Математика и Информатика

2019/5, стр. 487 - 499

PREPARING PRIMARY JUNIOR GRADE TEACHERS TO TEACH COMPUTATIONAL TEACHING: EXPERIENCES FROM THE GLAT PROJECT

Natasa Hoic-Bozic
E-mail: natasah@inf.uniri.hr
Department of Informatics
University of Rijeka
2, Radmile Matejcic St.
HR-51000 Rijeka, Croatia
Darko Lončarić
E-mail: dloncaric@uniri.hr
Faculty of Teacher Education
University of Rijeka
6, Sveucilisna avenija St.
HR-51000 Rijeka, Croatia
Martina Holenko Dlab
E-mail: mholenko@inf.uniri.hr
Department of Informatics
University of Rijeka
2, Radmile Matejcic St.
HR-51000 Rijeka, Croatia

Резюме: The paper presents results of a study conducted within the Erasmus+ project GLAT which promotes the integration of activities for developing computational thinking and programming skills into daily teaching in primary school. The aim of the study is to identify to what extent are primary school junior grade teachers from Croatia prepared for developing these skills among their classroom students. The results show that there is a need for teacher training programmes on applying methods, activities and ICT tools for developing computational thinking in everyday teaching practice.

Ключови думи: computational thinking; digital games; GLAT project; ICT in education; primary junior grade teachers

1. Introduction

In primary schools across Europe learning outcomes associated with Information and communication technologies (ICT) and the development of key digital competences are still not sufficiently represented as part of school curricula1), although ICT today represents one of the most important areas of the economy and the development of society in general (Balanskat & Engelhardt, 2014; Slavova & Garov, 2019).

Besides ICT, the other important area is STEM (an acronym for Science, Technology, Engineering, and Mathematics). For both areas, it is important that the students not only learn the basic of programming but to develop algorithmic and computational thinking skills (Milková & Hulkova, 2013). Algorithmic thinking primarily develops the skill to solve various problems that reflect real issues and in which the application of knowledge from other areas, especially science, mathematics and logical disciplines is necessary(Grover & Pea, 2013; Shute, Sun, & Asbell-Clarke, 2017).

The school courses related to the programming or coding should be part of the school curricula, but it is also important to integrate algorithmic and computational thinking through different school courses starting already with the youngest age students (Angeli et al., 2016; Grozdev & Terzieva, 2015). To obtain such goal, it is important that besides the teachers of informatics/computer science, primary junior grade teachers be able to develop computational thinking skills among their students (Adler & Kim, 2018). However, in Croatia as well as in many other European countries this is not always accomplished during their formal education. There are positive examples like Bulgaria that should be followed by other countries. In Bulgaria, algorithmic thinking is recognized as a key competence in computer science (Grozdev & Terzieva, 2015) and topics for its development are included in school curricula for students in third and fourth grade of primary school (Tuparova, 2019). In addition, researches regarding the concept of algorithmic thinking in computer science teaching (Grozdev & Terzieva, 2011) and approaches to diagnose forming of algorithmic thinking as been carried out (Terzieva, 2011). One of the projects about tutoring primary junior grade teachers to teach computational thinking is Erasmus+ GLAT project (Hoić-Božić, Holenko Dlab, Načinović Prskalo, Rugelj & Nančovska Šerbec, 2018).The focus of this paper is to introduce the project and present the results of the research which deals with identifying to what extent are primary school junior grade teachers from Croatia familiar with the possibilities of using ICT in teaching and developing computational thinking and programming skills among their students.

2. Educating the teachers in the context of the GLAT project

Erasmus+ project Games for Learning Algorithmic Thinking GLAT2) deals with enhancing primary junior grade teachers’ algorithmic thinking skills as well as more general computational thinking skills and competences and to apply them with their students.

The project provides support to students and teachers for the adoption of relevant and high-quality digital skills and competencies, especially those relating to the field of digital content creation - coding, to foster employability, socio-educational and professional development.

Among primary junior grade teachers, a blended learning training programme, which promotes innovative methods and pedagogical approaches to the introduction of the teaching concepts related to coding and those that encourage the development of computational and algorithmic thinking of younger students, has been implemented. The training also provides support for the efficient use of ICT in education.

Syllabus and learning materials for blended learning model (Hoic-Bozic, Holenko Dlab & Mornar, 2016) of education are developed as an e-course in learning management system Moodle at the beginning of the project, but one of the main projects results will be the improved version of the training programme upon completion of the project.

Within this e-course, teachers access all learning materials, submit created learning scenarios, and share their impressions regarding the implementation of learning scenarios in the classroom with other participants.

The activities for the teachers during the training were organized in three modules (Fig. 1) with the following topics:

Game Based Learning and unplugged activities

Problem Based Learning, online quizzes and logical tasks

Inquiry based learning, games and tools for programming

In each module during two-day face-to-face (f2f) workshops teachers were introduced to theoretical topics as well as examples of learning scenarios, games, and tools. At the end of each workshop, teachers participated in the survey that was conducted to determine the level of their satisfaction with the presented topics and applied teaching and learning methods.

In the activities that followed the workshops, teachers were applying newly acquired knowledge during the development of learning scenarios. The learning scenarios consist of learning outcomes and activities for their realization by using contemporary teaching and learning methods and digital tools. They also implemented their scenarios in classrooms with their students (Mezak & Pejić Papak, 2018).

At the end of the last module, a final survey matched with the initial survey will be conducted in order to compare the results.

Figure 1. The model of activities for participants during GLAT training

In addition to learning materials with the examples of best practices, during the GLAT project activities for the dissemination and popularization of the results have been carried out. It is expected that the teachers will promote the acquired skills and competencies among their students through teaching in primary schools and as a result students’ digital competencies will also develop. The final goal of GLAT is to improve younger students’ attitudes towards coding and the development of algorithmic thinking which will in the long term contribute to increasing students’ interest in the selection of future career in the ICT and STEM areas.

3. The research methodology

3.1. Purpose of the research

The main aim of the research presented in this paper is to identify to what extent are primary school junior grade teachers from Croatia familiar with the terminology relevant to the use of ICT in teaching and the possibilities of using ICT, especially games, to develop algorithmic thinking and programming skills.

The specific research questions in the context of the GLAT project are:

to what extent are teachers familiar with the terminology or the concepts related to using ICT in education that are relevant for the project, to what extent are teachers familiar with the possibilities of adapting, creating and using specific content, methods, and tools important for the project outcomes, how often teachers use teaching activities, methods and strategies that are not specifically related to the project, do teachers have any experience with the use of programming languages and games for developing algorithmic thinking and learning programming skills.

The research results will help the experts from the GLAT project team to further improve the developed training programme in order to meet the prerequisite knowledge as well as the expectations of primary junior grade teachers in the best possible way.

3.2. Participants

Participants were 24 primary school junior grade teachers from Rijeka region (Croatia) gathered in the focus group at the beginning of the project (N=24, 1 male, 23 females). The mean age of participants was 43,167 years (SD =7,585) and mean work experience at school 18, 458 years (SD = 7,962).

Teachers were selected in cooperation with the Croatian Education and Teacher Training Agency (AZOO), and directly in contact with primary schools with which project partner Faculty of Teachers Education (UF) from University of Rijeka has established long-term cooperation in holding various workshops as a part of the professional development of the primary school junior grade teachers. Teachers attend these forms of professional development meetings and workshops in order to be able to advance in the profession.

The invitations to participate in the GLAT project was prepared and sent at the beginning of the project by UF and directly distributed to schools with the help of AZOO. Participation in the project has been voluntary and the teachers themselves applied. They were all highly motivated to enroll in workshops on the development of algorithmic thinking and coding skills of their students. They teach students from first to fourth grade (6th to 11th years old) and the number of students in their classrooms is between 15 and 20.

3.3. Data collection

To answer the research questions, an initial survey was conducted at the beginning of the training organized for the focus group of teachers within the GLAT project. For the initial survey, a questionnaire has been developed and used as an evaluation instrument. The questionnaire consists of four parts (corresponding to research questions): 1) familiarity with the terminology, 2) familiarity with the possibilities of adapting, creating and using methods, contents and tools, 3) using non-specific forms, methods and teaching strategies, and 4) experience with programming languages and games for developing algorithmic thinking and learning programming skills.

The part regarding the familiarity with the terminology or the concepts related to using ICT in education consists of 10 statements with 5-point Likert scale response format with values ranging from 0 (not at all familiar) to 4 (very familiar). It was used in order to examine the extent to which participants are familiar with the terms like “algorithmic thinking”, “digital serious games”, “learning scenario”, etc. Most of the terms are listed in Croatian and English version.

The part examining the extent to which participants are familiar with the possibilities of adapting, creating and using teaching content and methods contains 6 statements with the same response format as in the previous part (for example “possibilities to create digital teaching materials with Web 2.0 tools”). Most of the terms are also listed in Croatian and English version.

The third part consists of 17 statements with a 5-point Likert scale response format with values ranging from 0 (never) to 4 (always). These statements are used to examine how often participants use teaching activities, methods and strategies that are not specifically related to the GLAT project, such as frontal or group work, collaborative learning strategies, etc. in their practice with students.

At the end of the questionnaire, participants provided information on their previous education and experience in using programming languages and games for developing algorithmic thinking and learning computer programming skills.

The same questionnaire will be used after the 3rd workshop. Therefore, it was composed so that changes and participants’ progress after attending the GLAT training can be determined using quantitative and qualitative analysis of their responses.

3.4. Results

The analysis showed that all workshop participants answered all questions except for the 3rd, 4th, and 6thquestion in the first part of the questionnaire (Familiarity with the terminology) which were not answered by one respondent. Therefore, the total number of collected results for each question is 24, except for these three questions for which the number of collected results is 23.

Table 1 shows the results regarding Familiarity with the terminology. The obtained results indicate that the most familiar terms to participants are “digital competence/skills” and “Problem Based Learning” while they are not familiar with the terms “Web 2.0 tools”, “learning scenario” and “basic programming concepts”.

Table 1. Familiarity with the terminology

To what extent are you familiarwith the term:NMini-mumMaxi-mumMeanStd. Devia-tion1.Digital competencies/skills24132,00,7802.Problem Based Learning24041,831,0493.Game-Based Learning23031,781,0434.Digital Serious Games24041,71,9555.Inquiry Based Learning24031,501,0636.unplugged activities24031,42,8817.algorithmic thinking24021,29,7518.Web 2.0 tools23041,131,0149.learning scenario23031,00,95310basic programming concepts2403,921,060

Table 2 shows the results regarding Familiarity with the possibilities of adapting, creating and using teaching contents and methods which indicate that digital content creation is the most familiar for the workshop participants while they are not familiar with the computer programming and possibilities of visual programming tools.

Table 2. Familiarity with the possibilities of adapting, creating and using teaching contents and methods

To what extent are you familiarwith the following:NMini-mumMaxi-mumMeanStd. Devia-tion1.digital content creation24031,631,0132.gamication24031,42,8303.creation of online quizzes andlogical tasks (Kahoot, Puzzlemaker, Word Search Labs…)24031,38,9704.digital content creation usingWeb 2.0 tools (Glogster, Popplet,Canva, GeoGebra, …)2402,79,8335.computer programming andprogramming languages2402,58,7176.tools for visual programming(Scratch, Scotty go, SpheroSPRK+, …)2402,58,776

Table 3 shows results regarding how often participants use teaching activities, methods and strategies that are not specifically related to the GLAT project. The obtained results indicate that games and individual work are the most often used while the debate is rarely used.

Table 3. Forms, methods and teaching strategies

How frequently do you in yourteaching practice with studentsuse the forms, methods, andteaching strategies listed below:NMini-mumMaxi-mumMeanStd. Devi-ation1.game24343,33,4822.individual work24243,17,4823.demonstration24243,00,5114.frontal teaching24243,00,4175.work in pairs24243,00,4176.practical tasks24242,83,5657.students self-assessment24242,79,7218.presentation of students’work24232,79,4159.group work24232,75,44210.discussion24142,67,70211.creative thinking techniques24142,54,72112.peer-to-peer learning24242,54,58813.collaborative learning strategies24242,54,58814.research tasks (researchproblems)24142,38,64715.project-based tasks24132,25,73716.role-playing24132,17,70217.debate24031,83,702

Fig.2 shows results regarding previous education about computer programming. 37.5% of the participants had courses that include learning at least the theory of computer programming during their education. Most of them stated that this was within a school subject or university course “Informatics”.

Figure 2. Previous education about computer programming

Fig.3 shows results regarding experience in using programming languages. According to the results, only 2 workshop participants (8.3%) used programming languages to create at least a simple program. In response to the open-ended question, one participant indicated using the programming language Basic.

Figure 3. Experience in using programming languages

The results regarding experience in using games to develop algorithmic thinking (Fig.4) show that only one workshop participant (4.2%) used games for that purpose. In an open-ended question, the participant clarified the response: “I didn’t use games, but I used math tasks (problems) that stimulate algorithmic thinking.”

Figure 4. Experience in using games for developing algorithmic thinking

Workshop participants have not used games for teaching computer programming.

4. Teachers’ satisfaction with the workshops

Besides before mentioned initial survey, an evaluation was conducted after each workshop to establish how teachers were satisfied with the workshop content.An anonymous survey consisted of Likert type 5-level response statements with values ranging from 1 (extremely poor) to 5 (exquisitely).The second part of this survey contained open ended questions. Participants were asked to mention the topics for which they considered to be the most helpful in their job in schools, and to give some suggestions and proposals for the improvement of the workshops. As shown in Fig. 5 participants highly evaluated: the contemporary (up-to-date) content, importance of a workshop for personal and professional development, communication and collaboration within a group, preparedness of lecturers, an opportunity to express their own opinions. The general evaluation of the workshops was also very positive. The teachers’ comments in the second part of the survey confirmed the satisfaction of teachers. As the most significant elements for their job in schools, teachers emphasized modern topics, the applicability of presented topics in school practice, very good organization and preparation of lecturers, great communication and collaboration with lecturers and colleagues.

Figure 5. Evaluation items for three GLAT workshops

5. Findings

To sum up the results associated to the research questions, we can conclude that the teachers are not familiar with the most important concepts for the GLAT project education such as algorithmic thinking, learning scenario and basic programming concepts. Also, they do not use some Web 2.0 tools for content creation and do not know about the possibilities of visual programming tools. On the other hand, the results regarding how often they use teaching activities, methods and strategies indicate that games are the most often used. This is in line with the GLAT training programme because Game Based Learning is the most important strategy used in the context of the project and it is positive that the teachers are familiar with it. Regarding previous education about computer programming, it was confirmed that during their formal education most of the participants did not attend courses that include learning computer programming.

The findings have shown that the topics of the GLAT modules are well chosen, and their usefulness for participants has been confirmed based on the evaluation of the teachers’ satisfaction conducted at the end of each workshop.

6. Conclusions and future plans

Computational and algorithmic thinking skills are recognized among the fundamental skills needed for education in ICT and STEM areas but also for the jobs that today’s students will perform in the future. Since students should start to acquire these skills as early as possible, it is important to educate primary junior grade teachers to include appropriate activities in different school courses.

The project GLAT, presented in this paper, has been directed towards strengthening the profile of the teaching profession in the field of primary school education and enhancing the occupational profile of teachers, especially regarding the development of computational thinking and programming skills among students. The focus of this paper was on one of the project activities - an initial study conducted to identify to what extent are primary school junior grade teachers familiar with methods, activities and ICT tools that can be used. The results have shown that organization of training courses like the one within the GLAT project are needed in order to introduce primary school teachers with adequate methods and ICT tools and to encourage them to include activities for the development of computational thinking in different school courses.

The obtained results will be compared with the results of a matched survey conducted at the end of the 3rd workshop and then used to create an improved version of syllabus and learning materials for blended learning model of education. This improved version, as one of the project intellectual outputs, will be complemented with the best examples of learning scenarios and translated into English. It will be published online in the system for e-learning through which it will be available to all interested teachers and the general public. The competencies of primary junior grade teachers in Croatia will be further improved through the possibility of additional professional training by means of lifelong learning for acquiring modern knowledge and skills aimed at innovative teaching in the field of ICT.

The research started under the Erasmus+ GLAT project will continue in the University of Rijeka’s scientific project Digital games – “Digital games in the context of learning, teaching and promoting inclusive education” which has been started in 2019. Several studies will begin in the context of the project. The common theme for all of them is using digital Game Based Learning (GBL) in school education and developing pedagogical-technological frameworks based on GBL. One of the studies is about encouraging the integration of computational thinking into the daily teaching of different courses in the lower grades of primary school using GBL, with the special attention on the education for computational thinking of future primary junior grade teachers to enable the transfer of knowledge and skills to their students. In that way progress towards the development of computational thinking and improvement of students’ attitudes towards programming will be made which will have a long-term impact on the increase of their interest in the selection of the future occupations in the ICT fields.

Acknowledgments

The research has been co-funded by the Erasmus+ Programme of the European Union under the project „GLAT - Games for Learning Algorithmic Thinking,“ and by University of Rijeka (Croatia) under the project “Digital games in the context of learning, teaching, and promoting inclusive education”.

NOTES

1. European Commission. (2012). Rethinking education: investing in skills for better socio-economic outcomes. Retrieved May 5, 2019, from http://www. cedefop.europa.eu/files/com669_en.pdf

2. GLAT project website. (2019). Retrieved May 5, 2019, from https://glat.uniri.hr

REFERENCES

Adler, R. F. & Kim, H. (2018). Enhancing future K-8 teachers’computational thinking skills through modeling and simulations. Education and Information Technologies, 23(4), 1501 – 1514. https://doi.org/10.1007/ s10639-017-9675-1

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J. & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47 – 57.

Balanskat, A. & Engelhardt, K. (2014). Computing our future: Computer programming and coding-priorities, school curricula and initiatives across Europe. European Schoolnet.

Grover, S. & Pea, R. (2013). Computational Thinking in K–12. Educational Researcher, 42(1), 38 – 43. https://doi.org/10.3102/0013189X12463051

Grozdev, S. & Terzieva, T. (2015). A didactic model for developmental training in computer science. Journal of Modern Education Review, 5(5), 470 – 480.

Grozdev, S. & Terzieva, T. (2011). Research of the concept of algorithmic thinking in teaching computer science, The International ScientificPractical Conference “Informatization of Education – 2011”, Elec: EGU Bunin, 14 – 15 June, pp. Т1, 112 – 119 (in Russian).

Hoic-Bozic, N., Holenko Dlab, M. & Mornar, V. (2016). Recommender System and Web 2.0 Tools to Enhance a Blended Learning Model. IEEE Transactions on Education, 59 (1). https://doi.org/10.1109/ TE.2015.2427116

Hoić-Božić, N., Holenko Dlab, M., Načinović Prskalo, L., Rugelj, J. & Nančovska Šerbec, I. (2018). Project GLAT-Encouraging algorithmic thinking using didactic games. International Journal of Multidisciplinary Research, 4(2), 73 – 95.

Mezak, J. & Pejić Papak, P. (2018). Learning scenarios and encouraging algorithmic thinking. In Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 836 – 841.

Milková, E. & Hulkova, A. (2013). Algorithmic and Logical Thinking Development: base of programming skills. WSEAS Transactions on Computers, 12(2), 41 – 51.

Shute, V. J., Sun, C. & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142 – 158. https://doi. org/10.1016/J.EDUREV.2017.09.003

Slavova, L. & Garov, K. (2019). Increasing the Digital Competences of Students. Mathematics and Informatics, 62 (1), 42 – 51. Retrieved from https://www.ceeol.com/search/article-detail?id=749453

Terzieva, T. (2011). Some criteria and indicators for diagnosis of the forming of algorithmic thinking in Computer Science, Scientific Works, Plovdiv University, vol. 38, Book 3, Mathematics, 2011, ISSN 0204-5249.

Tuparova, D. (2019). Teaching of computer programming in Bulgarian primary school–challenges and solutions. In Proceeding of the 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 836 – 840.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева