Математика и Информатика

https://doi.org/10.53656/math2025-4-5-iug

2025/4, стр. 434 - 450

THE IMPACT OF USING GEOGEBRA ON UNDERSTANDING QUADRATIC FUNCTIONS AND EQUATIONS FOR TENTH-GRADE STUDENTS

Erëmirë R. Aliu
OrcID: 0009-0004-5043-7435
E-mail: eremire.aliu@students.une.edu.mk
Department of Mathematics and Informatics
Mother Teresa University
Skopje North Macedonia
Shpëtim Rexhepi
OrcID: 0000-0001-6720-5009
E-mail: shpetim.rexhepi@unt.edu.mk
Department of Mathematics and Informatics
Mother Teresa University
Skopje North Macedonia
Egzona Iseni
OrcID: 0000-0002-0876-7199
E-mail: egzona.iseni@unt.edu.mk
Department of Mathematics and Informatics
Mother Teresa University
Skopje North Macedonia

Резюме: This study explores the impact of mathematical software, specifically GeoGebra, on tenth-grade students' understanding of quadratic equations and functions. The research was conducted in two classes with similar academic levels: one class (\(\mathrm{X} / 3\) ) was taught using traditional methods, while the other (\(\mathrm{X} / 4\) ) integrated mathematical software into the learning process. The objective was to analyze how these tools influence students' conceptual understanding, error reduction, and overall engagement in mathematics. The study identifies common difficulties and misconceptions students face while learning quadratic equations and functions. Various examples illustrate the errors encountered and highlight strategies to avoid them. The integration of mathematical software provided students with a more interactive and intuitive learning experience, significantly improving their problem-solving abilities. To assess the impact, a comparative analysis was performed using evaluation tests, questionnaires, and student interviews. The results revealed that students in class \(\mathrm{X} / 4\) performed better in solving quadratic equations and graphing quadratic functions compared to their peers in class \(\mathrm{X} / 3\). The Chi-square statistical analysis confirmed that the use of mathem atical software positively influenced students' comprehension and accuracy in mathematical problem-solving. These findings emphasize the importance of incorporating technology in mathematics education to enhance conceptual understanding and en gagement. The study sug gests that educational institutions should integrate mathematical software into their curricula to foster a more effective learning environment. Future research can explore its long-term impact on mathematical proficiency and its application in other areas of mathematics.

Ключови думи: quadratic equations; quadratic functions; GeoGebra; student difficulties

1. Introduction and review literature

During the work with the students, we noticed that the motivation for them to learn mathematics in general was not great, and during this work, we tried to approach mathematics differently, especially for the subject of equations and quadratic functions. During the development of the lessons, we tested two classes: in one, we explained equations and quadratic functions usi ng the traditional method, while in the other, we taught the same topic through the use of mathematical software such as GeoGebra.

This paper aims to enhance student's success with equations and quadratic functions by integrating mathematical software tools such as GeoGebra, into classroom instruction. Additionally, we aim to b oost students' motivation for learning mathematics, particularly in the contex t of equations and quadratic functions, through the use of mathematical software.

Mathematics, as a science, has practical applications in solving a wide range of everyday challenges. Equations and quadratic functions are a basic part of mathematics because, dur ing the advancement in lea rning mathema tics, the equations and quadratic functions will be an inseparable part of this process, so a good understanding of equations and quadratic functions is very important for students. After learning linear equations and functions from students, quadratic equations and functions are an advanced topic in mathematics, which falls under the more difficult type of equations and functions. Therefore, for easier understanding and concretization of exercises related to quadratic equations and functions, various mathematical software such as GeoGebra, etc., are used at this time. By using this mathema tical software, the learning of this subject becomes very attractive, and the problems are understood very easily. The technology and the time we are living in make this easier because we can also use the resources from the internet for additional lessons. (Kamberi et. al 2022).

Knowing the great importance of quadratic equations and functions, many researchers have conducted studies on learning the quadratic equation and have pointed out that it is an important and interesting research object. There are many scientific works on this topic and each one has come to different conclusions depending on the research type. The primary focus of this study was to elicit a group of high school students’ conceptions of quadratic equations with one unknown while considering concept definition and imag es as theoretical frameworks. The data initially showed that students could not provide a proper definition of quadratic equations with one unknown, and their definitions were not consistent with the formal (standard) definition of qua dratic equations.

Students tried to define quadratic equations by stating some properties, which are valid for all equation concepts, instead of stating properties of quadra tic equations. (Kabar 2018). The results indi cate that most of the students used the factorization technique to solve quadratic equations. This result supports (Bossé & Nandakumar 2005), who claimed that a large percentage of the students preferred to apply the factorization techniques to find the solutions of quadratic equations. Also, in parallel with the results of (Bossé & Nandakumar 2005), the result of this study revealed that factoring the quadratic equations was challen ging when they were presen ted to students in non-standard forms and structures (Didis & Erbas 2015). The results point to the need to create a new item on the research agenda for the international mathematics education research community: if quadratic equations are to remain an important component of lower and upper secondary mathematics curricula, then research is needed to guide teachers on how students think about quadratic equations, and especially on what can be done to help teachers improve students’ understanding of variables in this context (Vaiyavutjamai et. al. 2005).

Students get confused when quadratic function concepts are presented in different ways they are not used to. The structure 𝑦 =𝑎𝑥2 +𝑏𝑥 +𝑐 (where 𝑎 0 and 𝑎,𝑏 and 𝑐 are constants) is the standard form of a quadratic function form revealing the location of the 𝑦-intercept (0,𝑐). The vertex form: 𝑦 =𝑎(𝑥 𝑝)2 +𝑝 distinctly highlights the turning point of the parabola (vertex) represented by 𝑉(𝑝,𝑞). Lastly, the factored form: 𝑦 =𝑎(𝑥𝑥1)(𝑥𝑥2) indicating the position of the 𝑥-intercept (𝑥1;0 ) and (𝑥2;0 ) (Mutambara et. al 2019). Based on the results and discussion of the research, the use of dynamic mathematical software as a learning tool for the topic of quadratic functions proves to be effective.

The media is deemed valid for classroom use based on ratings from media and material experts, as well as feedback from field practitioners and students. The software is superior to conventional teaching methods, as it allows students to effortlessly interpret the graphical representation of quadratic equations, enabling them to formulate broader generalizations. This automatically increases the student’ s learning achievement and enables math to be a more exciting subject (Barraza Castillo et. al 2014). This discovery provides evidence that the application of GeoGebra can help students grasp the concepts of quadratic functions more effectively. Students of l ower classes hardly find themselves when working with GeoGebra, compared to higher classes. (Mollakuqe et. al 2020). This tool offers a dynamic and eng aging learning environment, assisting students in esta blishing connections between algebraic representations and their graphical interpretations. The GeoGebra application offers an intuitive way to present graphs of quadratic functions, enabling students to grasp their concepts more quickly and effectively. (Sumarti ni & Maryati 2021). The media is considered valid for classroom use based on ratings from media and mate rial experts, as well as feedback from field pra ctitioners and students. The software is superior to conventional teaching methods, as it allows students to easily interpret the graphical representation of quadratic equations and develop broader conceptual understandings (Barraza Castillo et. al 2014).

2. Using GeoGebra for understanding second-degree equations and quadratic functions

Figure 1. Students, while working with mathematical software

To improve and alleviate this difficulty among students, the resear chers utilized mathematical software. The use of various math software tools significantly enhanced students' understanding of quadratic equations and functions, while also m aking mathematics more engaging. This demonstrat es that the software is more effective than traditional teaching methods, as it enables students to easily interpret and analyze the graphical representations of quadratic equations and functions (Wijaya et. al 2020). During the research with tenth-grade students, we utilized GeoGebra software. The integration of tools like GeoGebra further enhances the educational aspect, offering an interactive platform for students to visualize and understand exponential functions (Tuda et. al 2024). By enabling students to visualize and manipulate mathematical concepts, GeoGebra fosters deeper comprehension and g reater motivation. However, for its successful implementation, adequate teacher training and equitable access to technological resources must be ensured (Aliu et. al 2025).

After we had traditionally explained quadratic equations and functions, the mistakes made by the students while solving the exercises were inevitable. The students mostly learned the formulas and the procedure of solving the exercises mechanically, and could not imagine how the equations of quadratic functions are represented in the graph.

3. The impact of using GeoGebra on the understanding of quadratic equations and quadratic functions

We conducted a study with two tenth-grade classes: in one, we used only the traditional method to explain equations and quadratic functions, while in the other, we incorporated mathematical software to teach the same unit. We then administered a test wit h identical ex ercises in both cla sses and obtained the following results. In Table 1 we marked 0 for no exercises solved, 1 for a solved exercise, 2 for two solved exercises, 3 for three solved exercises, 4 for four solved exercises, Class X/ 3 for students who learned with the classical method and Class X/4 for students who have learned through mathematical software. From the results we conclude that the class that used mathematical software during the learning achieved a better result in the test. Exercise II of the evaluation test was solved by a student in whose class the traditional teaching method was used, a mistake is seen in the exercise to find the peak of the function. Figure 2 shows where the student has mastered th e formulas to find the peak of the function. However, his confusion is in the graphical representation of the vertex by setting the vertex points as zeros of the function.

Table 1. The number of exercises solved during the assessment test

Number oftestexercisesThe number of studentswho have solved theexercises from class X/3The number of studentswho have solved theexercises from class X/401001131027113794310

Figure 2. Exercise II of the test solved by the student from X/3

Figure 3. Exercise II of the test solved by the student from X/4

In Figure 3, the exercise was solved by an average student, but in whose class the modern method was used during the explanation of the quadratic equations and functions unit. It can be seen that the student has no problem at all with solving the exercise and presenting the function graphically.

In exercise III, the student was asked to choose a biquadratic equation. In Figure 4, the exer cise was solved by a good student but in whose class the traditional method of explanation was used, and the student encountered difficulties in remembering the process of solving the exercise. The biquadratic equation is well replaced with 𝑥2 =𝑡, but then the student encountered difficulties while solving the created quadratic equation and did not come to the result.

Figure 4. Exercise III of the test solved by the student from X/3

In Figure 5, the exer cise was solved by a good student in whose class the modern method of explanation was used, namely for this problem the GeoGebra software was used, which shows a step-by-step solution to the exercise, and once the student has thoroughly mastered this type, they can successfully solve related exercises.

Now we consider exercise IV of the test. In Figure 6, we have the exercise solved by the student, a good student of th e class where the traditional explanation method was used in that class, at first glance it can be seen that the peak of the function, the zeros of the function have been found exactly but their presentation on the g raph is done completely wrong ly. The student has confused the zeros of the function with its peak by placing them incorrectly on the graph and has not been able to present the final form of the function since the points on the graph are irregularly placed.

Figure 5. Exercise III of the test solved by the student of X/4

Figure 6. Exercise IV of the test solved by the student of X/3

In Figure 7, the exercise was solved by another g ood student in the cla ss where the modern explanation method was used, that is, mathematical software was used and the student solved the exercise correctly and without mistakes. After the test results, we interviewed the student with the best success and the student with the weakest success.

Figure 7. Exercise IV of the test solved by the student of X/4

Interview with the student with the best success

Interviewer: What was the problem you encountered while solving exercises with equations and quadratic functions?

Student: Acquiring formulas for solving quadratic equations, for finding the peak of a function, Viet's formulas, and other formulas.

Interviewer: Which math software do you use the most?

Student: GeoGebra

Interviewer: What math software has helped you the most when understanding quadratic equations and functions?

Student: They helped me concretize the exercise, especially on quadratic functions, that is, where the zeros of the function, the coordinates of the vertex and the shape of the graph of the function are placed.

Interview with the least successful student

Interviewer: What was the problem you encountered while solving exercises with equations and quadratic functions?

Student: I encountered difficulties in the algebraic part, i.e. in replacing numbers in formulas and then calculating them.

Interviewer: Which math software do you use the most?

Student: I don't use any of the software, as I'm not good at technology.

Interviewer: What math software has helped you the most when understanding quadratic equations and functions?

Student: I liked GeoGebra the most when you used it during the explanation in class because with it I saw the total selection of the exercise, i.e. step by step the entire solution process. But since I haven't practiced it myself to solve the exercises, I haven't been able to understand them well.

Students, in whose class the modern method of explanation is used, i.e., through mathematical thinking, think that the application of this method during the explanation of mathematics, especially the equation and quadratic functions unit, is the best way for them to 'basically understa nd the problems and exercises in this learning unit. Thr ough this approach, students believe that their focus on learning mathematical topics has significantly improved, as they are now more engaged with technology and its application in explaining mathematical concepts, particularly equations and quadratic functions. This, in turn, enhances classroom engagement and simplifies the learning process. Students, in whose class the modern method of explanation is used, i.e. through mathematical softw are such as Geo Gebra, think that the application of this approach during the expla nation of mathematics, especially the equation and quadratic functions unit, is the best way for them to 'basically understand the problems and exercises in this learning unit. Through this approach, they believe that the focus on learning mathematical topics has sig nificantly increased, as they are now more passionate about technology and its application in explaining mathematical units, particular ly equations and quadratic functions. This, in turn, enhances the classroom experience and simplifies the learning process. High school students in X classes find it easier to work with GeoGebra compared to students in lower grades (Aliu et. al 2021).

The difference between the students who used the modern method and the students who used the traditional method of learning is clearly visible, not only in the test results but also during engagement in class or even solving homework, since the students who used the modern method of learning, that is, with the application of the software, their engagement in class and the choice of homework without mistakes was significantly greater than among students where only the traditional method was used.

After both classes that participated in the research were introduced to the two methods of explanation, the traditional and the modern method, we created a questionnaire about which of the methods the students understood the learning unit more.

The questionnaire

1. What was the method by which you best understood quadratic equations and functions?

I. Modern methodII. Traditional method

2. Do you have difficulty using mathematical software during individual work?

I.YESII.NO

Table 2. Observed values

Answers to the first questionAnswers tothe secondquestionX\YYESNOTotalYES31232NO348Total34640

Table 3. Expected values

Answers to the first questionAnswers tothe secondquestionX\YYESNOTotalYES28432NO628Total34640

Table 4. Chi-square value calculation

-observedvalues-expectedvalues𝑂(𝑂)(𝑂)/3128390.3224-24136-391.5422424.82

Common variables are given with the values 𝑋 and 𝑌 given with the values {Yes, No}. After receiving the students ' answe rs, we collected the data and created two tables for the values we received and the values we expected. Then we calculated the chi-square value using Table 4.

Next, we will calculate the value Chi-square:

𝑋2=(3128)228+(24)24+(36)26+(42)22=4.82

With significance level 𝛼 =0.05, we put 𝑋21,0.05 =3.841, so the critical domain is 𝐶 =(3.841,) and since 4.82 𝐶, we conclude that 𝑋 and 𝑌 are dependent.

4. Discussion

This study aimed to explore the impact of using mathematical software, specifically GeoGebra, on tenth-grade students’ understanding of quadratic equations and functions. The research was conducted in two classes with similar academic performance levels, where one class (X/3) was taught using traditional methods, while the other (X/4) integrated mathematical software into the learning process. The findings of this study indicate that the use of mathematical software sig nificantly improved studen ts' comprehension a nd problem-solving abilities related to quadratic equations and functions.

One of the key observations from this resear ch was that students in class X/3, who followed traditional teaching methods, faced difficulties in visualizing quadratic functions and understanding the relationship between algebraic and graphical representations. Errors related to misidentifying coefficients, incorrect application of formulas, and challenges in solving quadratic equations were prevalent. Conversely, students in class X/4, who utilized mathematical software, demonstra ted a higher level of accuracy in solving problems and a better conceptual understanding of quadratic equations and functions. The integration of technology enabled them to engage with interactive visualizations, making abstract concepts more tangible.

A crucial aspect of the research was the comparative analysis of test results between the two classes. The statistical eva luation revealed that students in class X/4 performed significantly better in solving quadratic equations and graphing quadratic functions. The use of Chi-square analysis confirmed that the success rate was higher among students who used mathematical software, highlighting its effectiveness in reducing common mistakes. This suggests that technological tools play an essential role in improving mathematical comprehension by allowing students to explore and interact with mathematical concepts dynamically.

Additionally, the study examined the motivational impact of mathematical software on students. Interviews with students from both classes indicated that those in X/4 found the learning process more engaging and intuitive. The ability to visualize problems and receive instant feedback through software applications contributed to a deeper understanding and greater interest in mathematics. In contrast, students in X/3 often relied on memorization without fully grasping the underlying concepts, leading to confusion in problem-solving.

These findings align with existing literature that supports the integration of technology in mathematics education. Previous studies have shown that digital tools enhance students’ ability to conceptualize and apply mathematical principles effectively. The results of this study reinforce the argument that incorporating technology into the curriculum can facilitate a more effective learning environment, particularly in topics that require graphical interpretation and algebraic manipulation.

Based on these findings, it is recommended that mathematics educators integrate software tools into teaching methodologies to enhance students’ engagement and understanding. Schools should consider investing in technological resources and training teachers to use digital platforms effectively. Future research can explore the long-term impact of mathematical software on students’ performance and its applicability to other mathematical topics.

In conclusion, this study highlights the transformative potential of mathematical software in learning quadratic equations and functions. By bridging the gap between algebraic expressions and their graphical representations, digital tools provide students with a more interactive and engaging learning experience. The improved results of students in class X/4 serve as strong evidence of the benefits of integrating technology in mathematics education, paving the way for more effective teaching strategies in the future.

5. Conclusion

This study demonstrated that the integration of mathematical software significantly enhances students’ understanding of quadratic equations and functions. Throug h a comparative analysis of two tenth-gr ade classes, it was observed that students who used software tools such as GeoGebra achieved higher results than those who followed traditional teaching methods. The findings confir med that digital tools provide a more interactive, visual, and engaging approach to learning, leading to improved problem-solving skills and a deeper conceptual understanding of mathematical principles.

The results from the assessment test and Chi-square statistical analysis showed that students in class X/4 achieved higher accuracy rates and demonstrated fewer misconceptions compared to their peers in class X/3. The ability to visualize and manipulate equa tions graphically enabled students to correct errors more efficiently and understand abstract mathematical concepts with greater clarity. Furthermore, interviews with students indicated that the use of mathematical software increased motivation and interest in mathematics, making the learning experience more enjoyable and dynamic.

These findings emphasize the necessity of integrating technology into mathematics education. As digital tools become more accessible and userfriendly, educators should consider incorporating them into their teaching methodologies to support students' learning processes. This approach not only strengthens conceptual understanding but also prepares students for an increasingly technology-driven academic and professional landscape.

Given these findings, it is strongly recommended that educational institutions implement the use of mathematical software in their curricula. Future studies could investiga te its impact on other mathematical topics and the long -term retention of mathematical concepts. Ultimately, embracing technology in education can transform the way mathematics is taught, making it more intuitive, effective, and engaging for students.

ACKNOWLEDGMENTS

I would like to thank "Mother Teresa" University, Professor Shpetim Rexhepi, and reviewers for their continuous help during this scientific work with comments, criticisms, and suggestions.

REFERENCES

ALIU, E.R., ZENKU, T.J., ISENI, E. AND REXHEPI, S., 2025. The Advantage of Using GeoGebra in the Understanding of Vectors and Comparison with the Classical Method. International Electronic Journal of Mathematics Education, 20(2).

BARRAZA CASTILLO, R. I., CRUZ SÁNCHEZ, V.G., V ERGARA VILLEGAS, O.O., 2015. A Pilot Study on the Use of Mobile Augmented Reality for Interactive Experimentation In Quadratic Equations. Mathematical Problems in Engineering, 2015(1).

BOSSÉ, M. J., NANDAKUMAR, N. R., 2005. The Factorability of Quadratics: Motivation for More Techniques. Teaching Mathematics and its Applications, 24(4), pp.143-153.

DIDIS, M. G., ERBAS, A. K., 2015. Performance and Difficulties of Students in Formulating a nd Solving Quadratic Equations with One Unknown. Educational Sciences: Theory and Practice, 15(4), pp.1137-1150.

KABAR, M. G. D., 2018. Secondary School Students' Conception of Quadratic Equations with One Unknown. International Journal for Mathematics Teaching and Learning, 19(1), pp.112-129.

KAMBERI, S., LATIFI, I., REXHEPI, S., ISENI, E., 2022. The Influence of Practical Illustrations on The Meaning and Operation of Fractions in Sixth Grade Students, Kosovo-Curricula. International Electronic Journal of Mathematics Education, 17(4).

MOLLAKUQE, V., REXHEPI, S., ISENI, E., 2020. Incorporating Geogebra Into Teaching Circle Properties at High School Level and Its Comparison with The Classical Method of Teaching. International. Electronic Journal of Mathematics Education, 16(1).

MUTAMBARA, L. H. N., TENDERE, J., CHAGWIZA, C. J., 2019. Exploring the Conceptual Understanding of the Quadratic Function Concept in Teachers’ Colleges in Zimbabwe. Eurasia Journal of Mathematics, Science and Technology Education, 16(2).

SUMARTINI, T. S., MARYATI, I., 2021. Geogebra Application for Quadratic Functions. In Journal of Physics: Conference Series (Vol. 1869, No. 1, p. 012138). IOP Publishing.

TUDA, S., REXHEPI, S., 2024. Geogebra Impact in Avoi ding Common Mistakes Students Make in Handling Exponential Functions. Mathematics & Informatics, 67(4).

VAIYAVUTJAMAI, P., ELLERTO N, N. F., CLEMENTS, M. A., 2005. Students’ Attempts to Solve Two Elementary Quadratic Equations: A Study In Three Nations. In Building connections: Theory, research and practice: Proceedings of the 28th annual conference of the Mathematics Education Research Group of Australasia. Sydney: MERGA.

WIJAYA, T.T., YING, Z., CHOTIMAH, S., BERNARD, M., 2020. Hawgent Dynamic Mathematic Software as Mathematics Learning Media for Teaching Quadratic Functions. In Journal of Physics: Conference Series (Vol. 1592, No. 1, p. 012079). IOP Publishing.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева