Математика и Информатика

https://doi.org/10.53656/math2023-6-3-the

2023/6, стр. 596 - 606

THE CONSTRUCTION OF VALID AND RELIABLE TEST FOR THE DIVISIBILITY AREA

Daniela Zubović
OrcID: 0000-0002-4076-3075
E-mail: dzubovic@pmf.unsa.ba
Faculty of Science University of Sarajevo
Zmaja od Bosne 33 –35
71 000 Sarajevo Bosnia and Hercegovina
Dina Kamber Hamzić
OrcID: 0000-0003-4846-2733
E-mail: dinakamber@pmf.unsa.ba
Faculty of Science University of Sarajevo
Zmaja od Bosne 33 –35
71 000 Sarajevo Bosnia and Hercegovina

Резюме: Understanding divisibility at the primary school level is a strong predictor of students’ mathematical achievements in secondary e ducation. To correctly measure students’ understanding and achievements, a valid and reliable test is needed. This research focuses on the construction of valid and reliable test for the divisibility area studied at the primary school level. After constructing three pilot tests according to learning outcomes and standards for divisibility, and qualitative validation, tests were distributed in six primary schools, with 380 participating students (ages 12 – 13). The results were used for reliability and quantitative item analysis, and the final version of the test, which covered standards of students’ achievement and had all items of appropriate difficulty and discriminative validity, was created. This test can be used by mathematics teachers in classrooms but also in large scale testing, like state or international testing.

Ключови думи: divisibility; primary school; reliability; test instrument; validity

1. Introduction

The concept of divisibility is the most important one in the elementary number theory. According to studies (Siegler et al. 2011) and (Ellis et al. 2018), there is a very strong correlation between the knowledge of divisibility that students gain in primary school and students’ mathematical achievements in secondary school. Rules of divisibility are important for understanding factorization, fractions, and prime numbers. In (Roscoe & Feldman 2016) it was noticed the advantage of factorization into prime numbers as a conceptually rich tool for understanding divisibility. In (Young-Loveridge & Mills 2012) it is reported how students’ understanding of the rules of divisibility affects their deeper understanding of multiplication and division of integer numbers. In (Lo 2020) it was emphasized that numbers and operations with numbers are the most common mathematical content in primary school and problematizes solving textual problems in this area.

The efficiency of teaching and learning has to be tested to see how the teaching improved students' knowledge and skills (Simanjuntak et al. 2019). A test can be conducted in a simple classroom context or as a part of a large international research (Broadfoot & Black 2004). Testing serves as a means of communication between the world of education and the wider social community, and for the consequences of testing to be acceptable to society, the results of testing must be trustworthy (Broadfoot & Black 2004). In order to achieve that, tests have to be valid, reliable, sensitive and with appropriate difficulty levels (Simanjuntak et al. 2019).

The goal of this research is to develop a valid and reliable test for the divisibility area studied in primary school. This paper describes the development of the test according to learning outcomes and standards of students’ achievements, its pilot testing and test and item analysis. The created test allows one to measure achievements in the area of divisibility at the micro-level – in a classroom, but also at the state level or even within the frame of international testing. At the moment of writing this paper, the authors have not found a similar test instrument for the divisibility area.

1.1. Divisibility Area in Primary School

In order to ensure progress and monitoring of trends in education in the world the Agency for Pre-Primary, Primary and Secondary Education in Bosnia and Herzegovina (APOSO) defined eight educational areas, and one of them is the mathematics area \({ }^{2}\). In 2015, APOSO created the Common core curriculum for the mathematics area defined on the learning outcomes. The Common core curriculum for the mathematics area consists of four fields: Numbers, sets, and operations; Algebra; Geometry and measurement; Data and probability \({ }^{3}\). Every field has two or three components which consist of learning outcomes and indicators. Indicators are defined according to the child’s age: for the end of pre-primary education, end of the third grade of primary school, end of the sixth grade of primary school, end of the ninth grade of primary school and end of secondary education.

In Bosnia and Herzegovina, students learn about divisibility in the sixth grade, within the field of Numbers, sets, and operations, so the rest of this paper will focus on this field and this grade. The field Number, sets, and operations has two components (Sets, numbers and numeral systems, and Arithmetic operations), and four basic learning outcomes \({ }^{3}\) :

1. The student analyzes the properties and relationships of sets in different forms of representation and applies them when solving problem tasks.

2. The student analyzes the properties and relationships of numbers and numeral systems and uses symbols and different representations.

3. The student selects and combines strategies, methods, and operations to solve problems and provides solutions in the context of the problem.

4. The student evaluates the justification and precision of the chosen strategies, methods, operations, and obtained solutions, and discusses the final solution in the context of the problem.

Each of these learning outcomes has indicators according to the child’s age. For example, one indicator for outcome 3 at the end of sixth grade is "The student applies divisibility tests for positive integers with \(2,3,4,5,6\) and 10 (LCM, GCD)" \({ }^{3}\).

In 2012, APOSO published standards for native language, mathematics and science for the end of third and sixth grade \({ }^{1}\). Standards of students' achievements are classified into low, medium and high level standards. There are 16 standards that are related to divisibility and the application of divisibility for the end of the sixth grade: two low level standards (in the rest of this paper, they will be coded as 1 LL and 2 LL ), six medium level standards (codes \(1 \mathrm{ML}, 2 \mathrm{ML}, \ldots, 6 \mathrm{ML}\) ), and eight high level standards (codes \(1 \mathrm{HL}, 2 \mathrm{HL}, \ldots, 8 \mathrm{HL}\) ). These standards can be seen at the link in NOTES \({ }^{4}\).

1.2. Validity and Reliability of Test

It is impossible to imagine learning and teaching without adequate testing and measurement. In order for the measurement to be of high quality, the test must be reliable.The test is reliable if one can trust that it will give the same or very similar results each time it is used with the same subject and one can rely on its results when making inferences (Husremović 2016). Test reliability refers to the consistency of results one gets from testing.

The most used measure of test reliability is Cronbach’s alpha, which measures the internal consistency of a test and is expressed as a number between 0 and 1. The internal consistency describes the extent to which all questions on the test measure the same construct and is related to the interconnectedness of the items in the test (Tavakol & Dennick 2011). It is commonly used that the acceptable value of Cronbach’s alpha is 0.70. The lower value of Cronbach’s alpha indicates there are not enough items on th e test, the items are poorly connected or the measured construct is heterogeneous. The value of Cronbach’s alpha that is too high (>0.90) indicates that the test contains redundant items and can be shortened (Tavakol & Dennick 2011).

Reliable results however do not guarantee that the test measures what it is supposed to measure (Darr 2005a). The most important characteristic of test instruments is their validity, which, to put it simply, is the degree to which a test measures what it is intended to measure (Husremović 2016). There is content validity, construct validity, criterion validity and consequential validity (Darr 2005b). If one wants to determine whether students achieve desired learning outcomes, content validity should be considered. Content validity indicates the compatibility of the test content and the content of learning. It is usually verified qualitatively, in a way that a panel of experts gives its opinion on the relevancy of the test and whether the items are clear, understandable and solvable (Husremović 2016). To quantitatively analyze the content validity, one uses quantitative item analysis and determines item sensitivity parameters like difficulty and discriminative validity (Husremović 2016).

Item difficulty index \((P)\) is determined after the test has been administered, tests are marked and participants are ranked according to their total test score. One-third of the participants make the “higher” group – those are the participants with the best scores. One-third of the participants, with the lowest scores, make the “lower” group. Item difficulty index is then calculated according to the formula

\[ P=\tfrac{H+L}{N} \cdot 100 \] where \(H\) is the number of correct answers on that item in the “higher” group, \(L\) is the number of correct answers in the “lower” group and \(N\) is the total number of all answers (correct and incorrect ones) on that item in both groups (Patel 2017). Items with index difficulty \(P \lt 30 \%\) are considered too difficult, items with an index between \(30 \%\) and 70\% are acceptable (difficulty index between 50% and 60% is considered an ideal one), and items with index \(P \gt 70 \%\) are considered too easy (Patel 2017).

Item sensitivity or discriminative validity indicates how much that item differentiates the students according to what the test measures. The extreme groups’ method is one way to determine discriminative validity (Husremović 2016). Participants are ranked according to their total test scores and the results of the “higher” and the “lower” thirds are observed. Item discrimination index () is calculated using the formula:

\[ d=2 \cdot \tfrac{H-L}{N} \]

where \(H\) is the number of correct answers on that item in the “higher” group, \(L\) is the number of correct answers in the “lower” group and \(N\) is the total number of all answers on that item in both groups(Patel 2017). Items with a discrimination index \(d \leq 0.2\) have poor discriminative validity, items with a discrimination index between 0.21and0.24are acceptable, items with an index between 0.25 and 0.35 are goodand items with a value of index \(d \geq 0.36\) are excellent (Patel 2017). 2. Methodology 2.1. Participants

380 students from six primary schools in Sarajevo (ages 12 – 13) participated in this research. Since at the time of the research they were minors, consent for conducting the research was requested and obtained from the Ministry of Education, as well as consent from the management of the schools where the research was conducted. Participating students had 45 minutes for the test and they did it in the presence of their mathematics teacher and the first author of this paper

2.2. Tests

Three tests (Test 1, Test 2, and Test 3), with 12 items each, were created for the needs of this research. Each of these tests had two variants (Test 1-A and Test 1B, Test 2-A and Test 2-B, Test 3-A and Test 3-B). Tests 1-A and 1-B had the same items but in a different order. The same holds for Tests 2-A and 2-B, and Tests 3A and 3-B. This is a methodology APOSO uses inits testings, and the idea is that all items should be in the first half of some variant of the test (so that it does not happen that some item is poorly done just because it is at the end of the test). Within one class, participating students were not given the same test, i.e., within one class all three tests, Test 1, Test 2 and Test 3, were distributed.

The selection of items in the tests according to which standards they belong was as follows: there was one item for each standard of low (two standards) and medium level (six standards), and there were four items for different standards of high level. One item for each standard of high level was not chosen, because then the test would have 16 items, and half of them would be high-level items, i.e., more difficult items. Therefore, the test would not be suitable for use in a 45-minute school lesson. When creating the tests, approved literature for the curriculum according to which the students attend classes was used.

2.3. Qualitative Validation

The tests were reviewed by three experts: two university professors, of which one was an expert in number theory and the other in geometry and mathematical education, while the third expert was a mathematics teacher who worked several years in a state education agency. Experts suggested changing the wording in some items, in order to make them clearer. After changes in wording, tests were administered in schools.

2.4. Results and Discussion

The goal of this research was to create a reliable and valid test that would correspond to standards in divisibility. Out of 36 items appearing in three tests, 12 items that give the best validity and reliability had to be chosen. In addition to the results obtained from the quantitative item analysis, the criterion of representation of the selected standards also had to be met. For the quantitative analysis, the statistical software SPSS Statistics 20.0.0 was used.

Participants’ tests were reviewed and each item was scored with 1 or 0 points, depending on whether they were done correctly or not. In total, 128 participants were given some variant of Test 1, 127 participants were given some variant of Test 2 and 125 were given some variant of Test 3. Since both variants of Test 1 had the same items, only in a different order, during the analysis the order of items in the two variants was adjusted and the results were observed as if it were a single test. The same was done for Test 2 and Test 3.

2.5. Reliability and Item Analysis

For Test 1 Cronbach’s alpha was 0.692, for Test 2 it was 0.744 and for Test 3 it was 0.738. The values of Cronbach’s alpha for Test 2 and Test 3 were acceptable, while the value of Cronbach’s alpha for Test 1 showed this test needed some minor modifications and changes in items (Patel 2017).

For each item from Test 1, Test 2 and Test 3, the associated level and standard of the item, its difficulty index (\(P\) ) and discrimination index \(d\) are presented in Table 1.

As can be seen from Table 1, only two items had poor discriminative validity \((d \leq 0.2)\) : item 11 from Test \(1(d=0.19)\) and item 7 from Test \(3(d=0.14)\). Both items had difficulty index \(P \lt 30 \%\). Since these items were too difficult and of poor discriminative validity, they were not considered as options for the final version of the test.

Table 1. Quantitative item analysis

Test and itemItems standardand levelDifficulty index()Discriminationindex ()Test 1item13ML29.1%0.49Test 1item 22HL43.0%0.63Test 1item 31LL54.7%0.44Test 1item 41ML47.7%0.35Test 1item 55HL45.3%0.44Test 1item 66ML10.5%0.21Test 1item 72ML65.1%0.60Test 1item 82LL75.6%0.40Test 1item 96HL33.7%0.53Test 1item 104ML39.5%0.65Test 1item 118HL9.3%0.19Test 1item 125ML39.5%0.56Test 2item 12ML64.3%0.57Test 2item 24HL17.9%0.36Test 2item 32LL77.4%0.36Test 2item 45ML41.7%0.40Test 2item 52HL41.7%0.55Test 2item 61ML42.9%0.67
Test 2item76ML28.6%0.57Test 2item 81LL86.9%0.26Test 2item 98HL13.1%0.26Test 2item 103ML56.0%0.50Test 2item 111HL54.8%0.76Test 2item 124ML36.9%0.40Test 3item 16ML31.3%0.58Test 3item 24HL32.5%0.41Test 3item 31LL63.9%0.65Test 3item 41ML50.6%0.63Test 3item 53HL36.1%0.67Test 3item 65ML30.1%0.51Test 3item 72ML9.6%0.14Test 3item 82LL67.5%0.39Test 3item 95HL25.3%0.41Test 3item 103ML77.1%0.48Test 3item 117HL30.1%0.60Test 3item 124ML60.2%0.39

Items 1 and 6 from Test 1, items 2, 7 and 9 from Test 2, and item 9 from Test 3 were also too difficult. Item 8 from Test 1, items 3 and 8 from Test 2, and item 10 from Test 3 were too easy (\(P \gt 70 \%\) ). The other 24 items had at least an acceptable difficulty index and an acceptable discrimination index.

The next step was to choose 12 test items in a way that two of them represent different low-level standards, six items represent different medium-level standards, and four items represent different high-level standards. If for some standard there was more than one option, the one with a better difficulty index and/or better discrimination index would be chosen.

2.6. Final Selection of Items

Starting from items representing low-level standards, one can notice there were two options for standard 1LL: item 3 from Test 1 ( = 54.7%, = 0.44) and item 3 from Test 3 ( = 63.9%, = 0.65). Both items had excellent discriminative validity, but item 3 from Test 1 had an ideal difficulty index, so it was chosen for the final version of the test. On the other hand, there was only one option for standard 2LL, item 8 from Test 3. The other two items representing this standard were discarded since they were too easy according to their difficulty index.

Using this idea, the following items representing medium-level standards were chosen: for standard 1ML – item 4 from Test 1, for 2ML – item 1 from Test 2, for 3ML – item 10 from Test 2, for 4ML – item 12 from Test 3, for 5ML – item 4 from Test 2, and for 6ML – item 1 from Test 3.

The following step was to choose four items representing different high-level standards. First, there were 12 high-level items (four high-level items in each test), but after eliminating items that were too easy or too difficult, or with poor discriminative validity, there were eight high-level items left. Tests where those items were initially placed, the standards they represent, and their difficulty and discrimination indices are presented in Table 2.

For the final test, the following items were chosen: items \(2(2 \mathrm{HL})\) and \(5(5 \mathrm{HL})\) from Test 1, item 11 from Test \(2(1 \mathrm{HL})\), and item 11 from Test \(3(7 \mathrm{HL})\). This completed the test with 12 items that covered all low level and medium level standards, and four different high level standards.

Besides covering desired standards, all chosen items had at least acceptable difficulty (three had ideal difficulty), and 11 out of these 12 items had excellent discriminative validity. The remaining item had good discriminative validity. The final version of the test is given at the link in NOTES \({ }^{5}\).

Table 2. Difficulty and discrimination indices of eight highlevel items

StandardTest 1Test 2Test 31HLItem 11=54.8%,=0.762HLItem 2=43%,=0.63Item 5=41.7%,=0.553HLItem 5=36.1%,=0.674HLItem 2=32.5%,=0.415HLItem 5=45.3%,=0.446HLItem 9=33.7%,=0.537HLItem 11=30.1%,=0.60

3. Conclusion

This research focused on constructing a reliable and valid test for the divisibility area covered in primary school. The goal was to develop a test for efficient assessment of students’ understanding of divisibility, as well as for identification of eventual difficulties or deficiencies in their knowledge.

The first step in the test construction was determining learning outcomes and standards covering the divisibility area learned in the sixth grade of primary school. Then, three versions of the test were developed, which were administered to participants, after qualitative validation by three experts.

The reliability of tests, i.e., consistency of testing results, was checked using Cronbach’s alpha. The validity of tests, i.e., how precisely and correctly tests measured what they were intended to measure, was checked qualitatively (experts’ opinions) and quantitatively (item analysis). Using difficulty and discrimination indices, and the idea that the test had to have 12 items covering all low-level and medium-level standards, as well as four different high-level standards, the final version of the test was constructed.

The results of this research show that the constructed test for the divisibility area is a reliable and valid test instrument. It has the potential to be used in classroom settings or at the state level, as an effective tool for the assessment of students’ understanding of divisibility, which can provide useful information to teachers and school administration.

This test can be improved or changed according to the testing needs. One option is to put open-ended questions. In further research, the plan is to use this test to determine students’ achievements in divisibility depending on the curriculum according to which they attend classes in Bosnia and Herzegovina.

NOTES

1. AGENCY FOR PRE-PRIMARY, PRIMARY AND SECONDARY EDUCATION – APOSO, 2012. Stručno izvješće: Definiranje standarda učeničkih postignuća za treći i šesti razred devetogodišnjeg obrazovanja iz bosanskog/hrvatskog/srpskog jezika, matematike i prirodnih znanosti [The expert report: Defining student achievement standards for the third and sixth grade of primary school in the Bosnian/Croatian/Serbian language, mathematics and science]. Online. Sarajevo: Agency for Pre-Primary, Primary and Secondary Education. Available from: https://aposo.gov.ba/sadrzaj/uploads/definiranje-standarda-ucenickihpostignuca-za-3.-i-6.-razred-devetogodisnjeg-obrazovanja-HRVATSKI.pdf

2. AGENCY FOR PRE-PRIMARY, PRIMARY AND SECONDARY EDUCATION – APOSO, 2015a. Smjernice za provedbu zajedničke jezgre nastavnih planova i programa definirane na ishodima učenja [Guidelines for the implementation of Common core curriculum defined on learning outcomes]. Online. Sarajevo: Agency for Pre-Primary, Primary and Secondary Education. Available from: https://aposo.gov.ba/sadrzaj/uploads/Smjernice-za-provedbu-ZJNPP-1.pdf

3. AGENCY FOR PRE-PRIMARY, PRIMARY AND SECONDARY EDUCATION – APOSO, 2015b. Zajednička jezgra nastavnih planova I programa za matematičko područje definisana na ishodima učenja [Common core curriculum for mathematics area defined on the learning outcomes]. Online. Sarajevo: Agency for Pre-Primary, Primary and Secondary Education. Available from: https://aposo.gov.ba/sadrzaj/uploads/ZJNPP-matematičko-područjeBOSANSKI.pdf

4. https://drive.google.com/file/d/1xgOqsWgtnLjc4NCJBjKUmQMpwiUUAJp/view

5. https://drive.google.com/file/d/1xjlYY1k35pY_q4W_eHVEcBjM75qR6Ar p/view?pli=1

REFERENCES

BROADFOOT, P. &BLACK, P., 2004. Redefining assessment? The first ten years of assessment in education. Assessment in Education: Principles, Policy & Practice, vol. 11, no. 1, pp. 7 – 26.

Available from: https://doi.org/10.1080/0969594042000208976

DARR, C., 2005a. A hitchhiker’s guide to reliability. SET: Research Information for Teachers, vol. 3, no. 5, pp. 59 – 60.

Available from: https://doi.org/10.18296/set.0623

DARR, C., 2005b. A hitchhiker’s guide to validity. SET: Research Information for Teachers, vol. 2, pp. 55 – 56.

Available from: https://doi.org/10.18296/set.0639

ELLIS, A., et al., 2018. Sharing as a model for understanding division. Neuroreport, vol. 29, no. 11, pp. 889 – 893.

Available from: https://doi.org/10.1097/WNR.0000000000001050

HUSREMOVIĆ, Dž., 2016. Basics of psychometrics for psychology students (in Bosnian, Osnove psihometrije za studente psihologije). Sarajevo: Faculty of Philosophy.

LO, W.Y., 2020. Unpacking Mathematics Pedagogical Content Knowledge for Elementary Number Theory: The Case of Arithmetic Word Problems. Mathematics, vol. 8, no. 10, 1750, pp. 1 – 13.

Available from: https://doi.org/10.3390/math8101750

PATEL, R.M.,2017. Use of Item analysis to improve quality of Multiple Choice Questions in II MBBS. Journal of Education Technology in Health Sciences, vol. 4, no. 1, pp. 22 – 29.

Available from doi: 10.18231/2393-8005.2017.0007

ROSCOE, M. & FELDMAN, Z., 2016. Strengthening prospective elementary teachers’ knowledge of divisibility: An interventional study. In: NCTM Research Conference, 11-13 April 2016, San Francisco. Available from:

https://nctm.confex.com/nctm/2016RP/webprogram/Manuscript/Session42 256/RoscoeFeldman2016.pdf

SIEGLER, R.S., THOMPSON, C.A. & SCHNEIDER, M.,2011. An integrated theory of whole number and fractions development. Cognitive Psychology, vol. 62, no. 4, pp. 273 – 296.

Available from: doi.org/10.1016/j.cogpsych.2011.03.001

SIMANJUNTAK, E., HUTABARAT, H.D.M. & HIA, Y., 2019. The effectiveness of test instrument to improve mathematical reasoning ability of mathematics student. Journal of Physics: Conference Series, vol. 1188, no. 1, p. 012048.

Available from: doi.org/10.1088/1742-6596/1188/1/012048

TAVAKOL, M. & DENNICK, R., 2011. Making sense of Cronbach's alpha. International journal of medical education, vol. 2, pp. 53 – 55.

Available from doi.org/10.5116/ijme.4dfb.8dfd

YOUNG-LOVERIDGE, J. & MILLS, J., 2012. Deepening students’ understanding of multiplication and division by exploring divisibility by nine. The Australian Mathematics Teacher, vol. 68, no. 3, pp. 15 – 20.

Available from: https://core.ac.uk/download/pdf/29201407.pdf

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева