Математика и Информатика

2020/6, стр. 622 - 638

АНАЛИЗ МЕТОДОВ ОЦЕНИВАНИЯ РАБОТ ВНЕУЧЕБНЫХ КОНКУРСНЫХ МЕРОПРИЯТИЙ, ПРОВОДИМЫХ В ДИСТАНЦИОННОМ ФОРМАТЕ

Оксана Федоровна Абрамова
OrcID: 0000-0001-7318-6588
E-mail: oxabra@yandex.ru
Department of Informatics and ProgrammingTechnology
Volzhsky Polytechnic Institute, branch of the VolgGTU, Volzhsky
Volgograd, Russia
Александр Александрович Рыбанов
OrcID: 0000-0002-8638-9998
E-mail: rybanoff@yandex.ru
Department of Informatics and ProgrammingTechnology
Volzhsky Polytechnic Institute, branch of the VolgGTU, Volzhsky
Volgograd, Russia

Резюме: Актуальность исследуемой проблемы обусловлена сложностью процедуры оценивания работ участников внеучебных конкурсных мероприятий, проводимых в дистанционном формате, представляющих собой разнородный мультимедийный контент. Цель статьи заключается в разработке исчерпывающей модели оценивания конкурсных материалов и разработке автоматизированного решения в области оценивания. В статье представлен обзор методов, применимых для оценивания работ, сформирована и описана математическая модель оценивания, а так же представлены проектные модели автоматизированной системы для проведения внеучебных конкурсных мероприятий в дистанционном формате. Система для проведения конкурсных мероприятий в дистанционном формате с модулем оценивания конкурсных работ участников предназначена для снижения трудоёмкости процесса формирования оценки и уведомлении всех посетителей сайта о рейтинге работ в реальном времени.

Ключови думи: дистанционное образование; внеучебная деятельность; организация конкурсов; математическая модель оценивания

Проблема. Современные достижения в области программного обеспечения и технических средств позволяют достаточно быстро и без особых усилий организовывать интернет-площадки для проведения различных конкурсных мероприятий в дистанционном формате. Существуют даже специальные сервисы, предоставляющие услуги по организации такого рода мероприятий: новостная лента, сбор работ, иногда демонстрация загруженного контента, информация об организаторах и нормативных документах. Но часто такие сервисы ограничены по функционалу. Например, имеют примитивный или совсем не имеют инструментария для автоматизации процессов оценивания конкурсного контента. Как правило, оценка представленных работ выполняется за рамками ресурса, а участникам мероприятий демонстрируется только итоговая таблица. А ведь способ оценивания конкурсных работ и сама процедура оценки представляют из себя максимально важный для конкурсного мероприятия момент. Для адекватной оценки работ участников творческих конкурсов, представляющих материалы в различных форматах (фото, графика, видео, анимация) не достаточно будет просто выставить общий балл, как и малоценным будет элементарно просуммировать баллы от нескольких членов жюри. Необходимо подойти к оцениванию творческих работ максимально бережно, адекватно, с учетом нюансов самой работы и мероприятия в целом. Ситуация может усложниться еще и большим количеством членов жюри, которые, зачастую, физически находятся в разных точках города, а то и в разных городах. Поэтому именно процесс оценивания конкурсных работ является одной из самых актуальных задач с точки зрения исследования, анализа и последующей автоматизации процессов в рамках организации дистанционных конкурсов и олимпиад.

Важнейшими принципами диагностирования, контролирования и оценивания соответствия представленных для участия в конкурсе работ являются объективность, систематичность, многокритериальность и наглядность (гласность). При определении победителей, призеров и отличившихся участников предметного конкурса и олимпиады предпочтение отдается работам, в которых проявились оригинальность мышления и творческий подход к раскрытию темы. Оценивается не только правильный результат, но и умение выбрать наиболее эффективные пути решения поставленных задач. Сложность процедуры оценивания многократно увеличивается при предоставлении на конкурс разнородного мультимедийного контента, включающего как презентационные материалы (изображения, видео, презентация), так и практическое решение (программный код, текстовое описание, набор моделей).

При анализе особенностей и критериев оценивания конкурсов, включающих разработку мультимедийных и программных проектов (Abramova, 2016), было определено, что оценку работ необходимо проводить, учитывая множество уникальных критериев, количество и группировка которых может изменяться в зависимости от типа конкурса и вида проекта. К таким критериям можно отнести, например: актуальность решенной задачи; выраженность авторской идеи; дизайнерские решения; качество и сложность выполнения; количество и качество используемых эффектов; композиция; логика и полнота раскрытия сюжета; оригинальность идеи и художественного замысла; раскрытие образа при помощи цифровой графики; смысловая законченность работы; соответствие изобразительных приемов теме конкурса; соответствие техническим требованиям задания; степень интерактивности и мультимедийности; оригинальность исполнения; техническая сложность исполнения; уникальность сюжета; уровень владения технологиями разработки проекта; художественный вкус и художественный уровень исполнения (дизайн элементов оформления, гармоничное цветовое сочетание, качество композиционного решения); эмоциональное воздействие работы на пользователя и др.

Так же в результате анализа веб-ресурсов для проведения внеучебных конкурсных мероприятий определился наибольший перечень проблем именно по критерию «оценка конкурсных работ и просмотр результатов» (Abramova & Krupoderov, 2016; Abramova & Aleksandrina, 2017). И, если оценить степень автоматизации процесса оценивания реально не всегда представляется возможным, чаще доступна только косвенная оценка, то просмотр результатов доступен всем посетителям (если он вообще присутствует), и, в основном, сводится к демонстрации общей таблицы результатов без объяснения и комментирования выставленных там оценок. А иногда ресурс предлагает только информацию о победителях, причем еще реже такая информация сопровождается описанием или ссылкой на конкурсную работу. При анализе существующих веб-ресурсов для проведения конкурсных мероприятий не было обнаружено ни одной русскоязычной системы, где визуализировался бы сам процесс оценивания (средний балл конкретной работы, например) в виде различного рода графиков и таблиц или демонстрировался в реальном времени общий рейтинг работ. Хотелось бы упомянуть, так же, о ничтожном количестве систем, позволяющих посетителям или участникам конкурса (например, всем зарегистрированным пользователям) самим участвовать в процессе оценивания работ. Хотя как раз эту функцию можно выделить как одну из самых понятных и востребованных для современных молодых людей, участвующих, как правило, в подобного рода мероприятиях. Если к вешеуказанным проблемам добавить почти полную закрытость процесса оценивания, представление жюри только на уровне списка (да и то не навсех ресурсах), отсутствие сведений о рейтинге работы в реальном времени, то можно с уверенностью сказать, что процесс оценки конкурсных работ нуждается в качественной модернизации и автоматизации.

Постановка задачи. Сфера информационных технологий непрерывно прогрессирует, создавая множество современных технических решений. Происходит масштабная автоматизация ранее созданных технических процессов путем замены рутинной деятельности автоматизированным программным решением. По этой причине автоматизация процесса оценивания конкурсных работ приобретает особую актуальность. При выборе методов и средств оценивания следует придерживаться следующих основных принципов:

– адекватность: соответствие оценки знаний, умений, навыков, ценностей, компетентностей целям конкурсного мероприятия;

– значимость: акцент на оценивании наиболее значительных результатов деятельности участников;

– объективность и справедливость: осуществление тщательного подбора конкретных критериев оценки;

– открытость: критерии и стратегии оценивания сообщаются участникам мероприятия заранее, по возможности члены жюри, а, как максимум, и конкурсанты участвуют в разработке критериев оценки;

– доступность: формы оценивания, его цели и сам процесс просты и ясны всем участникам мероприятия;

– систематичность: процедуры оценивания осуществляются последовательно и периодично;

– доброжелательность: создание ситуаций партнерских отношений между членами жюри, научными руководителями, консультантами и участниками конкурсов, стимулирующих к росту достижений; а так же общая направленность на развитие и поддержку участников.

Результаты исследования. Оценку результативности конкурсных работ с разнородным мультимедийным контентом можно проводить с помощью метода задания весовых коэффициентов или, другими словами, взвешенных балльных оценок.

Метод задания весовых коэффициентов заключается в присвоении всем признакам весовых коэффициентов. Весовые коэффициенты могут быть проставлены двумя способами:

1) всем признакам назначают весовые коэффициенты так, чтобы сумма коэффициентов была равна какому-то фиксированному числу (например, единице, десяти или ста);

2) наиболее важному из всех признаков придают весовой коэффициент, равный какому-то фиксированному числу, а всем остальным – коэффициенты, равные долям этого числа.

Учитывая приведенный выше факт, формируется перечень критериев, которые наиболее полно отражают качества мультимедийного конкурсного контента, и каждому из критериев присваивается свой весовой коэффициент. До начала выполнения задания участники и члены жюри должны быть ознакомлены с системой критериев и конкретизирующих их показателей, а также (если это предусматривается заданием) с балльной шкалой. Критерии и показатели должны быть зафиксированы и доступны всем по-стоянно, они должны быть конкретны, однозначны, понятны и посильны для достижения.

Также оценку работ участников олимпиад можно проводить рейтинговым методом. Рейтинг – это индивидуальный количественный индекс участника мероприятия, представляющий собой интегральную оценку количества и качества выполненных заданий, равный выраженному в процентах отношению набранных участником баллов за определенный период к максимально возможному числу баллов, соответствующему отличному выполнению всех обязательных конкурсных заданий.

Согласно приведенным в литературе определениям, рейтинг – это интегральная оценка, которая учитывает множество факторов: уровень знаний участника, его ответственность, способность к самообучению, спектр реализуемых видов исследовательской деятельности, психологическая стабильность и т.д.

Более совершенным приемом оценки конкурсных работ являются методы экспертных оценок – это методы организации работы со специалистами-экспертами и обработки мнений экспертов.

Эксперты – это лица, обладающие знаниями и способные высказать аргументированное мнение по изучаемому явлению, в нашем случае, по условиям конкурса и качеству предоставляемых на проверку работ. Эти мнения могут быть представлены частично в количественной, частично в качественной форме.

Метод экспертных оценок включает в себя три составляющие.

Интуитивно-логический анализ задачи. Строится на логическом мышлении и интуиции экспертов, основан на их знании и опыте. Этим объясняется высокий уровень требований, предъявляемых к экспертам.

Решение и выдача количественных или качественных оценок. Эта процедура представляет собой завершающую часть работы эксперта. Им формируется решение по рассматриваемой проблеме и дается оценка ожидаемых результатов.

Обработка результатов решения. Полученные от экспертов оценки должны быть обработаны с целью получения итоговой оценки проблемы. В зависимости от поставленной задачи изменяется количество выполняемых на этом этапе расчетных и логических процедур. Для обеспечения оперативности и минимизации ошибок на данном этапе целесообразно использование вычислительной техники.

Для того, чтобы оценить работы для конкурса с разнородным мультимедийным контентом, наилучшей методикой можно считать аналитическую методику, предусматривающую предварительную детальную независимую работу эксперта над тем, как оценивать конкурсную работу. Во время работы над индивидуальными мнениями экспертов применяют разные количественные и качественные методики. Решение о том, какую выбрать методику, основывается на сложности конкурса и требований к конкурсным работам, формы, в которой представлены оценки экспертной группы и целей экспертизы.

Для того, чтобы обработать итоги оценки конкурсных работ экспертами применяются методики математической статистики. Например, усиливаться качество экспертного оценивания может за счет параллельного использования метода анализа иерархий. Такой подход позволит учитывать выделенные для оценки критерии по установленному рангу значимости, и вывести экспертную оценку работ на более высокий, качественный уровень.

Например, в конкурсе «Олимпиада по компьютерной графике Opengl/ VPI», участниками которого являются студенты вуза, интересующиеся программируемой компьютерной графикой, оцениваются графические работы, выполненные полностью самостоятельно с помощью любого программного обеспечения, но с использованием графической библиотеки Opengl. Сцены могут быть двумерные или трехмерные, они могут быть статичными, а могут быть анимированы. Поэтому предоставляемый на конкурс материал зависит от выбранной категории для участия и может содержать разнородный мультимедийный контент: описание работы, изображение, презентацию, видео.

На данный конкурс могут быть представлены работы, как отдельных авторов, так и творческих коллективов не более трех человек, количество работ от одного участника не ограничено. Оценивание работ выполняется экспертной комиссией (жюри), которым предоставляется список критериев для оценки с необходимыми уточнениями. Подведение итогов по конкурсу производится индивидуально для каждого участника или коллектива соавторов в соответствии с выбранной категории.

При оценке работ по заданным критериям членам жюри рекомендуется руководствоваться следующими формулировками (табл.1).

КритерийОписаниеНовизна идеи, творческийподходоценивается оригинальность раскрываемой работойтемы, глубина идеи работы, а также творческийвклад авторов работы в реализацию идеи, оригина-льность используемых средствЗначимость, актуальность,применимостьоценивается возможность широкого примененияработы,ее смысловая нагрузка, зрелость предложен-ного решения.Сложность сцены (объекта)оценивается количество элементов сцены (объекта,чертежа), сложность реализации каждого (программ-ная отрисовка либо импорт).Визуальное оформление,стильоценивается качество визуального оформления: об-щий стиль работы, дизайн элементов оформления.Стилистика; образностьоценивается соответствие представленной работыосновной теме конкурсного задания (категории).Наличие дополнительныхфункцийоценивается количество использованных в програм-мном коде функций, которые студент нашел и изучилсамостоятельноПрезентационный матери-алоценивается качество, полнота и понятность презен-тационного материала (скриншоты сцены, видеома-териал, презентация)Описаниеоценивается качество, полнота и понятность тексто-вого оформления конкурсных материалов.

Критерии оценки конкурсных работ

Процедура оценки конкурсных работ может быть автоматизирована на основе метода анализа иерархий, который позволяет дать более объективную научно-обоснованную оценку (Manyshev, Fadeeva & Rybanov, 2019; Rybanov, 2019).

Процедуру оценки рассмотрим на примере сравнительного анализа двух конкурсных работ олимпиады «Компьютерная графика». Анализируя предметную область задачи, можно получить следующие данные:

Лица, принимающие решения (эксперты): Эксперт 1, Эксперт 2.

Критерии, по которым проводится сравнительный анализ: стилистка, визуальное оформление, сложность сцены.

Анализируемые работы: конкурсная работа №1, конкурсная работа №2.

Иерархия объектов, отражающая структуру процедуры оценки конкурсных работ, приведена на рисунке 1.

Рисунок 1. Пример иерархии объектов для задачи оценки конкурсных работ

Выясним интенсивность взаимодействия элементов иерархии на каждом уровне. На втором уровне единственная матрица сравнения показывает влия

ние мнения каждого из экспертов на принятие окончательного решения: \[ M=\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right], w=\left[\begin{array}{l} 0.5 \\ 0.5 \end{array}\right] \]

В данном случае предполагается, что эксперт №1 и Эксперт №2 равноправно участвуют в оценке конкурсных работ.

На следующем уровне каждый из экспертов должен установить свои приоритеты для критериев, по которым будет проводиться сравнительный анализ конкурсных работ:

\[ M(1)=\begin{gathered} \text { стилистика } \\ \text { сизуал оформл } \\ \text { сложн. сцены } \end{gathered}\left[\begin{array}{ccc} 1 & 7 & 5 \\ 1 / 7 & 1 & 1 \\ 1 / 5 & 1 & 1 \end{array}\right] \quad \begin{array}{r} \text { стилистика } \\ M(2)=\text { визуал оформл } \\ \text { сложн. сцены } \end{array}\left[\begin{array}{ccc} 1 & 5 & 1 \\ 1 / 5 & 1 & 5 \\ 1 & 1 / 5 & 1 \end{array}\right] \] Матрица сравнения \(M(1)\) составляется первым экспертом, матрица \(M(2)\) вторым. Из матрицы, составленной экспертом №1, видно, что стилистика имеет, по его мнению, значительное превосходство над таким критерием, как визуальное оформление, а визуальное оформление и сложность сцены одинаково важны. Эксперт №2 считает, что стилистика и сложность сцены – одинаково важны при выборе, но визуальное оформление является существенно более важной характеристикой, чем сложность сцены.

Соответствующие матрицам сравнения векторы локальных приоритетов находятся следующим образом:

\[ \begin{aligned} & v(1)=\left[\begin{array}{l} \sqrt[3]{35} \\ \sqrt[3]{1 / 7} \\ \sqrt[3]{0.2} \end{array}\right]=\left[\begin{array}{l} 3,267 \\ 0,523 \\ 0,585 \end{array}\right] \quad w(1)=\left[\begin{array}{l} \cfrac{3,267}{3,267+0,523+0,585} \\ \cfrac{0,523}{3,267+0,523+0,585} \\ \cfrac{0,585}{3,267+0,523+0,585} \end{array}\right] \approx\left[\begin{array}{l} 0,747 \\ 0,119 \\ 0,134 \end{array}\right] \\ & v(2)=\left[\begin{array}{c} \sqrt[3]{5} \\ \sqrt[3]{1} \\ \sqrt[3]{0.2} \end{array}\right]=\left[\begin{array}{c} 1,709 \\ 1 \\ 0,585 \end{array}\right] \quad w(2)=\left[\begin{array}{c} \cfrac{1,709}{1,709+1+0,585} \\ \cfrac{1}{1,709+1+0,585} \\ \cfrac{0,585}{1,709+1+0,585} \end{array}\right] \approx\left[\begin{array}{l} 0,519 \\ 0,304 \\ 0,177 \end{array}\right] \end{aligned} \]

После парного сравнения критериев каждый эксперт составляет матрицы сравнения для имеющихся альтернатив (элементов третьего уровня), то есть определяет, насколько предпочтительнее является один телевизор по отношению к другому с точки зрения того или иного критерия.

Матрицы сравнения эксперта 1:

– по критерию 1 (стилистика);

\[ M(1,1)=\begin{aligned} & \text { конкурсная работа №1 } \\ & \text { конкурсная работа №2 } \end{aligned}\left[\begin{array}{cc} 1 & 2 \\ 1 / 2 & 1 \end{array}\right], w(1,1)=\left[\begin{array}{l} 0.667 \\ 0.333 \end{array}\right] \]

– по критерию 2 (визуальное оформление); \[ M(1,2)=\left[\begin{array}{cc} 1 & 3 \\ 1 / 3 & 1 \end{array}\right], w(1,2)=\left[\begin{array}{l} 0.75 \\ 0.25 \end{array}\right] \]

– по критерию 3 (сложность сцены).

\[ M(1,3)=\left[\begin{array}{cc} 1 & 1 / 4 \\ 4 & 1 \end{array}\right], w(1,3)=\left[\begin{array}{l} 0.2 \\ 0.8 \end{array}\right] \]

По мнению эксперта 1, конкурсная работа №1 обладает более предпочтительным визуальным оформлением, несколько лучшей стилистикой, но имеет заметно более сложную сцену.

Матрицы сравнения эксперта 2:

– По критерию 1 (стилистика);

\[ M(2,1)=\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right], w(2,1)=\left[\begin{array}{l} 0.5 \\ 0.5 \end{array}\right] \]

– по критерию 2 (визуальное оформление);

\[ M(2,2)=\left[\begin{array}{cc} 1 & 7 \\ 1 / 7 & 1 \end{array}\right], w(2,2)=\left[\begin{array}{l} 0.875 \\ 0.125 \end{array}\right] \]

– по критерию 3 (сложность сцены).

\[ M(2,3)=\left[\begin{array}{cc} 1 & 1 / 3 \\ 3 & 1 \end{array}\right], w(1,2)=\left[\begin{array}{l} 0.75 \\ 0.25 \end{array}\right] \]

Эксперт 2 не заметил особой разницы в стилистике, однако считает, конкурсная работа №1 имеет значительно более привлекательное визуальное оформление.

После завершения экспертных сравнений можно переходить к синтезу глобального вектора приоритетов. Общий вектор приоритетов для эксперта 1 вычисляется следующим образом:

\[ C(1)=\left[\begin{array}{lll} W(1,1) & W(1,2) & W(1,3) \end{array}\right]=\left[\begin{array}{lll} w(1,1) & w(1,2) & w(1,3) \end{array}\right]=\left[\begin{array}{lll} 0.667 & 0.75 & 0.2 \\ 0.333 & 0.25 & 0.8 \end{array}\right] \]

\(W(1)=C(1) \times w(1)=\left[\begin{array}{lll}0.667 & 0.75 & 0.2 \\ 0.333 & 0.25 & 0.8\end{array}\right] \cdot\left[\begin{array}{l}0.747 \\ 0.119 \\ 0.134\end{array}\right]=\left[\begin{array}{l}0.615 \\ 0.385\end{array}\right]\)

Аналогично вычисляем общий вектор приоритетов для эксперта 2: \[ C(2)=\left[\begin{array}{lll} W(2,1) & W(2,2) & W(2,3) \end{array}\right]=\left[\begin{array}{lll} w(2,1) & w(2,2) & w(2,3) \end{array}\right]=\left[\begin{array}{lll} 0.5 & 0.875 & 0.25 \\ 0.5 & 0.125 & 0.75 \end{array}\right] \]

\(W(2)=C(2) \times w(2)=\left[\begin{array}{lll}0.5 & 0.875 & 0.25 \\ 0.5 & 0.125 & 0.75\end{array}\right] \cdot\left[\begin{array}{l}0.519 \\ 0.304 \\ 0.177\end{array}\right]=\left[\begin{array}{l}0.569 \\ 0.431\end{array}\right]\)

Используя \(C(1)\) и \(C(2)\) можно вычислить глобальный вектор приоритетов:

\[ \begin{aligned} & C=\left[\begin{array}{ll} W(1) & W(2) \end{array}\right]=\left[\begin{array}{ll} 0.615 & 0.569 \\ 0.385 & 0.431 \end{array}\right] \\ & W=C \times w=\left[\begin{array}{ll} 0.615 & 0.569 \\ 0.385 & 0.431 \end{array}\right] \cdot\left[\begin{array}{l} 0.5 \\ 0.5 \end{array}\right]=\left[\begin{array}{l} 0.592 \\ 0.408 \end{array}\right] \end{aligned} \]

Таким образом, конкурсная работа №1 имеет более высокую оценку, чем конкурсная работа №2 (\(0.592 \gt 0.408\) ).

Описанная выше процедура может быть легко адаптирована для произвольного числа экспертов, критериев оценки и конкурсных работ.

Предлагаемое решение. Реализованная система для проведения конкурсных мероприятий в дистанционном формате значительно упрощает не только процессы организации, приема и демонстрации конкурсных работ, но и процесс оценивания работ участников веб-конкурсов.

Система оценки работ для дистанционных конкурсов содержит следующий функционал:

Добавление/удаление конкурсов администратором сайта;

Регистрация на сайте участников конкурса;

Загрузка работ участниками конкурсов;

Установка критериев оценки работ, ранжирование критериев;

Оценка работ членами жюри;

Выставление отметок «Нравится» зарегистрированными пользователями (в т.ч. участниками конкурса, но только не на свои загруженные работы) и членами жюри – дополнительный формат оценки конкурсных работ;

Функционал просмотра рейтинга для каждого из конкурсов, разделенный на рейтинг по результатам оценок членами жюри и по результатам отметок

«Мне нравится».

Предварительную модель системы можно представить в виде диаграмм прецедентов на рисунке 2.

Рисунок 2. Диаграмма прецедентов информационной системы для проведения конкурсов в дистанционном формате

Процесс оценивания выполняется по двум направлениям. Оценивание по отметкам «Мне нравится», он доступен всем авторизованным пользователям. Также есть возможность убрать отметку «Мне нравится» у всех, кто её оставил. Второе направление оценивание – оценивание по критериям. Он доступен только членам жюри. Есть возможность изменения оценки по каждому из критериев. Если конкурс не подразумевает нескольких претендентов на одно место в рейтинге, то при оценивании или изменении оценки выводится предупреждение о совпадении количества баллов с другой работой и ссылкой на неё (рис. 3).

Рисунок 3. Модуль оценивания конкурсных работ

Разработанная система обладает удобным и дружелюбным интерфейсом как для администратора, так и для все ролей пользователей, особенно членов жюри, что дает значительные преимущества по сравнению с аналогичными сайтами (Dimitrenko, Abramova & Rybanov, 2019). При этом предлагаемые решения учитывают исследования в области эргономичности и удобства интерфейса (Abramova, 2019; Katkov, Abramova & Rybanov, 2019) Например, страница каждой работы содержит всю необходимую информацию, включая превью и ссылки на просмотр видеоролика по работе, а так же есть возможность скачать архив с материалами (для члена жюри) (рис. 4):

Рисунок 4. Страница работы

Процедура оценивания работ упрощается за счет удобных скроллингов по установленным администратором критериям (рис. 5), вывода предупреждений при совпадении баллов, а так же отслеживании уже оцененных работ.

Рисунок 5. Оценивание конкурсных работ

Важнейшим достоинством разработанной системы авторы по праву считают автоматически собираемый в реальном времени рейтинг работ, разбитый по двум категориям: оценка жюри и оценка участниками конкурса (рис. 6):

Рисунок 6. Страница рейтинга

Причем вывод рейтинга не ограничивается статичным списком, а позволяет при желании перейти на заинтересовавшую работу (рис.7):

Рисунок 7. Рейтинг конкурсных работ

Исходя из вышеизложенного, можно с уверенностью утверждать, что система для проведения конкурсных мероприятий в дистанционном формате с модулем оценивания конкурсных работ участников значительно снижает трудоёмкость процесса формирования оценки и уведомлении всех посетителей сайта о рейтинге работ, участвующих в конкурсе. А реализация системы с помощью CMS 1С-Битрикс обеспечивает следующие функции:

Высокую производительность, в отличии от других фреймворков, написанных на PHP.

Обеспечивает кэширование страниц и отдельных фрагментов кода, ускорив процесс загрузки страниц с статическим контентом.

Позволяет оперативно перехватывать и обрабатывать ошибки кода.

При необходимости модификации системы гарантирует быстрое изменение и оптимизацию программного кода.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Абрамова, О.Ф. Анализ проблем и автоматизация процедуры оценивания конкурсных работ в дистанционном формате [Электронный ресурс] NovaInfo.Ru: электрон. журнал. 2016, № 57, т. 1. – Режим доступа: http://novainfo.ru/article/9574.

Абрамова, О.Ф. & Круподеров, О.Ф. Обзор web-систем для проведения олимпиад в дистанционном формате [Электронный ресурс] NovaInfo.Ru: электрон. журнал. 2016, № 47, ч. 4. – Режим доступа : http://novainfo.ru/article/6794.

Абрамова, О.Ф. & Александрина, А.Ю. Анализ методов организации и проведения внеучебных конкурсных мероприятий в дистанционном формате. Открытое и дистанционное образование. 2017, № 2 (66), C. 14 – 25.

Абрамова, О.Ф. Визуализация паттерна поведения пользователя web-системы. Кибернетика и программирование: электронный журнал. 201, № 3, C. 43 – 52. – DOI: 10.25136/2644-5522.2019.3.23017. – URL: https://nbpublish.com / library_read_article.php?id=23017.

Димитренко, И.В., Абрамова, О.Ф. & Рыбанов, А.А. Обзор действующих систем и методов оценки конкурсного мультимедийного контента. Научное обозрение. Педагогические науки. 2019, № 3, ч. 3, C, 33 – 36.

Катков, Д.С., Абрамова, О.Ф. & Рыбанов, А.А. Исследование и анализ применения принципов геймификации в обучающих программных системах [Электронный ресурс] Постулат: электронный научный журнал. 2019, № 3, 5 с. – Режим доступа: http://epostulat.ru/index.php/Postulat/article/view/2518.

Манышев, С.В., Фадеева, М.В. &. Рыбанов, А.А. Исследование алгоритмов принятия решений и разработка веб-системы выбора с учётом весовых коэффициентов заданных альтернатив [Электронный ресурс] Постулат: электронный научный журнал, 2019, № 3, 10 с, Режим доступа: http://e-postulat.ru/index.php/Postulat/ article/view/2543.

Рыбанов, А.А. Количественные критерии для оценки тезауруса обучаемого в системах дистанционного обучения Открытое и дистанционное образование, 2019, № 2 (74), C, 64 – 73.

REFERENCES

Abramova, O.F. (2016). Analiz problem i avtomatizaciya procedury ocenivaniya konkursnyh rabot v distancionnom formate [Elektronnyj resurs] NovaInfo.Ru: elektron. zhurnal. № 57, t. 1. http://novainfo.ru/ article/9574.

Abramova, O.F. & Krupoderov, D.D. (2016). Obzor web-sistem dlya provedeniya olimpiad v distancionnom formate [Elektronnyj resurs] NovaInfo.Ru: elektron. zhurnal. № 47, ch. 4. http://novainfo.ru/article/6794.

Abramova, O.F. & Aleksandrina, A.YU. (2017). Analiz metodov organizacii i provedeniya vneuchebnyh konkursnyh meropriyatij v distancionnom formate. Otkrytoe i distancionnoe obrazovanie, № 2 (66), p. 14 – 25.

Abramova, O.F. (2019). Vizualizaciya patterna povedeniya pol’zovatelya web-sistemy. Kibernetika i programmirovanie: elektronnyj zhurnal, № 3, p. 43-52. DOI: 10.25136/2644-5522.2019.3.23017. URL: https://nbpublish.com /library_read_article.php?id=23017.

Dimitrenko, I.V., Abramova, O.F. & Rybanov, A.A. (2019). Obzor Dejstvuyushchih sistem i metodov ocenki konkursnogo mul’ timedijnogo kontenta. Nauchnoe obozrenie. Pedagogicheskie nauki, № 3, ch. 3, p. 33 – 36.

Katkov, D.S., Abramova, O.F. & Rybanov, A.A. (2019). Issledovanie i analiz primeneniya principov gejmifikacii v obuchayushchih programmnyh sistemah [Elektronnyj resurs]. Postulat: elektronnyj nauchnyj zhurnal. № 3, 5 s. http://e-postulat.ru/index.php/Postulat/article/view/2518.

Manyshev, S.V., Fadeeva, M.V. & Rybanov, A.A. (2019). Issledovanie algoritmov prinyatiya reshenij i razrabotka veb-sistemy vybora s uchyotom vesovyh koefficientov zadannyh al’ternativ [Elektronnyj resurs] Postulat: elektronnyj nauchnyj zhurnal, № 3, 10 s. http://e-postulat.ru/ index.php/Postulat/article/view/2543.

Rybanov, A.A. (2019). Kolichestvennye kriterii dlya ocenki tezaurusa obuchaemogo v sistemah distancionnogo obucheniya. Otkrytoe i distancionnoe obrazovanie, № 2 (74). P. 64 – 73. for assessment of competitive materials and also an automated solution in the field of assessment.

The article provides an overview of the methods, applicable to the assessment of works. Formed and described is mathematical model of assessment, as well as project models of an automated system for conducting extra-curricular competitive events in a remote format. The system for conducting competitive events in a remote format with a module for evaluating participants’ competitive works is designed to reduce the laboriousness of the process of forming an assessment and to notify in real time all visitors of the site about the works rating.

Keywords: Distance education; extracurricular activities; organization of competitions; mathematical model of assessment

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева