семиотике Умберто Эко, написавший бестселлер «Имя розы», по которому был снят одноименный фильм. Результатом этой деятельности (во многом неожиданным) были снижение у учащихся эффекта новизны и как следствие заметное падение интереса к указанной кинопродукции.

Виртуализация многочисленных сторон человеческого бытия формирует устойчивое представление о том, что наиболее легким путем достижения цели является манипуляция со знаковыми системами. Наибольший размах эта деятельность приобрела в финансовой сфере. Конечный результат этой деятельности очевиден – происходит дисбаланс знаков и предметов материального мира, что и является источником кризисов. Информатика и в этом случае способна сформировать у школьников исходную точку зрения на эти процессы.

Пример 2. В рамках упомянутого эксперимента учащимся было предложено задание найти общность между командой присваивания (основной командой в языке программирования) и инфляцией.

Вопрос с первого взгляда кажется бессмысленным и даже провокационным. В реальности же он нацеливает на более глубокое осмысление сути этих явлений. Команда присваивания основана на разделении имени величины и ее значения, причем значение величины можно изменять, не меняя ее имени. Тот же механизм присущ инфляции: не меняя денежного номинала, можно изменить его покупательную способность. Таким образом, учащимся демонстрируется, что в том и другом случае действует один и тот же информационный механизм. С другой стороны, в программировании хорошо известен эффект «переполнения», когда именованная ячейка памяти компьютера не в состоянии разместить бóльшую величину. Учитывая общность механизма, можно предположить, что аналогичный эффект может произойти и в финансовой сфере, что и порождает кризис. Рассмотренные примеры свидетельствуют о том, что в информатике заложены широкие возможности межпредметного характера, позволяющие найти глубокую связь между различными явлениями окружающего мира.

По нашему мнению, образовательная ценность культуры определяется в значительной мере ее способностью формировать единый взгляд на мир. Необходимость такой картины обусловлена резким увеличением областей познания и видов человеческой деятельности, в том числе профессиональной. С другой стороны, осознанное восприятие и осмысленная деятельность невозможны без того, чтобы общенаучные, мировоззренческие представления стали неотъемлемой компонентой научного, учебного и профессионального труда. Этот факт был вполне осознан еще в 1930-х гг. В работе знаменитого немецкого философа М. Хайдеггера «Время картины мира» (1938) подчеркивалось, что основным процессом Нового времени является освоение мира «как картины», т.е. создание некоторого единого образа, системы.

Роль информатики в этом процессе является двоякой. С одной стороны, ее понятийный аппарат позволяет устанавливать связи между весьма далекими на первый взгляд явлениями. С другой – информатика является методологической базой, позволяющей выделить в других дисциплинах общие принципы структурирования информации.

Достаточно долгое время роль интегративного начала в науке выполняли предметы естественнонаучного цикла, прежде всего математика и физика, что было связано в основном с исключительными достижениями названных дисциплин в постижении природы вещей и их вкладом в развитие человеческой цивилизации. Многие принципы, сформулированные в этих областях знания, стали восприниматься как общенаучные и общекультурные, т.е. стали выполнять роль интегрирующего начала современного знания. К их числу можно отнести:

– принцип системности;

– принцип симметрии и связанные с ним законы сохранения;

– принцип неопределенности и связанный с ним принцип дополнительности;

– принцип неполноты формальной системы;

– принцип «нелинейности» (учет внутрисистемных взаимодействий).

Названные принципы используются в настоящее время далеко за рамками тех явлений, для решения которых они были сформулированы. Например, сформулированный для квантовой механики принцип неопределенности Гейзенберга («Невозможно одновременно точно измерить импульс и координаты квантового объекта») активно, хотя и в ином смысле, используется в теории перевода («Невозможно одновременно точно обеспечить перевод смысла текста и его стилистических особенностей»).

Важнейшее назначение общенаучных принципов состоит в расширении горизонта познания мира за пределы непосредственного восприятия. Например, принцип симметрии говорит, в частности, о том, что законы природы в отдаленных уголках Вселенной такие же, как и в нашей Солнечной системе. На этом принципе основаны достижения современной космологии.

Роль подобных принципов в становлении мировоззрения и формировании аналитического компонента профессиональной деятельности исключительно велика. Они не только задают определенную «матрицу» миропонимания, но и воплощаются в различных видах человеческой деятельности. То, каким образом человек решает проблему, зависит не только от конкретных знаний и умений, но и от его общей мировоззренческой установки.

В ряде исследований (Гулякова, 2007), (Тростников, 1997), (Шутикова, 2005), (Grozdev, 2007) показано, что характерной тенденцией современной инженерной деятельности является значительное усложнение социотехнических и системотехнических задач, решение которых не может быть получено только в рамках естественных и технических наук. Это обстоятельство предопределяет гуманитаризацию инженерной деятельности, необходимость учета научных принципов, лежащих в основе современной картины мира.

В обществе, где велика роль информации, перечисленные принципы уже не охватывают всех особенностей протекающих в мире процессов, а, следовательно, не могут служить основой полноты образования как в мировоззренческом, так и в деятельностном аспектах. Определяющую роль здесь начинают играть информационные принципы, связанные с фундаментальными понятиями «информация», «информационный процесс», «информационная система». Мы подошли к рубежу, когда общенаучные принципы должны быть интерпретированы с информационной точки зрения.

Например, Ю. М Лотман применил расширенное понимание к принципу дополнительности Н. Бора, первоначально означавшему, что для описания всякого целостного явления необходимо использовать взаимодополняющие представления. Ю. М. Лотман пишет: «Сколь ни распространяли бы мы круг наших сведений, потребность в информации будет развиваться, обгоняя темп нашего научного прогресса. Следовательно, по мере роста знания незнание будет не уменьшаться, а возрастать, а деятельность, делаясь более эффективной, — не облегчаться, а затрудняться. В этих условиях недостаток информации компенсируется ее «стереоскопичностью» — возможностью получить совершенно иную проекцию той же реальности». (Ракитина, 2002, с. 235)

К общим информационным принципам можно отнести:

– основной тезис формализации;

– принцип информационного моделирования;

– принцип информационного управления;

– принцип нелокальности информационных взаимодействий;

– принцип универсальности цифрового кодирования.

На наш взгляд, интеграцию системы школьных предметов целесообразно осуществлять, опираясь на «принцип двойного вхождения» академика В. С. Леднева (каждая область включается в содержание образования двояко: как отдельный учебный предмет и в качестве «сквозных линий» в содержании школьного образования в целом (Леднев, 1991, с. 224) по следующей схеме:

– общенаучные принципы формулируются и комментируются в рамках соответствующих учебных дисциплин;

– в информатике формируются представления об общих подходах к структурированию информации в процессе познания, и развивается необходимый для этой деятельности понятийный аппарат.

Отметим, что важность освоения общих подходов к структурированию информации важна не только в естественнонаучной области, но и в области гуманитарных предметов. Например, многие произведения мировой культуры ХХ в., входящие в программу общеобразовательной школы, вряд ли могут быть адекватно поняты вне рамок теории знаковых систем, вне связи с информатикой.

Пример 3. Одно из самых значительных произведений русской и мировой литературы ХХ в. – роман М. А. Булгакова «Мастер и Маргарита» имеет множество трактовок, которые, так или иначе, рассматриваются при изучении этого произведения в общеобразовательной школе. Возможно изучение романа и под углом зрения, в котором особую роль играет структура самого текста. В романе можно обнаружить разнообразные и тонкие примеры интертекста (текста в тексте), а также гипертекста, который в настоящее время является основой организации информации в сети Интернет. Изучение романа под этим углом зрения дает результаты, которые трудно получить при иных подходах. Это позволяет открыть перед учащимися значение и роль структуры текста, связь структуры с логикой автора, значение ключевой информации в тексте и многие другие аспекты, позволяющие отнести роман «Мастер и Маргарита» к классическим произведениям постмодернизма (Ракитина, 2002, с. 159).

Одним из важнейших метапредметных аспектов общеобразовательного курса информатики является системное и последовательное обучение знаково-символической деятельности. Информатика способна предоставить информационные модели как средства работы с различными формами представления информации. Поэтому именно на уроках информатики формируются метапредметные умения работы с различными формами представления информации, информационными моделями (от построения модели до ее использования в ходе решения конкретной задачи). Эти умения способны проецировать метазнания в области знаковосимволической деятельности на другие учебные предметы. Обучение процессу моделирования на уроках информатики, как правило, предполагает использование примеров из разных областей знания и деятельности (лингвистики, физики, химии, географии, биологии, математики, театра, музыки, психологии и др.). Обучение моделированию ведётся с использованием самых различных знаковых систем: от естественных знаковых систем до систем высокой степени формализации, включая языки программирования, алгебру логики и др.

Не менее значимый метапредметный аспект информатики состоит в формировании четкого понимания и структурирования окружающей человека информации, осознания социальной значимости взаимодействия с окружающим миром через знаковые системы и формализацию, определении границ этой составляющей. Лишь в этом случае можно ожидать от человека осмысленных и социально значимых действий.

Приведенные примеры свидетельствуют о том, что общеобразовательный курс информатики при его «метапредметной» трактовке может сыграть фундаментальную роль в интеграции традиционных школьных предметов.

ЛИТЕРАТУРА

Арнольд, В. И. (1978). Дополнительные главы теории обыкновенных дифференциальных уравнений. Москва: Наука, 304 с.

Бешенков, С. А., Гейн, А. Г. & Григорьев, С. Г. (1995). Информатика и информационные технологии: Учеб. пособие для гуманит. факультетов педвузов. Екатеринбург: Урал. гос. пед. ун-т., 144 с.

Бешенков, С. А. & Миндзаева, Э. В. (2010). Образовательные стандарты второго поколения. Примерная программа по информатике для основной школы в рамках стандартов второго поколения (Материалы циклов всероссийских телемостов по вопросам федеральных государственных образовательных стандартов второго поколения. Естественнонаучные дисциплины). Москва: БИНОМ. Лаборатория знаний, 77 с.

Бешенков, С. А. & Миндзаева, Э. В. (2011). Цикл видеолекций «Основные тенденции развития предмета информатики при переходе на новый образовательный стандарт».«Академические курсы». Москва: ИСМО РАО, Режим доступа: http://acourses.ru/course/view.php?id=42

Бешенков, С. А., Ракитина, Е. А., Матвеева, Н. В. & Милохина, Л. В. (2008). Непрерывный курс информатики. Москва: БИНОМ. Лаборатория знаний, 143 с.

Бешенков, С. А., Трубина, И. И. & Миндзаева, Э. В. (2010). Развитие универсальных учебных действий в общеобразовательном курсе информатики. Кемерово: Изд-во КРИПКиПРО, 111 с.

Гоббс, Т. (1980). Основы философии. Часть первая. Соч. в двух томах. Т.1, Москва, 314 с.

Гулякова, С. Л. (2007). Развитие представлений о современной информационной картине мира как фактор готовности выпускников вуза к профессиональной деятельности: Автореф. дис. … канд. пед. наук:13.00.08. Москва, 21 с.

Кузнецов, А. А., Бешенков, С. А. & Ракитина Е. А. (2008). Информатика 8. Москва: Просвещение, 176 с.

Леднев, В. С. (1991). Содержание образования: сущность, структура, перспективы. Москва: Высшая школа, 224 с.

Логвинов, И. И. (2007). Дидактика: история и современные проблемы. Москва: БИНОМ. Лаборатория знаний, 205 с.

Моисеев, Н. Н. (2001). Универсум. Информация. Общество. Москва: Устойчивый мир, 200 с.

Ницше, Ф. (1990). Так говорил Заратустра. Соч. в 2-х томах. Т. 2. Москва: Мысль, 412 с.

Бешенков, С. А. (редактор) (2011). Примерные программы по информатике для основной и старшей школы. Москва: БИНОМ. Лаборатория знаний, 176 с.

Ракитина, Е. А. (2002). Построение общеобразовательного курса информатики на деятельностной основе: Автореф. дис. докт. пед. наук: 13.00.02. Москва, 48 с.

Руднев, В. П. (1999). Словарь культуры ХХ века. Москва: Аграф, 384 с.

Тростников, В. Н. (1997). Мысли перед рассветом. Москва, 360 с.

Шутикова, М. И. (2005). Информационное моделирование – основа построения курсов информатики экономического профиля. Информатика и образование, № 7, 27-128.

Шутикова, М. И. (2006). Информационное моделирование при профессиональной подготовке. Специалист, № 11, 17-19.

Grozdev, S. (2007). For High Achievements in Mathematics. The Bulgarian Experience. (Theory and Practice). Sofia: ADE (ISBN 978-954-92139-1-1), 295 pages.

Whitehead, A. N. (1953). Science and modern world. – An Anthology. New York, 456 pages.

REFERENCES

Arnol’d, V. I. (1978). Dopolnitel’nyye glavy teorii obyknovennykh differentsial’nykh uravneniy. Moskva: Nauka, 304 s.

Beshenkov, S. A., Geyn, A. G. & Grigor’yev, S. G. (1995). Informatika i informatsionnyye tekhnologii: Ucheb. posobiye dlya gumanit. fakul’tetov pedvuzov. YEkaterinburg: Ural. gos. ped. un-t., 144 s.

Beshenkov, S. A. & Mindzayeva, E. V. (2010). Obrazovatel’nyye standarty vtorogo pokoleniya. Primernaya programma po informatike dlya osnovnoy shkoly v ramkakh standartov vtorogo pokoleniya (Materialy tsiklov vserossiyskikh telemostov po voprosam federal’nykh gosudarstvennykh obrazovatel’nykh standartov vtorogo pokoleniya. YEstestvennonauchnyye distsipliny). Moskva: BINOM. Laboratoriya znaniy, 77 s.

Beshenkov, S. A. & Mindzayeva, E. V. (2011). Tsikl videolektsiy «Osnovnyye tendentsii razvitiya predmeta informatiki pri perekhode na novyy obrazovatel’nyy standart».«Akademicheskiye kursy». Moskva: ISMO RAO, Rezhim dostupa: http:// acourses.ru/course/view.php?id=42

Beshenkov, S. A., Rakitina, YE. A., Matveyeva, N. V. & Milokhina, L. V. (2008). Nepreryvnyy kurs informatiki. Moskva: BINOM. Laboratoriya znaniy, 143 s.

Beshenkov, S. A., Trubina, I. I. & Mindzayeva, E. V. (2010). Razvitiye universal’nykh uchebnykh deystviy v obshcheobrazovatel’nom kurse informatiki. Kemerovo: Izdvo KRIPKiPRO, 111 s.

Gobbs, T. (1980). Osnovy filosofii. Chast’ pervaya. Soch. v dvukh tomakh. T.1, Moskva, 314 s.

Gulyakova, S. L. (2007). Razvitiye predstavleniy o sovremennoy informatsionnoy kartine mira kak faktor gotovnosti vypusknikov vuza k professional’noy deyatel’nosti: Avtoref. dis. … kand. ped. nauk:13.00.08. Moskva, 21 s.

Kuznetsov, A. A., Beshenkov, S. A. & Rakitina YE. A. (2008). Informatika 8. Moskva: Prosveshcheniye, 176 s.

Lednev, V. S. (1991). Soderzhaniye obrazovaniya: sushchnost’, struktura, perspektivy. Moskva: Vysshaya shkola, 224 s.

Logvinov, I. I. (2007). Didaktika: istoriya i sovremennyye problemy. Moskva: BINOM. Laboratoriya znaniy, 205 s.

Moiseyev, N. N. (2001). Universum. Informatsiya. Obshchestvo. Moskva: Ustoychivyy mir, 200 s.

Nitsshe, F. (1990). Tak govoril Zaratustra. Soch. v 2-kh tomakh. T. 2. Moskva: Mysl’, 412 s.

Beshenkov, S. A. (redaktor) (2011). Primernyye programmy po informatike dlya osnovnoy i starshey shkoly. Moskva: BINOM. Laboratoriya znaniy, 176 s.

Rakitina, YE. A. (2002). Postroyeniye obshcheobrazovatel’nogo kursa informatiki na deyatel’nostnoy osnove: Avtoref. dis. dokt. ped. nauk: 13.00.02. Moskva, 48 s.

Rudnev, V. P. (1999). Slovar’ kul’tury KHKH veka. Moskva: Agraf, 384 s.

Trostnikov, V. N. (1997). Mysli pered rassvetom. Moskva, 360 s.

Shutikova, M. I. (2005). Informatsionnoye modelirovaniye – osnova postroyeniya kursov informatiki ekonomicheskogo profilya. Informatika i obrazovaniye, № 7, 27128.

Shutikova, M. I. (2006). Informatsionnoye modelirovaniye pri professional’noy podgotovke. Spetsialist, № 11, 17-19.

Grozdev, S. (2007). For High Achievements in Mathematics. The Bulgarian Experience. (Theory and Practice). Sofia: ADE (ISBN 978-954-92139-1-1), 295 pages.

Whitehead, A. N. (1953). Science and modern world. – An Anthology. New York, 456 pages.

2025 година
Книжка 4

Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов,

THE IMPACT OF TEACHERS’ GENDER, EDUCATION, AND EXPERIENCE ON FOSTERING MATHEMATICAL CREATIVITY: A QUANTITATIVE STUDY

kombinatorni zadachi. Mathematics and Informatics, 2, 193 – 202. (In Bulgarian). Valkov, M. (2022). Sinhronno distantsionno obuchenie v obrazovatelnata igra “StruniMa”. Pedagogicheski forum, 1, DOI: 10.15547/PF.2022.005, ISSN:1314-7986. (In Bulgarian).

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev1)

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev,Nadezhda Borisova,Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски1),Марияна Николова2)

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev , Tsvetelin Zaevski Anton Iliev , Vesselin Kyurkchiev , Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova , Aharon Goldreich , Nadezhda Borisova

ФОРМИРАНЕ НА КОМПЕТЕНТНОСТИ ЧРЕЗ ПРОБЛЕМНО БАЗИРАНО ОБУЧЕНИЕ

2. Компетентностен подход Компетентностният подход се базира на използването на инте- рактивни методи и нови технологии за обучение, които спомагат за

Книжка 1
AN APPROACH AND A TOOL FOR EUCLIDEAN GEOMETRY

Dr. Boyko Bantchev, Assoc. Prof.

STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva , Rositsa Doneva , Sadiq Hussain Ashis Talukder , Gunadeep Chetia , Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Assist. Prof. Stefan Stavrev, Assist. Prof. Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
MIRROR (LEFT-RECURSIVE) GRAY CODE

Dr. Valentin Bakoev, Assoc. Prof.

THE CONSTRUCTION OF VALID AND RELIABLE TEST FOR THE DIVISIBILITY AREA

Dr. Daniela Zubović, Dr. Dina Kamber Hamzić

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov , Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD- ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Prof. Dr. Jasmin Bektešević, Prof. Dr. Vahidin Hadžiabdić, Prof. Dr. Midhat Mehuljić, Prof. Dr. Sadjit Metović, Prof. Dr. Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Гл. ас. д-р Георги Чолаков , доц. д-р Емил Дойчев , проф. д-р Светла Коева

EVALUATIОN OF CHILDREN’S BEHAVIOUR IN THE CONTEXT OF AN EDUCATIONAL MOBILE GAME

Dr. Margarita Gocheva, Chief Assist. Prof. Dr. Nikolay Kasakliev, Assoc. Prof. Prof. Dr. Elena Somova

Книжка 4
TRIPLES OF DISJOINT PATHS BETWEEN POINTS ON A CIRCLE

Dr. Ivaylo Kortezov, Assoc. Prof.

MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić , Hajnalka Peics , Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Dr. Pohoriliak Oleksandr, Assoc. Prof. Dr. Olga Syniavska, Assoc. Prof. Dr. Anna Slyvka-Tylyshchak, Assoc. Prof. Dr. Antonina Tegza, Assoc. Prof. Prof. Dr. Alexander Tylyshchak

РЕЗУЛТАТИ ОТ ИЗПОЛЗВАНЕТО НА ВИДЕОИГРИ В ОБРАЗОВАНИЕТО: ПРЕГЛЕД НА НЯКОИ ОСНОВНИ ИЗСЛЕДВАНИЯ ОТ ПОСЛЕДНИТЕ ДЕСЕТ ГОДИНИ

Калин Димитров , проф. д-р Евгения Ковачева „Интелигентният педагогически подход насърчава с инер- гията между технологиите и педагогиката и използва дигиталните игри в учебния процес“. Л. Даниела (Daniela 2020)

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Проф. д.п.н. Йордан Табов, проф. д-р Веселин Ненков, гл. ас. д-р Асен Велчев, гл. ас. д-р Станислав Стефанов

УПРАВЛЕНИЕ НА ЗНАНИЯТА ПО СТРУКТУРИ ОТ ДАННИ ЧРЕЗ СМЕСЕНО ОБУЧЕНИЕ

Гл. ас. д-р Валентина Дянкова, д-р Милко Янков

USING SENSORS TO DETECT AND ANALYZE STUDENTS’ ATTENTION DURING ROAD SAFETY TRAINING IN PRIMARY SCHOOL

Assist. Prof. Dr. Stefan Stavrev Assist. Prof. Dr. Ivelina Velcheva

Книжка 2
ALGORITHMS FOR CONSTRUCTION, CLASSIFICATION AND ENUMERATION OF CLOSED KNIGHT’S PATHS

Prof. DSc. Stoyan Kapralov , Assoc. Prof. Dr.Valentin Bakoev , Kaloyan Kapralov

DUAL FORM OF OBTAINING EDUCATION IN THE MATHEMATICS TEACHERS TRAINING SYSTEM: EMPLOYERS’ POSITION

Dr. Hab. Roman Vernydub, Assist. Prof. Dr. Oxana Trebenko, Prof. DSc. Oleksandr Shkolnyi

Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

THE POWER OF A POINT — A VECTOR PERSPECTIVE

Assoc. Prof. Dr. Boyko Bantchev

ФОРМУЛИ ЗА ЛИЦАТА НА НЯКОИ ВИДОВЕ МНОГОЪГЪЛНИЦИ И ПРИЛОЖЕНИЕТО ИМ ЗА ДОКАЗВАНЕ НА ЗАВИСИМОСТИ В ТЯХ

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

ТЕСТОВИТЕ ЗАДАЧИ ОТ ДЪРЖАВНИЯ ЗРЕЛОСТЕН ИЗПИТ ЗА ПРОФИЛИРАЩ УЧЕБЕН ПРЕДМЕТ „ИНФОРМАТИКА“ ПРЕЗ УЧЕБНАТА 2021/2022 ГОДИНА

Доц. д-р Димитър Атанасов , д-р Красимир Манев , доц. д-р Весела Стоименова , държавен експерт Ралица Войнова

2022 година
Книжка 6
BEST E-LEARNING PLATFORMS FOR BLENDED LEARNING IN HIGHER EDUCATION

Kalin Dimitrov, PhD student, Dr. Eugenia Kovatcheva, Assoc. Prof. “When I wanted to learn something outside of school as a kid, cracking open my World Book encyclopedia was the best I could do. Today, all you have to do is go online.” – Bill Gates

MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Dr. Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Dr. Elena Somova, Prof.

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Dr. Lilyana Petkova, Dr. Vasilisa Pavlova, Assist. Prof.

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Dr. Silvia Gaftandzhieva, Assoc. Prof. , Prof. Dr. Rositsa Doneva , Milen Bliznakov, PhD

READINESS OF UKRAINIAN MATHEMATICS TEACHERS TO USE COMPUTER GAMES IN THE EDUCATIONAL PROCESS

Dr. Alina Voievoda, Assoc. Prof. , Dr. Svitlana Pudova, Assoc. Prof. , Dr. Oleh Konoshevskyi, Assoc. Prof.

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Prof. Dr. Nataliya Hristova Pavlova, Michaela Toncheva

Книжка 4
A COMPARATIVE ANALYSIS OF ASSESSMENT RESULTS FROM FACE-TO-FACE AND ONLINE EXAMS

Dr. Emiliya Koleva, Assist. Prof., Dr. Neli Baeva, Assist. Prof

ДВАДЕСЕТ И ШЕСТА МЛАДЕЖКА БАЛКАНСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Доц. д-р Ивайло Кортезов, Мирослав Маринов

PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Dr. Evgeniya Nikolova, Assoc. Prof., Dr. Mariya Monova-Zheleva, Assoc. Prof., Dr. Yanislav Zhelev, Assoc. Prof.

Книжка 3

CONVERTING NUMERAL TEXT IN BULGARIAN INTO DIGIT NUMBER USING GATE

Dr. Nadezhda Borisova, Assist. Prof., Dr. Elena Karashtranova, Assoc. Prof.

RECOGNITION OF PROBLEMATIC EDUCATIONAL SITUATIONS IN COMPUTER MODELING TRAINING

Dr. Hristo Hristov, Assist. Prof. , Radka Cherneva

EFFECTS OF SHORT-TERM STEM INTERVENTION ON THE ACHIEVEMENT OF 9

Amra Duraković , Senior Teaching Assistant, Dr. Dina Kamber Hamzić , Assist. Prof.

Книжка 2
VOCABULARY ENRICHMENT IN COMPUTER SCIENCE FOR INTERNATIONAL STUDENTS AT THE PREPARATORY DEPARTMENT OF THE UNIVERSITY

Dr. Svetlana Mikhaelis, Assoc. Prof., Dr. Vladimir Mikhaelis, Assoc. Prof., Mr. Dmitrii Mikhaelis

STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Dr. Emiliya Koleva, Assist. Prof., Dr. Evgeni Andreev, Assist. Prof., Dr. Mariya Nikolova, Assoc. Prof.

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

DEVELOPING PROBLEM SOLVING COMPETENCY USING FUNCTIONAL PROGRAMMING STYLE

Muharem Mollov, PhD student , Petar Petrov, PhD student

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, PhD student, Dr. Alexandre Ivanov Chikalanov, Assoc. Prof.

КРИПТОГРАФИЯ И КРИПТОАНАЛИЗ С MS EXCEL

Гл. ас. д-р Деян Михайлов

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Dr. Ivaylo Staribratov, Assoc. Prof., Nikol Manolova

КОНТЕКСТУАЛНО ПРЕКОДИРАНЕ

Доц. д-р Юлия Нинова

ДВУПАРАМЕТРИЧНА ЗАДАЧА ЗА ОПТИМАЛНО РАЗПРЕДЕЛЕНИЕ НА РЕСУРСИ

Проф. д-р Росен Николаев, доц. д-р Танка Милкова

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
КРИВОРАЗБРАНИТЕ ВЕРОЯТНОСТИ ПРИ ТЕСТОВЕ ЗА НАЛИЧИЕ НА ЗАРАЗА

Доц. д-р Маргарита Ламбова, гл. ас. д-р Ваня Стоянова

E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Prof. Dr. Elena Somova

PRESCHOOL TEACHERS’ KNOWLEDGE, PERSPECTIVES AND PRACTICES IN STEM EDUCATION: AN INTERVIEW STUDY

Dr. Lyubka Aleksieva, Assoc. Prof., Prof. Dr. Iliana Mirtschewa, Snezhana Radeva, PhD Student

КОНКУРСНИ ЗАДАЧИ БРОЙ 6/2021 Г.

Краен срок за изпращане на решения: 20 януари 2022 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg. Скъпи прияте

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ

Задача 1. Число, което е точен квадрат на естествено число, се записва с няколко единици и една двойка. Докажете, че това число се дели на 11. Решение. Нека е такова число. Можем да го запишем като

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Доц. Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj , Prof. Dr. Sead Rešić , Anes Z. Hadžiomerović , Samira Aganović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Prof. Olha Matiash, Dr. Liubov Mykhailenko, Prof.Vasyl Shvets, Prof. Oleksandr Shkolnyi

КОНКУРСНИ ЗАДАЧИ БРОЙ 5/2021 Г.

Краен срок за изпращане на решения: 20 ноември 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в електр

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 4, 2021 Г.

Задача 1. Намерете всички взаимно прости естествени числа a и b, за кои- то .

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Assoc. Prof. Silvia Gaftandzhieva, Prof. Rositsa Doneva, Assist. Prof. George Pashev, Mariya Docheva

КОНКУРСНИ ЗАДАЧИ БРОЙ 4/2021 Г.

Краен срок за изпращане на решения: 10 октомври 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в елект

РЕШЕНИЯ НА КОНКУРСНИТЕ ЗАДАЧИ БРОЙ 3, 2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели . Решение. От тъждеството

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

MIDLINES OF QUADRILATERAL

Prof. Dr. Sead Rešić, Prof. Dr. Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Д-р Севдалина Георгиева

КОНКУРСНИ ЗАДАЧИ БРОЙ 3/2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели .

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 2, 2021 Г.

Задача 1. В равнината са дадени точка A и окръжност k с център O. Наме- рете геометричното място на центровете на описаните окръжности на три- ъгълници ABC, където BC е диаметър на k. Решение. Ако точката A лежи на окръжността k, то всички триъгълници ABC имат център на описаната окръжност точка O. В този случай търсеното множество е точката O. Нека A е външна за окръжността. Да разгледаме диаметър на k, който е перпендикулярен на AO. Центърът на описаната окръжност за е точ- ка S върху

В ПАМЕТ НА ПРОФ. ДОРУ СТЕФАНЕСКУ

С чувство за голяма загуба съобщаваме на нашите читатели, че на 09.05.2021 година на 69-годишна възраст напусна този свят членът на редакционния съ- вет на списание „Математика и информатика“ проф. д.м.н. Дору Стефанеску. Отиде си един уважаван румънски учен математик, старши заместник-пред- седател на Румънското математическо общество и изпълнителен редактор на Бюлетина на това общество, трикратен президент на Математическото обще- ство на Югоизточна Европа. Математическите способности на

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Задача 1. Да се реши в естествени числа уравнението:

Задача 3. Положителните числа x, y, z, α , β и γ удовлетворяват равен- ствата:

+ += и 2 cos cos cosx y z xy yz zx ++= + + Да се докаже, че от отсечки с дължини x, y и z може да се построи триъгъл- ник с ъгли , и . Решение. От равенството 0 2 cos cos cos sin sin cos cosx y z xy yz zx y z y z x =++− + + = − + + −

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

КОНКУРСНИ ЗАДАЧИ БРОЙ 1/2021

Задача 1. Да се реши в естествени числа уравнението: 5 10 2 nn−+= Задача 2. За положителните числа a, b, c и d е изпълнено равенството 1abcd+++ = . Да се докаже, неравенството: 1 18abcd abcd +++ + ≥

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

В ПАМЕТ НА НИКОЛАЙ ХРИСТОВИЧ РОЗОВ 20.02.1938 – 02.11.2020

С голямо прискърбие посрещнахме вестта, че известният математик, високо еру- дираният образователен деятел и член на редколегията на българското списание „Ма- тематика и информатика“ проф. Николай Христович Розов вече не е сред нас. Неочак- ваната смърт го застигна на поста декан на

КОНКУРСНИ ЗАДАЧИ БРОЙ 6

Задача 1. В турнир участвали 799 отбора, като всеки два отбора изиграли по една среща помежду си (всяка среща завършва с победа на единия то двата отбора). Да се докаже, че има 14 отбора, така че всеки от първите 7 отбора е победил всеки от последните 7.

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Вписаната в ∆ABC окръжност се допира до страните AB, BC и CA съответно в точки P, Q и R. Ъглополовящата на ъгъла при върха C пресича PQ в точка S. Да се докаже, че правите AS и RQ са успоредни. Задача 2. Естественото число n се нарича хубаво, ако множества {1, 2, 3,..., п} може да се разбие на k непресичащи се множества така, че всяко от множест- вото да съдържа средното аритметично на елементите си. Намерете всички хубави числа за k = 2 и k = 3. Задача 3. Намерете всички функци

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека . Да се намери сумата на всички ес- тествени числа от интервала , за които се дели на . Росен Николаев и Танка Милкова, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2019

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа , които са решения на уравнението Милен Найденов, Варна Решение: eдно множество от решения на разглежданото уравнение се описва със следните формули: , , където Задача 2. Средите на диагоналите и на изпъкналия четириъгъл- ник са съответно и , а пресечната им точка е . Ако втората пресечна точка на описаните около триъгълниците и окръжнос- ти е и , да се докаже, че правата с

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Равнобедреният трапец има основи с дължини и , като е такъв, че средите на страните му са върхове на квадрат. Ако дължината на бедрото на е , а разстоянието от пресечната точка на диагоналите му до бедрата е , да се докаже, че . Милен Найденов, Варна

( ) ( ) ( ) 2sin 2019 2 cos 2019 2 2 3 10, 25x x xx + = −+

Решение: тъй като , т.е. когато

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. По пътя между два града има три тунела с обща дължина 2 ки- лометра и 900 метра. Разликата в дължините на втория и третия е 20 пъти по-малка от дължината на първия тунел. Общата дължина на втория и третия е с 500 метра по-голяма от дължината на първия. Да се намерят дължините на трите тунела, ако третият тунел има най-малка дължина. Сава Гроздев, София и Веселин Ненков, Бели Осъм Задача 2. Да се докаже, че във вписан в окръжност четириъгълник е изпълнено неравенството . Хаим Хаи

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2019

Задача 1. Да се намерят всички тройки естествени числа, които са дължи- ни в сантиметри на ръбовете на правоъгълен паралелепипед с телесен диаго- нал . Христо Лесов, Казанлък Решение. Нека са дължините в сантиметри на ръбовете на правоъгълен паралелепипед с диагонал . Изпълнено е равен- ството . Оттук имаме . Следо- вателно . Затова , т.е. . От друга страна, , което означава, че . Затова , т.е. . По този начин получихме, че . Като направим необходимите проверки при

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадени са системите линейни уравнения

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4

THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3

RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina,Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

2019 cm

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Mихаил Aлфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казваме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са проти- воположни върхове на правоъгълник , да се намери броят на пътищата, свързващи и , по които мухата може да мине, когато: а) и n = 6; б) и ; в) m и са произволни естествени числа.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2018

Задача 1. Да се докаже, че: а) се дели на ; б) се дели на . Христо Лесов, Казанлък Решение на Златка Петрова от Ямбол: а) От дефиницията за факториел имаме . Оттук очевидно следва, че разглежданото число се дели на . б) Лесно се проверява, че е просто число. Затова от теоремата на Уилсън следва, че . Сега, като вземем предвид, че , получаваме което доказва твърдение б).

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2017

Задача 1. Да се реши в естествени числа уравнението , ако: а) ; б) . Тодор Митев, Русе Решение: а) . Първо да отбележим следните две твърдения: 1) най-големият общ делител на и е или за всяко цяло . Това твърдение следва непосредствено от равенството ; 2) ако е просто число и дели , то дели . Това твърдение се доказва по следния начин. От условието

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички тройки естествени числа , за кои- то е изпълнено равенството: а) ; в) Христо Лесов, Казанлък

Решение: а) 11 1 1 1 1 nx x x x kx x x x ′ ′ − + − +−  −  = = = =   − −   .

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2017 Г.

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между местата на пър- вата и втората среща е . Ако автомобилът се движи с по-бавно, то той ще срещне първия мотоциклет след тръгването си, а разстоянието между местата на двете срещи ще бъде . Определете разстоянието , ако скоро

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2017

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големи- на кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най- много 300 ореха. Иван събрал в кошницата си известно количество оре- хи и ги преброил по три начина: когато ги вземал по два, накрая оставал един, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три. Тъй като на Иван му харесало числото с тез

Книжка 1
„Децата не разбират това, което четат, и

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ε

2015! 2016! 2017++

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2.

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДАЧУ

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH MODIFIED DICE

Aldiyar Zhumashov

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши в естествени числа уравнението x )!63(1  , ако: а) ; б) . Тодор Митев – Русе

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2017

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което приема най-малка стойност. Христо Лесов – Казанлък Решение: съгласно малката теорема на Ферма за всяко естествено чис- ло и просто число , числото се дели на , т.е. дава оста- тък при деление на . Тъй като е просто число, от тази теорема следва, че дава остатък при деление на и дава остатък

Книжка 5
SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Слави Харалампиев и Румяна Несторова, Враца

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2016

Задача 1. Върху правата е взета произволна точка . Точките

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг съответно автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между места- та на първата и втората среща е . Ако автомобилът се движи с

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2016

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едновременно . Може ли да се приложи това действие краен брой пъти, така че всички числа в таблицата да станат различни, а сумите по всич- ки редове и всички стълбове да са равни? Може ли сумите на числата по диа- гоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Решение: прилагаме действието към единия диагонал

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големина кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най-мно- го 300 ореха. Иван събрал в кошницата си известно количество орехи и ги преброил по три начина: когато ги вземал по два, накрая оставал един орех, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три ореха. Тъй като на Иван му харесало бро

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2016 Г.

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния Решение. Нека е дискриминанта- та на квадратното спрямо уравнение . Сле- дователно . Оттук получаваме равенството . Предполагаме, че

Книжка 2
NDM-PHILOSOPHY OF EDUCATION IN THE 21

Marga Georgieva, Sava Grozdev

ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се определи дали съществуват естествени числа n и k, при които стойността на израза 2017 + 3 + 4 e: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2016

Задача 1. Редицата на Фибоначи се дефинира с равенствата и . Да се докаже, че всяка от редиците и съдържа безброй много двойки съседни членове, които се де- лят на . Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: в началото ще докажем следната Лема. За всяко числата на Фибоначи притежават свойствата: а) последната цифра на числата и е ; б) последната цифра на числата , , и е ; в) последната цифра на числата , , и е .

Книжка 1
ЗАНИМАТЕЛНИТЕ ЗАДАЧИ НА ПОАСОН И МЕТОДЪТ НА ПЕРЕЛМАН ЗА ТЯХНОТО РЕШАВАНЕ И ИЗСЛЕДВАНЕ

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров

ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което най-малка стойност. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2016

Задача 1. За всяко естествено число да се намери растяща редица от естествени числа , , , , , за които е изпълнено равенството Христо Лесов, Казанлък Решение: от условието имаме Затова , , , , и , , .

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Върху правата е взета произволна точка . Точките и лежат в една полуравнина спрямо и са такива, че и са равностранни. Ако е петата на перпендикуляра, спуснат от към , да се намери геометричното място на точката , когато описва . Ксения Горская, Дарья Коптева, Даниил Микуров – Архангелск, Русия

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1/2016

Задача 1. Целочислените редици и са дефинирани чрез равенствата , , , , при . а) Да се докаже, че за всяко цяло число точно едно от числата , и б) Да се определят целите числа , за които и са взаимно прости числа за всяко естествено число . Христо Лесов – Казанлък Решение: дадените рекурентни равенства представяме по следния на- чин: вателно

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едно- временно . Може ли да се приложи това действие краен брой пъти така, че всички числа в таблицата да станат различни, а сумите по всички редове и всички стълбове да са равни? Може ли сумите на числата по диагоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Задача 2. В окръжност с център е вписан разност

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2015

Задача 1. Дадена е функцията , където m, n, ∈ℕ. Ако и са корените на уравнението и е изпълнено

Книжка 4
ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2015

Задача 1. Да се намери сборът от корените на уравненията и . Милен Найденов, Варна Решение. Разделяме двете страни на първото уравнение на и полу- чаваме . Полагаме и уравнението добива вида . Тъй като функцията е растяща (лявата графика на чертежа), то уравнението ално решение . С непосредствена проверка се вижда, че това решение е . Оттук намираме, че е единственото решение на първо- то уравнение. След това разделяме двете страни на второто уравнение на

Книжка 3
{}

Сава Гроздев – София, и Веселин Ненков – Бели Осъм

()

След заместване на намерените две неравенства в дясната страна на . Равенство се достига тогава и само тогава,

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. За всяко естествено число n да се намери растяща редица

()

Задача 2. Нека P е произволна точка от описаната окръжност на на . Ако докаже, че точките лежат на една права. Хаим Хаимов, Варна, и Веселин Ненков, Бели Осъм Решение. Ще докажем, че правите ра на описаната около окръжност . Оттук непосредствено следва

Книжка 1
()

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

{}

2n ≥

()()

.

2015 година
Книжка 6
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадена е функцията , където ,mn∈ . Ако x и x са корените на уравнението f (x) = 0 и е изпълнено (2) (3)ff t xx xx −− ==∈ +  , да се намерят m и n. Росен Николаев, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2015

Задача 1. Параметрите a и b в уравнението 5x + 2x + 4ax  x + 2bx + 4b  a = 0 са такива, че то има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: Тъй като 1 и 2 са корени на даденото уравнение, то след заместване в уравнението се получават съответно равенствата: 5a+2b = 4 и 31a+8b = 188. След решаване на получената система от две уравнения с две неизвестни се полу- чава: a = 4 и b = 8. Заместваме на

МАТЕМАТИКА И ИНФОРМАТИКА MATHEMATICS AND INFORMATICS

BULGARIAN EDUCATIONAL JOURNAL ANNUAL CONTENTS / ГОДИШНО СЪДЪРЖАНИЕ

Книжка 5
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери сборът от корените на уравненията 3.2 8.3 159000 += и 32.11 56697728 x += . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2014

Задача 1. Да се намерят всички рационални стойности на параметъра k, за които уравнението ( ) ( ) , 10k ≠ притежава цело- числени корени. Милен Найденов, Варна Решение: Ако x и x са корените на уравнението, то 2 21 1 2 10 10 k xx kk - + = =- -- е цяло число. Затова 1 10 p k = - е цяло. Оттук получаваме 10 1p k p + = . За дискри- минантата D на уравнението намираме 6 24p D p -- = . Тъй като D трябва да е точен квадрат, то 6 24pn- -= за някое цяло число n. Последното равен

Книжка 4
Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова СОУ „Панайот Волов“ – Шумен ОУ „Никола Йонков Вапцаров“ – Асеновград

МОДИФИКАЦИЯ МЕТОДА ПРОЕКЦИЙ ВЬIЧИСЛЕНИЯ РАССТОЯНИЯ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЬIМИ

Владимир Жук Республиканская специализированная физико-математическая средняя школа-интернат имени О. Жаутыкова

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2014

Задача 1. Намерете всички естествени четирицифрени числа uxyv , за които са изпълнени равенствата и . Милен Найденов, Варна Решение: Събираме почленно равенствата и получаваме . Оттук следва равенството ( ) ( )( ) 1 1 1 12xy uv− −+ − −= . Последното равенство е изпълнено при ( ) 1 11 xy − −= и ( )( ) 1 11uv− −= ; ( ) 1 12xy− −= и ( )( ) 1 10uv− −= ; ( ) 1 10xy− −= и ( )( ) 1 12uv− −= . Оттук лесно се вижда, че търсените числа са: 2222, 5231, 1235, 3152, 3512, 5321, 1325,

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

Contest Problems Конкурсни задачи Рубриката се води от доц. д-р Веселин Ненков КОНКУРСНИ ЗАДАЧИ НА БРОЯ Задача 1. Параметрите a и b са такива, че уравнението 5x

Задача 1. Параметрите a и b са такива, че уравнението 5x + 2x + 4ax - x + 2bx + 4b  a = 0 има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2014

Задача 1. Ако a  3 е нечетно число и k 2 е естествено число, да се намери остатъкът от делението на a с . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: Означаваме с r търсения остатък. При k = 2 е изпълнено равенството . Тъй като , то . Сега от равенството се получава , къ- дето M е цяло число. Ако k = 2l, l k = 2l + 1, l . В този случай получаваме, че . Разглеждаме случая, при който k = 3. От рела- циите и

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички рационални стойности на параметъра , за които уравнението притежава це- лочислени корени. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2014

Задача 1. Да се докаже, че за произволен триъгълник със страни a , и c е изпълне- но неравенството Йонуц Иванеску, Крайова, Румъния Решение: Ако , R и са съответно лицето, радиусът на описа- ната окръжност и полупериметърът на триъгълника, то са изпълнени следните релации: и . От двете равенства лесно се вижда, че разглежданото неравенство е еквивалентно с , което съвпада със споменатото неравенство.

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев СОУ „П. Волов“ – Шумен

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални стойности на a, b и c, при които коре- ните на уравнението 10x a b c x ab bc ca++++ +++= са цели числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2013

Задача 1. Да се намерят всички реални функции : 1, 1,fx +∞ → +∞ , за които при и 0y > е изпълнено равенството fx fx= . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния Решение: Нека 1 log ln ye x == . Тогава fx fx fe== . Полагаме 1fe a => . От условието получаваме a fe fx== , откъдето fx a = . Освен това . Затова, като положим α , получаваме, че търсените функции са fx x = за всички α .

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

УРОК ЗА ИЗПОЛЗВАНЕ НА ФУНКЦИИ В ЗАДАЧИ ПО ИКОНОМИКА

Петя Сярова СОУ „Васил Левски“ – Ямбол

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете цифрите , , и в десетична бройна система, ако е изпълнено равенството . Йон Патралику, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2013

Задача 1. Да се намерят всички наредени тройки от реални числа , за които са изпълнени неравенствата: 2 2 2 28, 6, 3 8.

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова Образцова математическа гимназия „Акад. Кирил Попов” „Колкото човек е по-близо, толкова по-малко вижда“ Зрителна измама, филм на Луи Летерие

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете всички естествени четирицифрени числа , за които са изпълнени равенствата и . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2013

Задача 1. а) Покажете, че ако , то 9 3 15xx x+ +≥ . б) Намерете реалните стойности на , при които за всички , , 1,abc∈ − +∞ , е изпълнено неравенството 31a b c a b c kabc + + + + + +≥ ++ . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: а) Разглежданото неравенство е еквивалентно с 13 1 0 xx + −≥ , което е очевидно при . б) От а) следват неравенствата 9 3 15aa a+ +≥ , 9 3 15bb b+ +≥ и 9 3 15cc c+ +≥ . След почленно събиране получаваме 5 31 3 a b c a

Книжка 2
ФРАКТАЛЬНЫЕ МЕТОДЫ В ФИЗИКЕ

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

ANALYSIS OF PROBLEM SOLVING IN INFORMATICS FOR 12 – 13 YEAR OLD STUDENTS IN BULGARIA

Ivaylo Staribratov, BistraTaneva High School of Mathematics „Akad. Kiril Popov“

МОДЕЛ ЗА РЕШАВАНЕ НА ЕДИН КЛАС ЗАДАЧИ ЗА ПОСТРОЕНИЕ С ДИНАМИЧЕН СОФТУЕР

Ваня Бизова-Лалева Национална търговска гимназия

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако a ³ 3 е нечетно число и k ³ 2 е естествено число, да се намери остатъкът от делението на a с .

Contest Problems Конкурсни задачи РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2013

24 24 2 2 .2 8. 2 8.1024 8. 1000 1 8.10 . 1 23. 1000 1000     == = = + > + =         557 500 3 8.10 . 1 8.10 . 1 8.10 . 12.10 10.10 10 1000 1000 2  = +> += = > =  

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев СОУ „Панайот Волов“

ЕДНО ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ПИТАГОР В ИЗВЪНКЛАСНАТА РАБОТА ПО МАТЕМАТИКА

Румяна Несторова Регионален инспекторат по образованието - Враца

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

ЕДИНАДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

Иван Держански Българска академя на науките

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че за произволен триъгълник със страни a, b и c е из- пълнено неравенството (a+b+c) (2b c + 2c a + 2a b - a - b - c ) £ 27a b c . Йонуц Иванеску, Крайова, Румъния Задача 2. Ако M е множеството на всички равнобедрени триъгълници, стра- ните и лицето на които са естествени числа, да се намерят три триъгълника от M, различните страни на които са последователни естествени числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2013

Задача 1. Реалните числа , , , и са такива, че:

2013 година
Книжка 6

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални функции f (x) : (1, + ) (1, + ), за които при x > 1 и y > 0 е изпълнено равенството f (x ) = (f (x)) . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2013

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата 3 cos cos cos 3 1 216 abc abc abc abc ⎡⎤ ++ ++ −≤++< − ⎢⎥ ⎢⎥ ⎣⎦ .

MATHEMATICS AND INFORMATICS

ГОДИНА LVI / VOLUME 56, 2013 ГОДИШНО СЪДЪРЖАНИЕ / ANNUAL CONTENT СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 96 КНИЖКА 2 / NUMBER 2: 97 – 200 КНИЖКА 3 / NUMBER 3: 201 – 296 КНИЖКА 4 / NUMBER 4: 297 – 400 КНИЖКА 5 / NUMBER 5: 401 – 496 КНИЖКА 6 / NUMBER 6: 497 - 608

Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички наредени тройки от реални числа (x, y, z), за които са изпълнени неравенствата:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2012

Задача 1. За всяко реално число x означаваме с [x] най-голямото цяло число, което е по-малко или равно на x. Да се намерят всички прости числа p, за които числото е просто.

GUIDE FOR AUTHORS

Mathematics and Informatics Journal publishes scientifi c, scientifi c-popular, review and information materials. Papers of scientifi c character should report original research and ideas inspected through expert evaluation by two anonymous and independent referees. It is recommended that the manuscripts are sent as attachment fi les to the following addresses mathinfo@azbuki.bg and sava.grozdev@gmail.com. Disks or other electronic devices are admissible too and in such a case the postal a

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. а) Покажете, че ако , то 9315xx x++≥ .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2012

Задача 1. Да се намерят всички положителни числа x, y и z, за които е изпълнено равенството . Сава Гроздев, София, Веселин Ненков, Бели Осъм Решение: Тъй като 13 = 2197, 2.11 = 2662 и 3.9 . 2187, то x 12, y 10 и z 8. Освен това x и z имат различна четност. Така с непосредствена проверка се вижда, че когато z = 1,3,5,7 при x = 2,4,6,8,10,12 и z = 2,4,6,8 при x = 1,3,5,7,9,11, само x = 2, y = 10, z = 1 е решение на даденото уравнение.

Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се сравнят числата Йонуц Иванеску, Крайова, Румъния Задача 2. Точките E и F са среди съответно на диагоналите AC и BD на чети- риъгълника ABCD. Ако BAE ADE= и , да се докаже, че симе- дианите на триъгълниците ABC, BCD, CDA и DAB съответно през върховете B, C, D и A се пресичат в една точка. Хаим Хаимов, Варна Задача 3. Вписаната в окръжност се допира до , и AB съот-

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2012

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния Решение: Изпълнени са равенствата ! 1! 1 1! 1 !! np Sp C p np + =− +=− +=

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Реалните числа , , , и са, такива че:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2012

Задача 1. Да се намерят всички естествени числа aa a bb b  , за които е изпълнено равенството aa a bb b aa a bb b=   . Николай Белухов, Стара Загора Решение: Нека A aa a=  и B bb b=  . От условието следва равенството .10 . A B AB+= , откъдето .10 1 . A AB =− . Тъй като , 11AA −= , то 1|10 A − , откъдето 1 1 2 .5 AA− += . Ако числата 1A − и 1A + са едновременно нечетни, то , а 1A − и 1A + са степени на петицата с разлика две, което е невъзможно. Остава само възмо

Книжка 1
70-ГОДИШЕН ЮБИЛЕЙ

Навършиха се 70 години от рождението на изтъкнатия български математик проф. дмн Генчо Скордев. Юбилярът е член-кореспондент на БАН и дългогодишен главен редактор на сп. „Математика и информатика“. По този повод е следващият материал, в който авторът разказва свои спомени с исторически характер, свързани с активното му участие в образователните процеси в България по математика и информатика.

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2012

Задача 1. В множеството на реалните числа е дефинирана бинарна опера- ция :⊗ ×→  , където : \0=  , която условно ще наричаме умножение и такава, че за всеки три реални числа , и , където , е в сила ра- венството .ac a bc b ⊗⊗= . Ако е известно, че , да се пресметне 2011 2012 2011 2012⊗⊗⊗ . Живко Желев, Стара Загора Решение: Първи начин (авторско решение). Нека . Тогава .1 11 1 a ata a⊗= ⊗ ⊗ = = . Оттук получаваме 2012. 1 2012 2012 2012 2012 2012 t tt=⊗=⊗ ⊗= =

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2012

Христо Лесов, Казанлък

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

доц. д–р Иван А. Держански (ИМИ–БАН) Десетата Международна олимпиада по лингвистика (МОЛ) се проведе в Любляна (Словения) от 30 юли до 3 август 2012 г. В нея взеха участие 131 ученици, съставящи 34 отбора от 26 страни. За първи път свои състезатели изпратиха Гърция, Китай, Израел, Унгария и Япония. Бяха представени също Австралия, Бразилия, България, Великобритания, Германия, Естония, Индия, Ирландия, Канада, Латвия, Нидерландия, Полша, Румъния, Русия, САЩ, Сингапур, Словения, Сърбия, Чехи

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПР ОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички положителни числа , и , за които е из- пълнено равенството Сава Гроздев, София, Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2011

Задача 1. Да се докаже, че за всяко цяло положително число уравнението има безброй много решения в цели положителни числа

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2011

Задача 1. Едно цяло положително число n ще наричаме “интересно”, ако може да бъде записано във вида , където са цели поло- жителни числа и , а дели c . Да се докаже, че само краен брой цели положителни числа не са “интересни” и да се намери сумата им. Решение: 1) Нека , то тересно”. Остава да отбележим, че , и не са “интересни”. 2) Нека

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2011

Задача 1. На страните AB и на успоредника външно за

Книжка 3
НАЦИОНАЛЕН КОНКУРС „МЛАДИ ТАЛАНТИ” 2012

Георги Дянков През месец май 2012 се проведе финалният кръг на Националния конкурс „Млади таланти”. Състезанието се организира от МОМН и приема разработки на научни проекти от ученици в гимназиален етап и студенти първи курс. Участниците предста- виха свои авторски проекти в различни научни области – естествени науки, социални науки и комуникационни и информационни технологии (ИКТ). Състезанието тази година се отличи с много добри проекти и журито имаше нелеката задача да избере най-добри

СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички естествени числа aa abb b , за които е изпълнено равенството

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2011

Задача 1. Да се определят стойностите на параметъра a, за които уравнението log sin 2011 cos 2011tg x cotg x a x x += + има решение и да се реши уравнението за най-малката от намерените стойности на параметъра. Христо Лесов, Казанлък Решение (Христо Лесов): Изпълнени са следните релации: π αα α за всяко и 2 2 sin 2 tg cotg += ≥ за

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2011

Задача 1. Ако , е цяло положително число, да се докаже, че съществуват безброй много цели положителни числа нено равенството . Веселин Ненков, Бели Осъм Решение (Светлозар Дойчев): Като използваме, че за произволно цяло число

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МЕЖДУНАРОДНИ КОНКУРСИ ЗА РАЗРАБОТВАНЕ НА ПРОЕКТИ

І.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕза ученици, ІІ.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕ за учители

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева

КОНКУРСНИ ЗАДАЧИ

Рубриката се води от Светлозар Дойчев, и Веселин Ненков