Математика и Информатика

Science in Education https://doi.org/10.53656/math2024-3-1-lex Научно-методически статии

2024/3, стр. 235 - 252

LEXICAL REPRESENTATION OF DENSE NUMERICAL VECTORS: INTRODUCING LANGVEC

Резюме: High-dimensional numerical vectors are widely used in ma-chine learning for searching and indexing data. However, it is often difficultfor users to interpret their meaning. To address this, we introduce a novelapproach that transforms dense vectors into human-readable lexical repre-sentations using a percentile-based mapping approach. The essence of theapproach is a mapping of words from a predefined/custom lexicon to vec-tors based on their relative local magnitudes. This way, it enables intuitivevisualization of the semantic similarities and differences between complexdata points and allows for domain-specific interpretability. It provides aneasy way to deduplicate dense vectors (even near-duplicates) and can gener-ate locality-aware hash-like representations, which can be used for efficientindexing and retrieval in various applications. The approach has also beenimplemented in an open-source library called LangVec. The paper providesexamples on LangVec usage and highlights the key applications, includingsemantic search, recommendation systems, and clustering of numerical datainto a human-readable format.

Ключови думи: interpretable machine learning; vector representations; lexicalmapping; semantic similarity; clustering; recommendation systems

Science in Education https://doi.org/10.53656/math2024-3-1-lex Научно-методически статии

2024/3, стр. 235 - 252

LEXICAL REPRESENTATION OF DENSE NUMERICAL VECTORS: INTRODUCING LANGVEC

Simeon Emanuilov, Aleksandar Dimov
Sofia University “St. Kliment Ohridski” (Bulgaria)

Abstract. High-dimensional numerical vectors are widely used in machine learning for searching and indexing data. However, it is often difficult for users to interpret their meaning. To address this, we introduce a novel approach that transforms dense vectors into human-readable lexical representations using a percentile-based mapping approach. The essence of the approach is a mapping of words from a predefined/custom lexicon to vectors based on their relative local magnitudes. This way, it enables intuitive visualization of the semantic similarities and differences between complex data points and allows for domain-specific interpretability. It provides an easy way to deduplicate dense vectors (even near-duplicates) and can generate locality-aware hash-like representations, which can be used for efficient indexing and retrieval in various applications. The approach has also been implemented in an open-source library called LangVec. The paper provides examples on LangVec usage and highlights the key applications, including semantic search, recommendation systems, and clustering of numerical data into a human-readable format.

Keywords: interpretable machine learning; vector representations; lexical mapping; semantic similarity; clustering; recommendation systems

1. Introduction

High-dimensional numerical vectors have become the standard representation for encoding information in various machine learning and artificial intelligence applications (Li et al. 2023). In many systems, such as semantic search and recommendation engines, dense vector representations are employed for efficient and accurate information retrieval (Li et al. 2023; Johnson et al. 2019). Dense vectors are compact, fixed-length numerical representations that capture the essential features and relationships of the input data. However, the high dimensionality of these vectors and their numeric nature add complexity when it comes to interpretation. Creators of these systems need to understand how the vectors contribute to the results and trust and rely on the system's recommendations (Walmsley 2021). Existing techniques for vector interpretation, such as dimensionality reduction and visualization (Jolliffe 2002; Van der Maaten & Hinton 2008; McInnes et al. 2018), often fall short in providing a direct and intuitive interpretation of individual vectors.

To address this gap, here we introduce a novel approach that enables system creators to understand the properties of high-dimensional numerical embeddings in a more intuitive and accessible manner. It is based on incorporating practices from the explainable AI field, such as dimensionality reduction and locality-aware hashing (He & Niyogi 2023; Ahmadian et al. 2022; Mohseni et al. 2021). By mapping vectors to human-readable lexical representations, this method bridges the divide between high-dimensional dense vectors and human understanding.

The approach is also implemented into by an open-source programming library, called LangVec1, which is written in the Python programming language. LangVec can be particularly beneficial in semantic search systems, enabling hash-like representations with locality awareness and finding exact and near-duplicates and approximate nearest neighbors (ANN) operations.

The paper is structured as follows: Section 2 makes an overview of the related work; Section 3 presents the approach implemented in LangVec; Section 4 provides some usage examples; Section 5 makes a short discussion about pros and cons of the approach and finally, Section 6 makes the concluding remarks of the paper.

2. Related Work

The problem of interpreting and communicating high-dimensional vector representations has been explored from various perspectives in the machine learning and natural language processing communities. Several research areas are directly related to our work, including the use of local descriptors and locality-sensitive hashing (LSH) for efficient indexing and retrieval (2.1), as well as dimensionality reduction techniques (2.2). More generally, several broader research directions are directly related to ours, including word embeddings and language models (2.3), concept activation vectors and probing (2.4), and explainable AI and interpretable machine learning (2.5).

In the following subsections, we discuss these related research areas in more detail, examining their contributions and limitations, and highlighting how our approach complements and extends existing techniques.

2.1. Local descriptors and locality-sensitive hashing (LSH)

The work (Ke et al. 2004) focuses on using local image descriptors (so called PCA-SIFT) for near-duplicate image detection and sub-image retrieval, while LangVec works with general high-dimensional vectors and maps them to interpretable lexical representations. Their approach is tailored for the image domain, whereas LangVec is a more general-purpose tool for highdimensional embeddings. Additionally, LangVec provides a way to construct compact, meaningful hash-like representations that preserve locality, which can be useful for indexing and retrieval in various domains beyond images.

LSH, that was proposed by (Indyk & Motwani 1998) and further developed by (Gionis et al. 1999), is an approximate similarity search technique that works efficiently even for high-dimensional data. LangVec leverages LSH for efficient indexing and retrieval of high-dimensional vectors but extends its functionality by mapping the embeddings to readable lexical representations.

2.2. Dimensionality reduction

Dimensionality reduction techniques like Principal Component Analysis (PCA, Jolliffe 2002), t-SNE (Van der Maaten & Hinton 2008), and UMAP (McInnes et al. 2018) aim to project high-dimensional data into lowerdimensional spaces while preserving important structures and relationships. While useful for visualizing patterns and clusters, these methods often lack direct interpretability compared to lexical representations. Recent surveys (Sorzano et al. 2014; Reddy et al. 2020) highlight the growing interest in techniques that can handle non-linear relationships and adapt to local data structures, such as manifold learning (ISOMAP, Locally Linear Embedding, Laplacian Eigenmaps). PCA remains widely used due to its simplicity and interpretability, with variants like robust PCA, sparse PCA, and kernel PCA addressing specific challenges across various domains (Reddy et al. 2020).

The choice of dimensionality reduction technique significantly impacts machine learning performance, depending on dataset size and complexity (Reddy et al. 2020). Locality Preserving Projections (LPP), described in (He & Niyogi 2003), is a classical linear method that preserves local structure by incorporating neighborhood information into a graph and computing a linear transformation matrix. However, LPP's reliance on the original feature space, which may contain noise and irrelevant features, can degrade performance. To address this, Wang et al. (Wang et al. 2020) proposed Locality Adaptive Preserving Projections (LAPP), which adaptively determines neighbors and relationships in the optimal subspace, improving robustness.

While both LPP and LangVec aim to preserve locality, LPP is a linear projection technique, whereas LangVec uses a non-linear mapping based on percentile binning and a predefined lexicon, offering a novel approach to interpretable dimensionality reduction.

2.3. Word embeddings and language models

Traditional word embedding models like Word2Vec (Mikolov et al. 2013) and GloVe (Pennington et al. 2014) learn dense vector representations that capture semantic relationships but lack interpretability in individual dimensions. More recent pre-trained language models (PLMs) like BERT (Devlin et al. 2018) and GPT (Radford et al. 2019) generate contextualized word embeddings that are even more complex and challenging to interpret directly (Mars 2022).

Techniques such as attention visualization (Clark et al. 2019), probing tasks (Conneau et al. 2018), and layer-wise relevance propagation (Voita et al. 2019) have been proposed to address the interpretability challenge in PLMs, but they often provide only partial or indirect insights into the model's internal reasoning process. Recent work on distilling knowledge from large language models into compact and versatile text embeddings, such as Gecko (Lee et al. 2024; Jiao et al. 2019; Sanh et al. 2019), shows a trend towards smaller embedding dimensions and model sizes while maintaining high performance, aligning with the goal of LangVec.

Although LangVec does not directly work with word embeddings or language models, it shares the objective of making high-dimensional vector representations more interpretable and accessible by mapping dense vectors to human-readable lexical representations.

2.4. Concept activation vectors and probing

Concept Activation Vectors (CAVs) (Kim et al. 2018) are a technique for interpreting neural network internal representations in terms of humanreadable concepts. This approach has been applied to various domains, such as computer vision (Ghorbani et al. 2019) and natural language processing (Wei et al. 2021), to gain insights into the learned representations and their alignment with human-defined concepts.

Similarly, probing tasks (Conneau et al. 2018) are designed to analyze the linguistic knowledge encoded in neural language models by training classifiers to predict specific properties from the model's hidden states. These tasks cover various linguistic phenomena, such as part-of-speech tagging, dependency parsing, and coreference resolution (Tenney et al. 2019).

While these approaches provide valuable insights into the presence of specific concepts or properties in a model, they do not directly map vectors to lexical representations. The learned classifiers in CAVs and probing tasks operate on the model's internal activation space, often high-dimensional and not directly interpretable by humans.

2.5. Explainable AI and interpretable machine learning

The field of Explainable AI (XAI, Gunning & Aha 2019) aims to develop methods for understanding and interpreting the decisions made by machine learning models. Techniques such as LIME (Ribeiro et al. 2016), SHAP (Lundberg & Lee 2017), and Grad-CAM (Selvaraju et al. 2017) provide explanations for individual predictions by identifying influential input features or highlighting relevant regions in an image. However, these explanations are typically specific to a single example and do not provide a global mapping between vector representations and readable concepts.

Existing work in XAI has focused on developing more general and modelagnostic explanation methods, such as TCAV (Kim et al. 2018), which provides global explanations of a model's behavior in terms of human-defined concepts and counterfactual explanations (Wachter et al. 2017; Verma et al. 2020), which identify minimal changes needed in the input to alter the model’s prediction.

Mapping high-dimensional embeddings to lexical representations offers a complementary approach to existing interpretability techniques, as most XAI techniques still operate on the input feature space or the model's internal representations, which may not always align with human-interpretable concepts. The lexical representations can be used with dimensionality reduction, probing tasks, and explainable AI methods to enhance further the interpretability and communicability of vector-based models (Ahmadian et al. 2022; Mohseni et al. 2021).

LangVec offers a unique combination of interpretability, locality preservation, and compact hash-like representations that can be valuable in various applications, such as semantic search, recommendation systems, and data deduplication.

3. Approach

The essence of the approach, which is further implemented in LangVec, is to map high-dimensional numerical vectors to human-readable lexical representations. This is achieved through a percentile-based mapping of vector magnitudes to words from a predefined lexicon (Li et al. 2023). The process can be divided into three key steps: (1) lexicon definition, (2) percentile calculation, and (3) vector-to-word mapping, as illustrated in Figure 1 and further explained below.

3.1. Lexicon definition

The first step is to define a lexicon of words or phrases that will represent the embeddings. By default, LangVec uses a predefined lexicon of common English short words, but users can provide their custom lexicons. The choice of lexicon allows for domain-specific interpretability and can be tailored to the specific data and use case.

The lexicon distribution D is calculated as D = (d1, d2, . . . , dL1) , where L is the size of the lexicon and 100diiL1= for i = 1, 2, . . . , L 1.

This equation shows how the L 1 percentiles for mapping vector magnitudes to words are evenly distributed across the range [0, 100]. The lexicon distribution is calculated using equally spaced percentiles to ensure a balanced mapping of vector magnitudes to words across the entire range [0, 100]. This approach allows for a more uniform representation of the vector space and prevents skewed mappings that may arise from uneven word assignments.

Figure 1. Illustration of LangVec workflow, from input vectors to lexical representations

3.2. Percentile calculation

To map vectors to words, we need to calculate percentiles based on the distribution of vector magnitudes in the training data. The fit function takes a list of numerical vectors and calculates percentiles corresponding to each word in the lexicon. By default, these percentiles are evenly distributed across the range of magnitudes, but this can be adjusted to accommodate different distribution shapes.

Calculating percentiles: Given a set of N numerical vectors V = {v1, v2, . . . , vN}, where each vector vj has M dimensions, the percentiles P are calculated as =(p1,p,...,p2L1),P where pi = percentile(flatten(V ), di) for i = 1, 2, . . . , L 1.

The flatten(V ) function takes the set of N numerical vectors V and concatenates all the elements of these vectors into a single one-dimensional array. This is done to simplify the percentile calculation process by treating the elements of all vectors as a single dataset. For example, if V consists of three vectors [0.1, 0.2, 0.3], [0.4, 0.5, 0.6], and [0.7, 0.8, 0.9], then flatten(V ) would return the array

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].

The percentile(X, d) function calculates the dth percentile of the data in the one-dimensional array X. The dth percentile is the value below which d percent of the data falls. For example, if d = 50, the function will return the median value of the data in X. If d = 25, it will return the first quartile (Q1), and if d = 75, it will return the third quartile (Q3). The percentile function is used to determine the threshold values for mapping the vector magnitudes to words in the lexicon.

3.3. Vector-to-word mapping

Once the percentiles are calculated, LangVec can map new vectors to their corresponding lexical representations. The predict function takes a single vector and assigns each chunk of the vector (default chunk size is 3) to a word from the lexicon based on its mean magnitude relative to the calculated percentiles.

Given an input vector v with M dimensions, a lexicon W of size L, and a set of percentiles P = (p1, p2, . . . , pL1), LangVec maps v to a sequence of words S=(s1,s,...,s2K) using the following steps:

Divide the input vector v into K chunks, each containing C elements, where C is the chunk size K =M/ C.

This step ensures that the input vector is divided into equal-sized chunks, with the last chunk potentially having fewer elements if the vector length is not divisible by the chunk size.

For each chunk cj, where j = 1, 2, . . . , K, calculate the mean magnitude mj = mean(cj).

Compare each mean magnitude mj to the percentiles in P to determine the corresponding word sj = W[bj], where (bj = sum (mj>pi for i = 1, 2, . . . , L1) respectively, bj represents the number of percentiles that mj exceeds, and W [bj] retrieves the word at index bj in the lexicon W.

3.4. Sensitivity to input changes

The percentile-based mapping approach allows for a certain level of robustness to small changes in the input vector. When the input vector is slightly modified, the resulting lexical representation may remain unchanged or exhibit only local changes, depending on the magnitude of the modification and the distribution of the training data.

For example, consider an input vector [0.2, 0.5, 0.8, 0.1, 0.3, 0.9] mapped to the lexical representation [high,medium] based on the percentiles learned from the training data. If we slightly modify the last few elements of the vector to [0.2, 0.5, 0.8, 0.2, 0.31, 0.91], the resulting lexical representation may still be [high,medium], as the change is small enough not to cross the percentile boundaries. This tool's property can be advantageous in specific applications, such as similarity-based retrieval, deduplication, or clustering, where slight variations in the input should not significantly alter the output.

4. Usage

In this section, we provide a step-by-step guide on how to use the LangVec library, along with a code example showcasing its key functionalities.

4.1. Basic usage

Basic usage of LangVec library should include initialization of the main object, fitting the model to a dataset, and predicting lexical representations for new vectors. Listing 1 presents an example of how to use LangVec to map a set of numerical vectors to their lexical representations:

Listing 1: Python code demonstrating LangVec’s basic usage

import numpy as np
from langvec import LangVec
np.random.seed(42)
# Initialize LangVec
lv = LangVec()
NUM_VECTORS, DIMENSIONS = 1000, 10
# Generate some random data
vectors = [np.random.uniform(0, 1, DIMENSIONS) for _
in range(NUM_VECTORS)]
# Fit to this data (getting know the distribution)
lv.fit(vectors)
# Example vector for prediction
input_vector = np.random.uniform(0, 1, DIMENSIONS)
print(lv.predict(input_vector))

4.2. Customization options

The library provides several customization options, allowing users to tailor the library’s behavior to their specific needs. Here are some of the key parameters:

Table 1. Default values of main parameters in LangVec

ParameterDefaultvalueDescriptionScopelexiconconstants.LEXICONThelistofwords/characterstouseformapping.LangVecchunk_size3Thenumberofvectorelementstomaptoeachword/character.LangVecsummarizedFalseWhethertosummarizetheoutput.predictpaddingTrueWhethertopadthelastchunkwithzeros.predictmax_samples107Themaximumnumberofsamplestouseforfitting.fit,update

The default value constants.LEXICON in Table 1 is a set of 26 short English words, which can be overridden by the users with a new list of words.

These parameters have different scopes (LangVec is the highest scope, while predict, fit, and update are a lower scope) and can be set when initializing the LangVec object or when calling the predict method. For example:

Listing 2: Code snippet illustrating how to customize LangVec by specifying a custom lexicon, adjusting the chunk size and summarization options

# Initialize LangVec with a custom lexicon and chunk size
custom_lexicon = ["small", "medium", "large"]
lv = LangVec(lexicon=custom_lexicon, chunk_size=4)
# Map a vector and summarize the output
lexical_rep = lv.predict(new_vector, summarized=True)

The library accepts input data as NumPy arrays or lists of arrays, making it compatible with popular data processing and modeling tools such as pandas, scikit-learn, and TensorFlow.

4.3. Case study

To demonstrate the practical application and effectiveness of LangVec in a real-world scenario, we conducted a case study2 using PostgreSQL to benchmark string similarity search using the Levenshtein (Yujian & Bo 2007) distance metric. The goal was to evaluate the performance of finding nearduplicate strings in a large dataset and showcase the key benefits of the proposed approach.

4.4. Configuration

We set up a PostgreSQL database on a server with the following characteristics: Intel(R) Xeon(R) E-2274G CPU @ 4.00GHz, 64 GB DDR4 RAM, and 512 GB NVMe SSD. Then we populated it with 10 million strings of length 32, consisting of lowercase letters from 'a' to 'z'. The strings were stored in a table with an index created on the str column using the pg_trgm extension for efficient trigram-based string similarity search.

We defined a function find_similar_strings that takes an input string and a maximum Levenshtein distance as parameters and returns a table of up to 100 strings from the strings table that are within the specified distance from the input string, sorted by distance.

To benchmark the performance, we generated random input strings and executed the find_similar_strings function with different maximum Levenshtein distances (5, 10, and 20). We measured the execution time for each query to assess the efficiency of the string similarity search.

4.5. Results

The benchmark results showed that the execution times for finding similar strings using LangVec in PostgreSQL were consistent across different maximum Levenshtein distances, ranging from 4.9 to 5 seconds for a dataset of 10 million strings.

The query plan involved a function scan on find_similar_strings followed by sorting the results based on the distance.

To further validate the effectiveness of LangVec, we conducted an additional experiment where we picked 10 random vectors from the generated set and performed a search on them. In all 10 cases, the same vector was returned with a distance of 0, which highlights the capability of LangVec to accurately identify exact matches within the dataset.

The case study highlights the practical application of LangVec in a realworld scenario, demonstrating its efficiency, accuracy, and integration capabilities with PostgreSQL. The approach successfully addresses the challenge of finding near-duplicate strings in large datasets, providing a valuable tool for deduplication and similarity search tasks.

4.6. Benchmark

The benchmark tests were performed on the server from Section 4.4. The benchmarking script available in the LangVec repository3 generates sample data consisting of random vectors with a specified number of dimensions. The script measures the fitting time for different dataset sizes (103, 104, 105, and 106 256 dimensional vectors) and the average prediction time for 10,000 random embeddings.

The results, as shown in Table 2, demonstrate the efficiency of LangVec in terms of fitting and prediction times for various dataset sizes. The fitting time increases with the number of embeddings, while the prediction time remains relatively constant. It is important to note that the actual performance may vary depending on the hardware configuration and the characteristics of the input data.

Table 2. Benchmark results showcase LangVec performance on different dataset sizes, ranging from 103 to 106 256-dimensional vectors. The table presents the fitting time and prediction time for each dataset size.

Numberofvectors*Fittingtime(seconds)Predictiontime(seconds)1030.01304.251041040.09254.111041050.86584.531041069.97344.13104

For extremely large datasets that exceed the available machine memory, users can implement random sampling of the input data to train the model. By selecting a representative subset of the data, users can effectively capture the underlying distribution while reducing the computational burden.

4.7. Error handling

The library includes error handling to provide informative messages when issues arise during the execution of the library's functions. Error handling helps users identify and correct problems with their input data. Some common errors include:

Attempting to call the prediction method before fitting the model.

Passing invalid input data to the fit or predict methods.

Inconsistencies between the lexicon size and the learned percentiles during the prediction phase.

By providing clear and informative error messages, our implementation helps users quickly identify and resolve issues, improving the overall user experience and reducing the debugging time. The error handling also ensures that the library is used correctly and that the input data meets the expected format, contributing to the reliability and robustness of the system.

5. Discussion

While LangVec offers a novel approach to mapping high-dimensional vectors to human-readable lexical representations, it has some limitations. Firstly, LangVec relies on the training data distribution to learn the mapping, and if the data distribution changes significantly between the training and testing phases, the learned mapping may not generalize well, leading to suboptimal results. This highlights the importance of the fit method, which allows the library to adapt to the specific distribution of the dataset at hand. Secondly, the lexical representations generated by LangVec may not always be meaningful, as they are based on a predefined lexicon and may not capture the semantic content of the data, although readability should still be improved.

Moreover, the locality-preserving property may not be suitable for all applications, as in some cases, global structure may be more important than local structure, and other dimensionality reduction techniques, such as PCA or t-SNE, may be more appropriate. Another aspect to consider is the occurrence of collisions when using LangVec as a hash-like function, where different input vectors map to the same lexical representation. The likelihood of collisions depends on factors such as the chunk size, lexicon length, and embedding dimension, and can either be avoided or leveraged as a desired effect, depending on the specific use case.

For applications like duplication removal and similar content detection, having hashing collisions (i.e., a variation-tolerant, locality-aware algorithm) is a must-have feature, as LangVec's ability to map similar vectors to the same or similar lexical representations allows for efficient identification of duplicate or near-duplicate items (Ke et al. 2004). On the other hand, for applications where unique mappings are required, such as certain indexing or retrieval tasks, collisions should be minimized through careful selection of the chunk size, lexicon length, and embedding dimension.

Despite these limitations, LangVec offers a unique and valuable approach to mapping high-dimensional vectors to human-readable representations. One of its main applications is in constructing hash-like representations for dense vectors in semantic search systems that use techniques like FAISS4 clusters via K-Nearest Neighbors (KNN) (Johnson et al. 2019), providing an effective and easy-to-use alternative to traditional hashing methods (Indyk & Motwani 1998; Gionis et al. 1999). LangVec’s locality-aware and change-tolerant property makes it particularly useful in search systems, where minor variations in the input vectors should not dramatically alter the search results.

Furthermore, in the context of model debugging and interpretation, the library can be used to find the internal representations and decision-making stages of complex machine learning models (Montavon 2019). By mapping intermediate embedding values to lexical representations, developers and researchers can gain insights into the distribution and nature of the data, facilitating model debugging, optimization, and explanatory analysis.

6. Conclusion

This paper introduced LangVec, an approach and open-source implementation that maps high-dimensional numerical vectors to human-readable lexical representations. By leveraging a percentile-based mapping approach, our method reduces the distance between machine learning models and human understanding, enabling intuitive interpretation and communication of vector-based data and model outputs.

The main contributions of the proposed technique are:

A novel approach for mapping dense numerical vectors to interpretable lexical representations or hash-like strings, using fitting methods to learn underlying data distribution.

An implementation, benchmark, and case study of this approach available for use by the community.

We highlighted several main applications of LangVec, including semantic search and recommendation systems, deduplication, data exploration and clustering, model interpretation and debugging, and human-in-the-loop learning. These examples demonstrate the potential for LangVec to enhance interpretability and help build various types of applications using embeddings.

We also discussed the utility of the library in constructing meaningful hashlike strings for semantic search systems (Johnson et al. 2019; Ahmadian et al. 2022) and its role as a location-aware dimensionality reduction technique, particularly useful in hybrid vector representations (Turner et al. 2021), but also when indexes are reshuffled in indexing strategies like using FAISS.

LangVec should serve as a tool for researchers and practitioners seeking to make their model outputs more accessible and interpretable to a broader audience. By providing a human-friendly API interface to complex numerical representations, LangVec facilitates better understanding, trust, and collaboration between technical and non-technical stakeholders (Mohseni et al. 2021).

Future work on LangVec could explore several directions, such as:

Incorporating more advanced natural language processing techniques to generate more fluent and contextually relevant lexical representations instead of static lexicon.

Developing interactive visualization tools to enable intuitive exploration of high-dimensional datasets and model outputs.

Finally, we invite the machine learning community to explore, contribute to, and provide feedback on LangVec, as we strive to make embedding representations more interpretable and accessible to a broader range of users.

Acknowledgements

This study is financed by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0008-C01

NOTES

1. Language of Vectors (LangVec) implementation.

https://github.com/s-emanuilov/langvec

2. Near duplication detection with PostgreSQL and LangVec approach. https://github.com/s-emanuilov/LangVec/blob/main/docs/NEAR_ DUPLICATION_BENCHMARK.md

3. LangVec benchmark script.

https://github.com/s-emanuilov/LangVec/blob/main/benchmark.py

4. FAISS, Meta Platforms, Inc.

https://github.com/facebookresearch/faiss

REFERENCES

AHMADIAN, M., AHMADI, M., AHMADIAN, S., 2022. A Reliable Deep Representation Learning to Improve Trust-aware Recommendation Systems. Expert Systems with Applications, vol. 197, pp.116697.

doi: 10.1016/j.eswa.2022.116697

CLARK, K., KHANDELWAL, U., LEVY, O., MANNING, C.D., 2019. What Does BERT Look At? An Analysis of BERTS’s Attention.

arXiv:1906.04341

CONNEAU, A., KRUSZEWSKI, G., LAMPLE, G., BARRAULT, L., BARONI, M., 2018. What you can cram into a single vector: Probing sentence embeddings for linguistic properties. arXiv:1805.01070

DEVLIN, J., CHANG, M.W., LEE, K.,TOUTANOVA, K., 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805

GHORBANI, A., WEXLER, J., ZOU, J.Y., KIM, B., 2019. Towards Automatic Concept-based Explanations. Advances in Neural Information Processing Systems 32 (NeurIPS 2019). arXiv:1902.03129

GIONIS, A., INDYK, P., MOTWANI, R., 1999. Similarity search in high dimensions via hashing. In Vldb, vol. 99, no. 6, pp. 518 – 529.

https://www.vldb.org/conf/1999/P49.pdf

GUNNING, D., AHA, D., 2019. DARPA’s explainable artificial intelligence (XAI) program. AI magazine, vol. 40, no. 2, pp. 44 – 58.

HE, X., NIYOGI, P., 2003. Locality preserving projections. Advances in Neural Information Processing Systems 16 (NIPS 2003).

INDYK, P., MOTWANI, R., 1998. Approximate nearest neighbors: towards removing the curse of dimensionality. Proceedings of thirtieth annual ACM symposium on Theory of computing, pp. 604 – 613.

doi: 10.1145/276698.276876

JIAO, X., YIN, Y., SHANG, L., JIANG, X., CHEN, X., LI, L., WANG, F., LIU, Q., 2019. TinyBERT: Distilling BERT for Natural Language Understanding. arXiv:1909.10351.

JOHNSON, J., DOUZE, M., J EGOU,´ H., 2019. Billion-scale similarity search with GPUs. IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535 – 547.

JOLLIFFE, I.T., 2002. Principal component analysis for special types of

data, Springer, New York, pp. 338 – 372. ISBN 978-0-387-22440-4

KE, Y., SUKTHANKAR, R., HUSTON, L., 2004. Efficient near-duplicate detection and sub-image retrieval. In ACM multimedia, vol. 4, no. 1, pp. 5.

KIM, B., WATTENBERG, M., GILMER, J., CAI, C., WEXLER, J., VIEGAS, F., 2018. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In International conference on machine learning, pp. 4186 – 4195. arXiv:1711.11279

LEE, J., DAI, Z., REN, X., CHEN, B., CER, D., COLE, J.R., HUI, K., BORATKO, M., KAPADIA, R., DING, W., LUAN, Y., DUDDU, S.M.K., ABREGO, G.H., SHI, W., GUPTA, N., KUSUPATI, A., JAIN, P., JONNALAGADDA, S.R., CHANG, M-W., NAIM, I., 2024. Gecko: Versatile Text Embeddings Distilled from Large Language Models.

arXiv:2403.20327.

LI, H., WANG, J., ZHENG, Y., WANG, L., ZHANG, W., SHEN, H.W., 2023. Compressing and interpreting word embeddings with latent space regularization and interactive semantics probing. Information Visualization, vol. 22, no. 1, pp. 52 – 68. arXiv:2403.16815

LUNDBERG, S.M., LEE, S.I., 2017. A unified approach to interpreting model predictions. Advances in neural information processing systems 30 (NIPS 2017).

MARS, M., 2022. From word embeddings to pre-trained language models: A state-of-the-art walkthrough. Applied Sciences, vol. 12, no. 17, p. 8805.

MCINNES, L., HEALY, J., MELVILLE, J., 2018. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.

arXiv:1802.03426

MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G.S., DEAN, J., 2013. Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (NIPS 2013).

MOHSENI, S., ZAREI, N., RAGAN, E.D., 2021. A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 11, no. 3 – 4, pp. 1 – 45.

MONTAVON, G., BINDER, A., LAPUSCHKIN, S., SAMEK, W., M ULLER,¨ K.R., 2019. Explainable AI: interpreting, explaining and visualizing deep learning. Springer, LNCS, 11700.

PENNINGTON, J., SOCHER, R., MANNING, C.D., 2014. Glove: Global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532 – 1543.

RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D., SUTSKEVER, I., 2019. Language models are unsupervised multitask learners. OpenAI blog, vol. 1, no. 8, p. 9.

REDDY, G.T., REDDY, M.P.K., LAKSHMANNA, K., KALURI, R., RAJPUT, D.S., SRIVASTAVA, G., BAKER, T., 2020. Analysis of dimensionality reduction techniques on big data. IEEE Access, vol. 8, pp. 54776 – 54788.

RIBEIRO, M.T., SINGH, S., GUESTRIN, C., 2016. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1135 – 1144. arXiv:1602.04938

SANH, V., DEBUT, L., CHAUMOND, J., WOLF, T., 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108

SELVARAJU, R.R., COGSWELL, M., DAS, A., VEDANTAM, R., PARIKH, D., BATRA, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE international conference on computer vision, pp. 618 – 626.

SORZANO, C.O.S., VARGAS, J., MONTANO, A.P., 2014. A survey of dimensionality reduction techniques. arXiv:1403.2877

TENNEY, I., DAS, D., PAVLICK, E., 2019. BERT rediscovers the classical NLP pipeline. arXiv:1905.05950

TURNER, C.J., MA, R., CHEN, J., OYEKAN, J., 2021. Human in the Loop: Industry 4.0 technologies and scenarios for worker mediation of automated manufacturing. IEEE access, vol. 9, pp. 103950 – 103966.

VAN DER MAATEN, L., HINTON, G., 2008. Visualizing data using t-SNE. Journal of machine learning research, vol. 9, pp. 2579 – 2605.

VERMA, S., BOONSANONG, V., HOANG, M., HINES, K.E., DICKER

SON, J.P., SHAH, C., 2020. Counterfactual explanations and algorith

mic recourses for machine learning: A review. arXiv:2010.10596

VOITA, E., TALBOT, D., MOISEEV, F., SENNRICH, R., TITOV, I., 2019. Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv:1905.09418

WACHTER, S., MITTELSTADT, B., RUSSELL, C., 2017. Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harvard Journal of Law & Technology, vol. 31, no. 2, pp. 841 – 847.

WALMSLEY, J., 2021. Artificial intelligence and the value of transparency. AI & society, vol. 36, no. 2, pp. 585 – 595.

WANG, A., ZHAO, S., LIU, J., YANG, J., LIU, L., CHEN, G., 2020. Locality adaptive preserving projections for linear dimensionality reduction. Expert Systems with Applications, vol. 151, p. 113352.

WEI, X., GALES, M.J., KNILL, K.M., 2021. Analysing bias in spoken language assessment using concept activation vectors. ICASSP 20212021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7753 – 7757.

YUJIAN, L., BO, L., 2007. A normalized Levenshtein distance metric. IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1091 – 1095.

Simeon Emanuilov
ORCID iD: 0000-0002-2295-4513
Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
8, James Bourchier Blvd.

1164 Sofia, Bulgaria
E-mail: ssemanuilo@fmi.uni-sofia.bg

Dr. Aleksandar Dimov, Prof.

ORCID iD: 0000-0001-6197-1212 Faculty of Mathematics and Informatics Sofia University “St. Kliment Ohridski” 8, James Bourchier Blvd.

1164 Sofia, Bulgaria E-mail: aldi@fmi.uni-sofia.bg

2025 година
Книжка 4

Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов,

THE IMPACT OF TEACHERS’ GENDER, EDUCATION, AND EXPERIENCE ON FOSTERING MATHEMATICAL CREATIVITY: A QUANTITATIVE STUDY

kombinatorni zadachi. Mathematics and Informatics, 2, 193 – 202. (In Bulgarian). Valkov, M. (2022). Sinhronno distantsionno obuchenie v obrazovatelnata igra “StruniMa”. Pedagogicheski forum, 1, DOI: 10.15547/PF.2022.005, ISSN:1314-7986. (In Bulgarian).

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev1)

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev,Nadezhda Borisova,Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски1),Марияна Николова2)

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev , Tsvetelin Zaevski Anton Iliev , Vesselin Kyurkchiev , Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova , Aharon Goldreich , Nadezhda Borisova

ФОРМИРАНЕ НА КОМПЕТЕНТНОСТИ ЧРЕЗ ПРОБЛЕМНО БАЗИРАНО ОБУЧЕНИЕ

2. Компетентностен подход Компетентностният подход се базира на използването на инте- рактивни методи и нови технологии за обучение, които спомагат за

Книжка 1
ПРЕДИЗВИКАТЕЛСТВА ПРИ ОБХОЖДАНЕТО НА ИНТЕРНЕТ С ЦЕЛ ИЗВЛИЧАНЕ НА ДАННИ

Гл. ас. д-р Георги Чолаков , доц. д-р Емил Дойчев , проф. д-р Светла Коева

AN APPROACH AND A TOOL FOR EUCLIDEAN GEOMETRY

Dr. Boyko Bantchev, Assoc. Prof.

STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva , Rositsa Doneva , Sadiq Hussain Ashis Talukder , Gunadeep Chetia , Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Assist. Prof. Stefan Stavrev, Assist. Prof. Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
MIRROR (LEFT-RECURSIVE) GRAY CODE

Dr. Valentin Bakoev, Assoc. Prof.

THE CONSTRUCTION OF VALID AND RELIABLE TEST FOR THE DIVISIBILITY AREA

Dr. Daniela Zubović, Dr. Dina Kamber Hamzić

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov , Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD- ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Prof. Dr. Jasmin Bektešević, Prof. Dr. Vahidin Hadžiabdić, Prof. Dr. Midhat Mehuljić, Prof. Dr. Sadjit Metović, Prof. Dr. Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Гл. ас. д-р Георги Чолаков , доц. д-р Емил Дойчев , проф. д-р Светла Коева

EVALUATIОN OF CHILDREN’S BEHAVIOUR IN THE CONTEXT OF AN EDUCATIONAL MOBILE GAME

Dr. Margarita Gocheva, Chief Assist. Prof. Dr. Nikolay Kasakliev, Assoc. Prof. Prof. Dr. Elena Somova

Книжка 4
TRIPLES OF DISJOINT PATHS BETWEEN POINTS ON A CIRCLE

Dr. Ivaylo Kortezov, Assoc. Prof.

MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić , Hajnalka Peics , Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Dr. Pohoriliak Oleksandr, Assoc. Prof. Dr. Olga Syniavska, Assoc. Prof. Dr. Anna Slyvka-Tylyshchak, Assoc. Prof. Dr. Antonina Tegza, Assoc. Prof. Prof. Dr. Alexander Tylyshchak

РЕЗУЛТАТИ ОТ ИЗПОЛЗВАНЕТО НА ВИДЕОИГРИ В ОБРАЗОВАНИЕТО: ПРЕГЛЕД НА НЯКОИ ОСНОВНИ ИЗСЛЕДВАНИЯ ОТ ПОСЛЕДНИТЕ ДЕСЕТ ГОДИНИ

Калин Димитров , проф. д-р Евгения Ковачева „Интелигентният педагогически подход насърчава с инер- гията между технологиите и педагогиката и използва дигиталните игри в учебния процес“. Л. Даниела (Daniela 2020)

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Проф. д.п.н. Йордан Табов, проф. д-р Веселин Ненков, гл. ас. д-р Асен Велчев, гл. ас. д-р Станислав Стефанов

УПРАВЛЕНИЕ НА ЗНАНИЯТА ПО СТРУКТУРИ ОТ ДАННИ ЧРЕЗ СМЕСЕНО ОБУЧЕНИЕ

Гл. ас. д-р Валентина Дянкова, д-р Милко Янков

USING SENSORS TO DETECT AND ANALYZE STUDENTS’ ATTENTION DURING ROAD SAFETY TRAINING IN PRIMARY SCHOOL

Assist. Prof. Dr. Stefan Stavrev Assist. Prof. Dr. Ivelina Velcheva

Книжка 2
ALGORITHMS FOR CONSTRUCTION, CLASSIFICATION AND ENUMERATION OF CLOSED KNIGHT’S PATHS

Prof. DSc. Stoyan Kapralov , Assoc. Prof. Dr.Valentin Bakoev , Kaloyan Kapralov

DUAL FORM OF OBTAINING EDUCATION IN THE MATHEMATICS TEACHERS TRAINING SYSTEM: EMPLOYERS’ POSITION

Dr. Hab. Roman Vernydub, Assist. Prof. Dr. Oxana Trebenko, Prof. DSc. Oleksandr Shkolnyi

Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

THE POWER OF A POINT — A VECTOR PERSPECTIVE

Assoc. Prof. Dr. Boyko Bantchev

ФОРМУЛИ ЗА ЛИЦАТА НА НЯКОИ ВИДОВЕ МНОГОЪГЪЛНИЦИ И ПРИЛОЖЕНИЕТО ИМ ЗА ДОКАЗВАНЕ НА ЗАВИСИМОСТИ В ТЯХ

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

ТЕСТОВИТЕ ЗАДАЧИ ОТ ДЪРЖАВНИЯ ЗРЕЛОСТЕН ИЗПИТ ЗА ПРОФИЛИРАЩ УЧЕБЕН ПРЕДМЕТ „ИНФОРМАТИКА“ ПРЕЗ УЧЕБНАТА 2021/2022 ГОДИНА

Доц. д-р Димитър Атанасов , д-р Красимир Манев , доц. д-р Весела Стоименова , държавен експерт Ралица Войнова

2022 година
Книжка 6
BEST E-LEARNING PLATFORMS FOR BLENDED LEARNING IN HIGHER EDUCATION

Kalin Dimitrov, PhD student, Dr. Eugenia Kovatcheva, Assoc. Prof. “When I wanted to learn something outside of school as a kid, cracking open my World Book encyclopedia was the best I could do. Today, all you have to do is go online.” – Bill Gates

MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Dr. Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Dr. Elena Somova, Prof.

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Dr. Lilyana Petkova, Dr. Vasilisa Pavlova, Assist. Prof.

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Dr. Silvia Gaftandzhieva, Assoc. Prof. , Prof. Dr. Rositsa Doneva , Milen Bliznakov, PhD

READINESS OF UKRAINIAN MATHEMATICS TEACHERS TO USE COMPUTER GAMES IN THE EDUCATIONAL PROCESS

Dr. Alina Voievoda, Assoc. Prof. , Dr. Svitlana Pudova, Assoc. Prof. , Dr. Oleh Konoshevskyi, Assoc. Prof.

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Prof. Dr. Nataliya Hristova Pavlova, Michaela Toncheva

Книжка 4
A COMPARATIVE ANALYSIS OF ASSESSMENT RESULTS FROM FACE-TO-FACE AND ONLINE EXAMS

Dr. Emiliya Koleva, Assist. Prof., Dr. Neli Baeva, Assist. Prof

ДВАДЕСЕТ И ШЕСТА МЛАДЕЖКА БАЛКАНСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Доц. д-р Ивайло Кортезов, Мирослав Маринов

PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Dr. Evgeniya Nikolova, Assoc. Prof., Dr. Mariya Monova-Zheleva, Assoc. Prof., Dr. Yanislav Zhelev, Assoc. Prof.

Книжка 3

CONVERTING NUMERAL TEXT IN BULGARIAN INTO DIGIT NUMBER USING GATE

Dr. Nadezhda Borisova, Assist. Prof., Dr. Elena Karashtranova, Assoc. Prof.

RECOGNITION OF PROBLEMATIC EDUCATIONAL SITUATIONS IN COMPUTER MODELING TRAINING

Dr. Hristo Hristov, Assist. Prof. , Radka Cherneva

EFFECTS OF SHORT-TERM STEM INTERVENTION ON THE ACHIEVEMENT OF 9

Amra Duraković , Senior Teaching Assistant, Dr. Dina Kamber Hamzić , Assist. Prof.

Книжка 2
VOCABULARY ENRICHMENT IN COMPUTER SCIENCE FOR INTERNATIONAL STUDENTS AT THE PREPARATORY DEPARTMENT OF THE UNIVERSITY

Dr. Svetlana Mikhaelis, Assoc. Prof., Dr. Vladimir Mikhaelis, Assoc. Prof., Mr. Dmitrii Mikhaelis

STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Dr. Emiliya Koleva, Assist. Prof., Dr. Evgeni Andreev, Assist. Prof., Dr. Mariya Nikolova, Assoc. Prof.

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

DEVELOPING PROBLEM SOLVING COMPETENCY USING FUNCTIONAL PROGRAMMING STYLE

Muharem Mollov, PhD student , Petar Petrov, PhD student

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, PhD student, Dr. Alexandre Ivanov Chikalanov, Assoc. Prof.

КРИПТОГРАФИЯ И КРИПТОАНАЛИЗ С MS EXCEL

Гл. ас. д-р Деян Михайлов

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Dr. Ivaylo Staribratov, Assoc. Prof., Nikol Manolova

КОНТЕКСТУАЛНО ПРЕКОДИРАНЕ

Доц. д-р Юлия Нинова

ДВУПАРАМЕТРИЧНА ЗАДАЧА ЗА ОПТИМАЛНО РАЗПРЕДЕЛЕНИЕ НА РЕСУРСИ

Проф. д-р Росен Николаев, доц. д-р Танка Милкова

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
КРИВОРАЗБРАНИТЕ ВЕРОЯТНОСТИ ПРИ ТЕСТОВЕ ЗА НАЛИЧИЕ НА ЗАРАЗА

Доц. д-р Маргарита Ламбова, гл. ас. д-р Ваня Стоянова

E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Prof. Dr. Elena Somova

PRESCHOOL TEACHERS’ KNOWLEDGE, PERSPECTIVES AND PRACTICES IN STEM EDUCATION: AN INTERVIEW STUDY

Dr. Lyubka Aleksieva, Assoc. Prof., Prof. Dr. Iliana Mirtschewa, Snezhana Radeva, PhD Student

КОНКУРСНИ ЗАДАЧИ БРОЙ 6/2021 Г.

Краен срок за изпращане на решения: 20 януари 2022 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg. Скъпи прияте

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ

Задача 1. Число, което е точен квадрат на естествено число, се записва с няколко единици и една двойка. Докажете, че това число се дели на 11. Решение. Нека е такова число. Можем да го запишем като

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Доц. Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj , Prof. Dr. Sead Rešić , Anes Z. Hadžiomerović , Samira Aganović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Prof. Olha Matiash, Dr. Liubov Mykhailenko, Prof.Vasyl Shvets, Prof. Oleksandr Shkolnyi

КОНКУРСНИ ЗАДАЧИ БРОЙ 5/2021 Г.

Краен срок за изпращане на решения: 20 ноември 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в електр

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 4, 2021 Г.

Задача 1. Намерете всички взаимно прости естествени числа a и b, за кои- то .

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Assoc. Prof. Silvia Gaftandzhieva, Prof. Rositsa Doneva, Assist. Prof. George Pashev, Mariya Docheva

КОНКУРСНИ ЗАДАЧИ БРОЙ 4/2021 Г.

Краен срок за изпращане на решения: 10 октомври 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в елект

РЕШЕНИЯ НА КОНКУРСНИТЕ ЗАДАЧИ БРОЙ 3, 2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели . Решение. От тъждеството

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

MIDLINES OF QUADRILATERAL

Prof. Dr. Sead Rešić, Prof. Dr. Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Д-р Севдалина Георгиева

КОНКУРСНИ ЗАДАЧИ БРОЙ 3/2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели .

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 2, 2021 Г.

Задача 1. В равнината са дадени точка A и окръжност k с център O. Наме- рете геометричното място на центровете на описаните окръжности на три- ъгълници ABC, където BC е диаметър на k. Решение. Ако точката A лежи на окръжността k, то всички триъгълници ABC имат център на описаната окръжност точка O. В този случай търсеното множество е точката O. Нека A е външна за окръжността. Да разгледаме диаметър на k, който е перпендикулярен на AO. Центърът на описаната окръжност за е точ- ка S върху

В ПАМЕТ НА ПРОФ. ДОРУ СТЕФАНЕСКУ

С чувство за голяма загуба съобщаваме на нашите читатели, че на 09.05.2021 година на 69-годишна възраст напусна този свят членът на редакционния съ- вет на списание „Математика и информатика“ проф. д.м.н. Дору Стефанеску. Отиде си един уважаван румънски учен математик, старши заместник-пред- седател на Румънското математическо общество и изпълнителен редактор на Бюлетина на това общество, трикратен президент на Математическото обще- ство на Югоизточна Европа. Математическите способности на

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Задача 1. Да се реши в естествени числа уравнението:

Задача 3. Положителните числа x, y, z, α , β и γ удовлетворяват равен- ствата:

+ += и 2 cos cos cosx y z xy yz zx ++= + + Да се докаже, че от отсечки с дължини x, y и z може да се построи триъгъл- ник с ъгли , и . Решение. От равенството 0 2 cos cos cos sin sin cos cosx y z xy yz zx y z y z x =++− + + = − + + −

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

КОНКУРСНИ ЗАДАЧИ БРОЙ 1/2021

Задача 1. Да се реши в естествени числа уравнението: 5 10 2 nn−+= Задача 2. За положителните числа a, b, c и d е изпълнено равенството 1abcd+++ = . Да се докаже, неравенството: 1 18abcd abcd +++ + ≥

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

В ПАМЕТ НА НИКОЛАЙ ХРИСТОВИЧ РОЗОВ 20.02.1938 – 02.11.2020

С голямо прискърбие посрещнахме вестта, че известният математик, високо еру- дираният образователен деятел и член на редколегията на българското списание „Ма- тематика и информатика“ проф. Николай Христович Розов вече не е сред нас. Неочак- ваната смърт го застигна на поста декан на

КОНКУРСНИ ЗАДАЧИ БРОЙ 6

Задача 1. В турнир участвали 799 отбора, като всеки два отбора изиграли по една среща помежду си (всяка среща завършва с победа на единия то двата отбора). Да се докаже, че има 14 отбора, така че всеки от първите 7 отбора е победил всеки от последните 7.

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Вписаната в ∆ABC окръжност се допира до страните AB, BC и CA съответно в точки P, Q и R. Ъглополовящата на ъгъла при върха C пресича PQ в точка S. Да се докаже, че правите AS и RQ са успоредни. Задача 2. Естественото число n се нарича хубаво, ако множества {1, 2, 3,..., п} може да се разбие на k непресичащи се множества така, че всяко от множест- вото да съдържа средното аритметично на елементите си. Намерете всички хубави числа за k = 2 и k = 3. Задача 3. Намерете всички функци

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека . Да се намери сумата на всички ес- тествени числа от интервала , за които се дели на . Росен Николаев и Танка Милкова, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2019

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа , които са решения на уравнението Милен Найденов, Варна Решение: eдно множество от решения на разглежданото уравнение се описва със следните формули: , , където Задача 2. Средите на диагоналите и на изпъкналия четириъгъл- ник са съответно и , а пресечната им точка е . Ако втората пресечна точка на описаните около триъгълниците и окръжнос- ти е и , да се докаже, че правата с

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Равнобедреният трапец има основи с дължини и , като е такъв, че средите на страните му са върхове на квадрат. Ако дължината на бедрото на е , а разстоянието от пресечната точка на диагоналите му до бедрата е , да се докаже, че . Милен Найденов, Варна

( ) ( ) ( ) 2sin 2019 2 cos 2019 2 2 3 10, 25x x xx + = −+

Решение: тъй като , т.е. когато

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. По пътя между два града има три тунела с обща дължина 2 ки- лометра и 900 метра. Разликата в дължините на втория и третия е 20 пъти по-малка от дължината на първия тунел. Общата дължина на втория и третия е с 500 метра по-голяма от дължината на първия. Да се намерят дължините на трите тунела, ако третият тунел има най-малка дължина. Сава Гроздев, София и Веселин Ненков, Бели Осъм Задача 2. Да се докаже, че във вписан в окръжност четириъгълник е изпълнено неравенството . Хаим Хаи

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2019

Задача 1. Да се намерят всички тройки естествени числа, които са дължи- ни в сантиметри на ръбовете на правоъгълен паралелепипед с телесен диаго- нал . Христо Лесов, Казанлък Решение. Нека са дължините в сантиметри на ръбовете на правоъгълен паралелепипед с диагонал . Изпълнено е равен- ството . Оттук имаме . Следо- вателно . Затова , т.е. . От друга страна, , което означава, че . Затова , т.е. . По този начин получихме, че . Като направим необходимите проверки при

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадени са системите линейни уравнения

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4

THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3

RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina,Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

2019 cm

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Mихаил Aлфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казваме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са проти- воположни върхове на правоъгълник , да се намери броят на пътищата, свързващи и , по които мухата може да мине, когато: а) и n = 6; б) и ; в) m и са произволни естествени числа.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2018

Задача 1. Да се докаже, че: а) се дели на ; б) се дели на . Христо Лесов, Казанлък Решение на Златка Петрова от Ямбол: а) От дефиницията за факториел имаме . Оттук очевидно следва, че разглежданото число се дели на . б) Лесно се проверява, че е просто число. Затова от теоремата на Уилсън следва, че . Сега, като вземем предвид, че , получаваме което доказва твърдение б).

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2017

Задача 1. Да се реши в естествени числа уравнението , ако: а) ; б) . Тодор Митев, Русе Решение: а) . Първо да отбележим следните две твърдения: 1) най-големият общ делител на и е или за всяко цяло . Това твърдение следва непосредствено от равенството ; 2) ако е просто число и дели , то дели . Това твърдение се доказва по следния начин. От условието

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички тройки естествени числа , за кои- то е изпълнено равенството: а) ; в) Христо Лесов, Казанлък

Решение: а) 11 1 1 1 1 nx x x x kx x x x ′ ′ − + − +−  −  = = = =   − −   .

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2017 Г.

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между местата на пър- вата и втората среща е . Ако автомобилът се движи с по-бавно, то той ще срещне първия мотоциклет след тръгването си, а разстоянието между местата на двете срещи ще бъде . Определете разстоянието , ако скоро

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2017

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големи- на кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най- много 300 ореха. Иван събрал в кошницата си известно количество оре- хи и ги преброил по три начина: когато ги вземал по два, накрая оставал един, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три. Тъй като на Иван му харесало числото с тез

Книжка 1
„Децата не разбират това, което четат, и

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ε

2015! 2016! 2017++

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2.

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДАЧУ

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH MODIFIED DICE

Aldiyar Zhumashov

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши в естествени числа уравнението x )!63(1  , ако: а) ; б) . Тодор Митев – Русе

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2017

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което приема най-малка стойност. Христо Лесов – Казанлък Решение: съгласно малката теорема на Ферма за всяко естествено чис- ло и просто число , числото се дели на , т.е. дава оста- тък при деление на . Тъй като е просто число, от тази теорема следва, че дава остатък при деление на и дава остатък

Книжка 5
SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Слави Харалампиев и Румяна Несторова, Враца

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2016

Задача 1. Върху правата е взета произволна точка . Точките

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг съответно автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между места- та на първата и втората среща е . Ако автомобилът се движи с

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2016

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едновременно . Може ли да се приложи това действие краен брой пъти, така че всички числа в таблицата да станат различни, а сумите по всич- ки редове и всички стълбове да са равни? Може ли сумите на числата по диа- гоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Решение: прилагаме действието към единия диагонал

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големина кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най-мно- го 300 ореха. Иван събрал в кошницата си известно количество орехи и ги преброил по три начина: когато ги вземал по два, накрая оставал един орех, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три ореха. Тъй като на Иван му харесало бро

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2016 Г.

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния Решение. Нека е дискриминанта- та на квадратното спрямо уравнение . Сле- дователно . Оттук получаваме равенството . Предполагаме, че

Книжка 2
NDM-PHILOSOPHY OF EDUCATION IN THE 21

Marga Georgieva, Sava Grozdev

ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се определи дали съществуват естествени числа n и k, при които стойността на израза 2017 + 3 + 4 e: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2016

Задача 1. Редицата на Фибоначи се дефинира с равенствата и . Да се докаже, че всяка от редиците и съдържа безброй много двойки съседни членове, които се де- лят на . Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: в началото ще докажем следната Лема. За всяко числата на Фибоначи притежават свойствата: а) последната цифра на числата и е ; б) последната цифра на числата , , и е ; в) последната цифра на числата , , и е .

Книжка 1
ЗАНИМАТЕЛНИТЕ ЗАДАЧИ НА ПОАСОН И МЕТОДЪТ НА ПЕРЕЛМАН ЗА ТЯХНОТО РЕШАВАНЕ И ИЗСЛЕДВАНЕ

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров

ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което най-малка стойност. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2016

Задача 1. За всяко естествено число да се намери растяща редица от естествени числа , , , , , за които е изпълнено равенството Христо Лесов, Казанлък Решение: от условието имаме Затова , , , , и , , .

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Върху правата е взета произволна точка . Точките и лежат в една полуравнина спрямо и са такива, че и са равностранни. Ако е петата на перпендикуляра, спуснат от към , да се намери геометричното място на точката , когато описва . Ксения Горская, Дарья Коптева, Даниил Микуров – Архангелск, Русия

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1/2016

Задача 1. Целочислените редици и са дефинирани чрез равенствата , , , , при . а) Да се докаже, че за всяко цяло число точно едно от числата , и б) Да се определят целите числа , за които и са взаимно прости числа за всяко естествено число . Христо Лесов – Казанлък Решение: дадените рекурентни равенства представяме по следния на- чин: вателно

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едно- временно . Може ли да се приложи това действие краен брой пъти така, че всички числа в таблицата да станат различни, а сумите по всички редове и всички стълбове да са равни? Може ли сумите на числата по диагоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Задача 2. В окръжност с център е вписан разност

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2015

Задача 1. Дадена е функцията , където m, n, ∈ℕ. Ако и са корените на уравнението и е изпълнено

Книжка 4
ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2015

Задача 1. Да се намери сборът от корените на уравненията и . Милен Найденов, Варна Решение. Разделяме двете страни на първото уравнение на и полу- чаваме . Полагаме и уравнението добива вида . Тъй като функцията е растяща (лявата графика на чертежа), то уравнението ално решение . С непосредствена проверка се вижда, че това решение е . Оттук намираме, че е единственото решение на първо- то уравнение. След това разделяме двете страни на второто уравнение на

Книжка 3
{}

Сава Гроздев – София, и Веселин Ненков – Бели Осъм

()

След заместване на намерените две неравенства в дясната страна на . Равенство се достига тогава и само тогава,

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. За всяко естествено число n да се намери растяща редица

()

Задача 2. Нека P е произволна точка от описаната окръжност на на . Ако докаже, че точките лежат на една права. Хаим Хаимов, Варна, и Веселин Ненков, Бели Осъм Решение. Ще докажем, че правите ра на описаната около окръжност . Оттук непосредствено следва

Книжка 1
()

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

{}

2n ≥

()()

.

2015 година
Книжка 6
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадена е функцията , където ,mn∈ . Ако x и x са корените на уравнението f (x) = 0 и е изпълнено (2) (3)ff t xx xx −− ==∈ +  , да се намерят m и n. Росен Николаев, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2015

Задача 1. Параметрите a и b в уравнението 5x + 2x + 4ax  x + 2bx + 4b  a = 0 са такива, че то има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: Тъй като 1 и 2 са корени на даденото уравнение, то след заместване в уравнението се получават съответно равенствата: 5a+2b = 4 и 31a+8b = 188. След решаване на получената система от две уравнения с две неизвестни се полу- чава: a = 4 и b = 8. Заместваме на

МАТЕМАТИКА И ИНФОРМАТИКА MATHEMATICS AND INFORMATICS

BULGARIAN EDUCATIONAL JOURNAL ANNUAL CONTENTS / ГОДИШНО СЪДЪРЖАНИЕ

Книжка 5
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери сборът от корените на уравненията 3.2 8.3 159000 += и 32.11 56697728 x += . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2014

Задача 1. Да се намерят всички рационални стойности на параметъра k, за които уравнението ( ) ( ) , 10k ≠ притежава цело- числени корени. Милен Найденов, Варна Решение: Ако x и x са корените на уравнението, то 2 21 1 2 10 10 k xx kk - + = =- -- е цяло число. Затова 1 10 p k = - е цяло. Оттук получаваме 10 1p k p + = . За дискри- минантата D на уравнението намираме 6 24p D p -- = . Тъй като D трябва да е точен квадрат, то 6 24pn- -= за някое цяло число n. Последното равен

Книжка 4
Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова СОУ „Панайот Волов“ – Шумен ОУ „Никола Йонков Вапцаров“ – Асеновград

МОДИФИКАЦИЯ МЕТОДА ПРОЕКЦИЙ ВЬIЧИСЛЕНИЯ РАССТОЯНИЯ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЬIМИ

Владимир Жук Республиканская специализированная физико-математическая средняя школа-интернат имени О. Жаутыкова

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2014

Задача 1. Намерете всички естествени четирицифрени числа uxyv , за които са изпълнени равенствата и . Милен Найденов, Варна Решение: Събираме почленно равенствата и получаваме . Оттук следва равенството ( ) ( )( ) 1 1 1 12xy uv− −+ − −= . Последното равенство е изпълнено при ( ) 1 11 xy − −= и ( )( ) 1 11uv− −= ; ( ) 1 12xy− −= и ( )( ) 1 10uv− −= ; ( ) 1 10xy− −= и ( )( ) 1 12uv− −= . Оттук лесно се вижда, че търсените числа са: 2222, 5231, 1235, 3152, 3512, 5321, 1325,

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

Contest Problems Конкурсни задачи Рубриката се води от доц. д-р Веселин Ненков КОНКУРСНИ ЗАДАЧИ НА БРОЯ Задача 1. Параметрите a и b са такива, че уравнението 5x

Задача 1. Параметрите a и b са такива, че уравнението 5x + 2x + 4ax - x + 2bx + 4b  a = 0 има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2014

Задача 1. Ако a  3 е нечетно число и k 2 е естествено число, да се намери остатъкът от делението на a с . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: Означаваме с r търсения остатък. При k = 2 е изпълнено равенството . Тъй като , то . Сега от равенството се получава , къ- дето M е цяло число. Ако k = 2l, l k = 2l + 1, l . В този случай получаваме, че . Разглеждаме случая, при който k = 3. От рела- циите и

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички рационални стойности на параметъра , за които уравнението притежава це- лочислени корени. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2014

Задача 1. Да се докаже, че за произволен триъгълник със страни a , и c е изпълне- но неравенството Йонуц Иванеску, Крайова, Румъния Решение: Ако , R и са съответно лицето, радиусът на описа- ната окръжност и полупериметърът на триъгълника, то са изпълнени следните релации: и . От двете равенства лесно се вижда, че разглежданото неравенство е еквивалентно с , което съвпада със споменатото неравенство.

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев СОУ „П. Волов“ – Шумен

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални стойности на a, b и c, при които коре- ните на уравнението 10x a b c x ab bc ca++++ +++= са цели числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2013

Задача 1. Да се намерят всички реални функции : 1, 1,fx +∞ → +∞ , за които при и 0y > е изпълнено равенството fx fx= . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния Решение: Нека 1 log ln ye x == . Тогава fx fx fe== . Полагаме 1fe a => . От условието получаваме a fe fx== , откъдето fx a = . Освен това . Затова, като положим α , получаваме, че търсените функции са fx x = за всички α .

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

УРОК ЗА ИЗПОЛЗВАНЕ НА ФУНКЦИИ В ЗАДАЧИ ПО ИКОНОМИКА

Петя Сярова СОУ „Васил Левски“ – Ямбол

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете цифрите , , и в десетична бройна система, ако е изпълнено равенството . Йон Патралику, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2013

Задача 1. Да се намерят всички наредени тройки от реални числа , за които са изпълнени неравенствата: 2 2 2 28, 6, 3 8.

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова Образцова математическа гимназия „Акад. Кирил Попов” „Колкото човек е по-близо, толкова по-малко вижда“ Зрителна измама, филм на Луи Летерие

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете всички естествени четирицифрени числа , за които са изпълнени равенствата и . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2013

Задача 1. а) Покажете, че ако , то 9 3 15xx x+ +≥ . б) Намерете реалните стойности на , при които за всички , , 1,abc∈ − +∞ , е изпълнено неравенството 31a b c a b c kabc + + + + + +≥ ++ . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: а) Разглежданото неравенство е еквивалентно с 13 1 0 xx + −≥ , което е очевидно при . б) От а) следват неравенствата 9 3 15aa a+ +≥ , 9 3 15bb b+ +≥ и 9 3 15cc c+ +≥ . След почленно събиране получаваме 5 31 3 a b c a

Книжка 2
ФРАКТАЛЬНЫЕ МЕТОДЫ В ФИЗИКЕ

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

ANALYSIS OF PROBLEM SOLVING IN INFORMATICS FOR 12 – 13 YEAR OLD STUDENTS IN BULGARIA

Ivaylo Staribratov, BistraTaneva High School of Mathematics „Akad. Kiril Popov“

МОДЕЛ ЗА РЕШАВАНЕ НА ЕДИН КЛАС ЗАДАЧИ ЗА ПОСТРОЕНИЕ С ДИНАМИЧЕН СОФТУЕР

Ваня Бизова-Лалева Национална търговска гимназия

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако a ³ 3 е нечетно число и k ³ 2 е естествено число, да се намери остатъкът от делението на a с .

Contest Problems Конкурсни задачи РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2013

24 24 2 2 .2 8. 2 8.1024 8. 1000 1 8.10 . 1 23. 1000 1000     == = = + > + =         557 500 3 8.10 . 1 8.10 . 1 8.10 . 12.10 10.10 10 1000 1000 2  = +> += = > =  

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев СОУ „Панайот Волов“

ЕДНО ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ПИТАГОР В ИЗВЪНКЛАСНАТА РАБОТА ПО МАТЕМАТИКА

Румяна Несторова Регионален инспекторат по образованието - Враца

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

ЕДИНАДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

Иван Держански Българска академя на науките

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че за произволен триъгълник със страни a, b и c е из- пълнено неравенството (a+b+c) (2b c + 2c a + 2a b - a - b - c ) £ 27a b c . Йонуц Иванеску, Крайова, Румъния Задача 2. Ако M е множеството на всички равнобедрени триъгълници, стра- ните и лицето на които са естествени числа, да се намерят три триъгълника от M, различните страни на които са последователни естествени числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2013

Задача 1. Реалните числа , , , и са такива, че:

2013 година
Книжка 6

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални функции f (x) : (1, + ) (1, + ), за които при x > 1 и y > 0 е изпълнено равенството f (x ) = (f (x)) . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2013

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата 3 cos cos cos 3 1 216 abc abc abc abc ⎡⎤ ++ ++ −≤++< − ⎢⎥ ⎢⎥ ⎣⎦ .

MATHEMATICS AND INFORMATICS

ГОДИНА LVI / VOLUME 56, 2013 ГОДИШНО СЪДЪРЖАНИЕ / ANNUAL CONTENT СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 96 КНИЖКА 2 / NUMBER 2: 97 – 200 КНИЖКА 3 / NUMBER 3: 201 – 296 КНИЖКА 4 / NUMBER 4: 297 – 400 КНИЖКА 5 / NUMBER 5: 401 – 496 КНИЖКА 6 / NUMBER 6: 497 - 608

Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички наредени тройки от реални числа (x, y, z), за които са изпълнени неравенствата:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2012

Задача 1. За всяко реално число x означаваме с [x] най-голямото цяло число, което е по-малко или равно на x. Да се намерят всички прости числа p, за които числото е просто.

GUIDE FOR AUTHORS

Mathematics and Informatics Journal publishes scientifi c, scientifi c-popular, review and information materials. Papers of scientifi c character should report original research and ideas inspected through expert evaluation by two anonymous and independent referees. It is recommended that the manuscripts are sent as attachment fi les to the following addresses mathinfo@azbuki.bg and sava.grozdev@gmail.com. Disks or other electronic devices are admissible too and in such a case the postal a

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. а) Покажете, че ако , то 9315xx x++≥ .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2012

Задача 1. Да се намерят всички положителни числа x, y и z, за които е изпълнено равенството . Сава Гроздев, София, Веселин Ненков, Бели Осъм Решение: Тъй като 13 = 2197, 2.11 = 2662 и 3.9 . 2187, то x 12, y 10 и z 8. Освен това x и z имат различна четност. Така с непосредствена проверка се вижда, че когато z = 1,3,5,7 при x = 2,4,6,8,10,12 и z = 2,4,6,8 при x = 1,3,5,7,9,11, само x = 2, y = 10, z = 1 е решение на даденото уравнение.

Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се сравнят числата Йонуц Иванеску, Крайова, Румъния Задача 2. Точките E и F са среди съответно на диагоналите AC и BD на чети- риъгълника ABCD. Ако BAE ADE= и , да се докаже, че симе- дианите на триъгълниците ABC, BCD, CDA и DAB съответно през върховете B, C, D и A се пресичат в една точка. Хаим Хаимов, Варна Задача 3. Вписаната в окръжност се допира до , и AB съот-

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2012

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния Решение: Изпълнени са равенствата ! 1! 1 1! 1 !! np Sp C p np + =− +=− +=

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Реалните числа , , , и са, такива че:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2012

Задача 1. Да се намерят всички естествени числа aa a bb b  , за които е изпълнено равенството aa a bb b aa a bb b=   . Николай Белухов, Стара Загора Решение: Нека A aa a=  и B bb b=  . От условието следва равенството .10 . A B AB+= , откъдето .10 1 . A AB =− . Тъй като , 11AA −= , то 1|10 A − , откъдето 1 1 2 .5 AA− += . Ако числата 1A − и 1A + са едновременно нечетни, то , а 1A − и 1A + са степени на петицата с разлика две, което е невъзможно. Остава само възмо

Книжка 1
70-ГОДИШЕН ЮБИЛЕЙ

Навършиха се 70 години от рождението на изтъкнатия български математик проф. дмн Генчо Скордев. Юбилярът е член-кореспондент на БАН и дългогодишен главен редактор на сп. „Математика и информатика“. По този повод е следващият материал, в който авторът разказва свои спомени с исторически характер, свързани с активното му участие в образователните процеси в България по математика и информатика.

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2012

Задача 1. В множеството на реалните числа е дефинирана бинарна опера- ция :⊗ ×→  , където : \0=  , която условно ще наричаме умножение и такава, че за всеки три реални числа , и , където , е в сила ра- венството .ac a bc b ⊗⊗= . Ако е известно, че , да се пресметне 2011 2012 2011 2012⊗⊗⊗ . Живко Желев, Стара Загора Решение: Първи начин (авторско решение). Нека . Тогава .1 11 1 a ata a⊗= ⊗ ⊗ = = . Оттук получаваме 2012. 1 2012 2012 2012 2012 2012 t tt=⊗=⊗ ⊗= =

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2012

Христо Лесов, Казанлък

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

доц. д–р Иван А. Держански (ИМИ–БАН) Десетата Международна олимпиада по лингвистика (МОЛ) се проведе в Любляна (Словения) от 30 юли до 3 август 2012 г. В нея взеха участие 131 ученици, съставящи 34 отбора от 26 страни. За първи път свои състезатели изпратиха Гърция, Китай, Израел, Унгария и Япония. Бяха представени също Австралия, Бразилия, България, Великобритания, Германия, Естония, Индия, Ирландия, Канада, Латвия, Нидерландия, Полша, Румъния, Русия, САЩ, Сингапур, Словения, Сърбия, Чехи

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПР ОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички положителни числа , и , за които е из- пълнено равенството Сава Гроздев, София, Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2011

Задача 1. Да се докаже, че за всяко цяло положително число уравнението има безброй много решения в цели положителни числа

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2011

Задача 1. Едно цяло положително число n ще наричаме “интересно”, ако може да бъде записано във вида , където са цели поло- жителни числа и , а дели c . Да се докаже, че само краен брой цели положителни числа не са “интересни” и да се намери сумата им. Решение: 1) Нека , то тересно”. Остава да отбележим, че , и не са “интересни”. 2) Нека

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2011

Задача 1. На страните AB и на успоредника външно за

Книжка 3
НАЦИОНАЛЕН КОНКУРС „МЛАДИ ТАЛАНТИ” 2012

Георги Дянков През месец май 2012 се проведе финалният кръг на Националния конкурс „Млади таланти”. Състезанието се организира от МОМН и приема разработки на научни проекти от ученици в гимназиален етап и студенти първи курс. Участниците предста- виха свои авторски проекти в различни научни области – естествени науки, социални науки и комуникационни и информационни технологии (ИКТ). Състезанието тази година се отличи с много добри проекти и журито имаше нелеката задача да избере най-добри

СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички естествени числа aa abb b , за които е изпълнено равенството

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2011

Задача 1. Да се определят стойностите на параметъра a, за които уравнението log sin 2011 cos 2011tg x cotg x a x x += + има решение и да се реши уравнението за най-малката от намерените стойности на параметъра. Христо Лесов, Казанлък Решение (Христо Лесов): Изпълнени са следните релации: π αα α за всяко и 2 2 sin 2 tg cotg += ≥ за

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2011

Задача 1. Ако , е цяло положително число, да се докаже, че съществуват безброй много цели положителни числа нено равенството . Веселин Ненков, Бели Осъм Решение (Светлозар Дойчев): Като използваме, че за произволно цяло число

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МЕЖДУНАРОДНИ КОНКУРСИ ЗА РАЗРАБОТВАНЕ НА ПРОЕКТИ

І.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕза ученици, ІІ.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕ за учители

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева

КОНКУРСНИ ЗАДАЧИ

Рубриката се води от Светлозар Дойчев, и Веселин Ненков