Математика и Информатика

https://doi.org/10.53656/math2021-5-7-edu

2021/5, стр. 520 - 531

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash
E-mail: matyash_27@ukr.net
ID ORCID 0000-0002-7149-9545
Department of Algebra and Methodology of Math Teaching
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
32 Ostrozkoho St.
21000 Vinnytsia Ukraine
Liubov Mykhailenko
OrcID: 0000-0001-5051-5561
E-mail: mikhailenkolf@gmail.com
Department of Algebra and Methodology of Math Teaching
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
32Ostrozkoho St.
21000 Vinnytsia Ukraine
Vasyl Shvets
OrcID: 0000-0003-2084-1336
E-mail: vasylshvets@ukr.net
Head of the Department of Mathematics and Theory and Methodology of Math Teaching
National Pedagogical Dragomanov University
9 Pyrogova St. room 423
01601 Kyiv Ukraine
Oleksandr Shkolnyi
OrcID: 0000-0002-3131-1915
E-mail: shkolnyi@ukr.net
Department of Mathematics and Theory and Methodology of Math Teaching
National Pedagogical Dragomanov University
9 Pyrogova St. room 423
01601 Kyiv Ukraine

Резюме: The problem of forming the professional competencies of a math teacher in the process of his (her) training at the pedagogical university and in the system of continuing education is extremely relevant not only in Ukraine but also abroad. This is especially true for the methodological competence of teachers, which largely determines the quality of the educational process in general and student achievements in particular. To solve this problem, we propose to create an educational environment, which, in addition to math teachers, includes specialists in mathematics teaching methods from pedagogical universities, instructors of teacher’s in-service training courses, master’s students in pedagogical specialties, who, in particular, are trained in dual form of education. As the results of the experiment show, such educalional environment allows to realize professional training of mathematics teachers more ef fectively and qualitatively compared to traditional methods.

Ключови думи: Professional training of math teachers; methodological competence; educational environment; dual form of education

INTRODUCTION

The problem formulation

The processes of reforms in Ukraine in the field of education directly affected the problems of training and retraining of a competent math teacher. The system of advanced training inherited from the Soviet times came into conflict with the requirements of the time and began to change to another, not yet clearly defined. Nowadays, in order to pass re-certification, a math teacher should master professionally important courses in psychology, pedagogy, mathematical disciplines, methods of teaching mathematics, etc. within 150 hours. All this he has to determine and study independently (including with the use of online learning platforms such as Ed-Era, Coursera, Prometheus, etc.) and eventually submit to the attestation commission the relevant certificates (MES of Ukraine 2018).

This approach has both positive and negative sides. The positive is that the teacher does not need to attend in-service training courses that are not always useful to him (her), but scheduled lectures and practical classes. There is an opportunity to use this time more effectively for himself (herself), i.e. to study the material that will be both interesting and necessary during working at school. The negative, obviously, is manifested in the fact that the teacher himself (herself) determines what knowledge he should acquire and where exactly to do it. At the same time, it is often difficult for a teacher to independently assess the quality of the offered courses, because he (she) is not able to get appropriate advices from a specialist. Without such advices, teacher training will be formal and ineffective.

The preparation of a math teacher starts from the time the student studies at the pedagogical university. Here, many professional teachers are concerned about the formation and development of his (her) professional competencies (in particular, methodological competence). Appropriate educational programs are created for the future teacher at the university and the educational process is built properly. After graduation, this concern, unfortunately, disappears. However, we believe that it should continue to exist, both for young and experienced teachers.

In 1998 – 1999 we conducted the experiment for math teachers, in which more than 800 respondents of different qualifications of seven regions of Ukraine (Kyiv, Donetsk, Odesa, Ivano-Frankivsk, Volyn, Poltava and Khmelnytsky) took part, showed that math teachers during studying on in-service training courses, would like to improve:

– theoretical knowledge of fundamental math disciplines (algebra, mathematical analysis, geometry, etc.) – 10% of respondents;

– psychological and pedagogical knowledge of the basics of teaching mathematics to students (pedagogy, pedagogical psychology, age psychology, etc.) – 40% of respondents;

– methods and ways of solving problems of the school course of mathematics – 42% of respondents;

– methods of teaching mathematics to students – 58% of respondents.

Young teachers whose work experience does not exceed 5 years have a special need for professional development. They want to get to the in-service courses as soon as possible in order to replenish their knowledge and skills in pedagogy, psychology, methods of teaching mathematics and get higher qualifications. The situation is more different with more experienced teachers. Most of them believe that they have already reached the peaks of pedagogical skills, and passing in-service courses is seen more as a duty than as a real need to improve the professional level.

More than 90% of respondents are in favor of the obligation to improve their skills, citing the fact that it is impossible to focus in pedagogical work only on past knowledge, skills and abilities that are rapidly «aging» in modern conditions. They want to understand the content of new programs in mathematics, requirements for mathematical preparation of students, strategic directions of development of math education in Ukraine and abroad, theoretical and methodological features of new textbooks, the content of new learning technologies, etc. This will save them from professional burnout, promote the development of methodological competence, ensure the quality of the educational process and student’s results.

Thus, there is a need to develop the methodological competence of mathematics teachers in modern conditions, on new principles and opportunities. In our opinion, the creation of an educational environment as a form of in-service training of a math teacher can be effective for the realization of this need.

We define the concept of educational environment as postgraduate continuing education of math teachers within the interested community of specialists – teachers of pedagogical universities, instructors of in-service training institutes, working mathematics teachers (young and experienced), master’s students and senior bachelor’s students who have connected their future activities with teaching mathematics to students. Such a voluntary and informal association will benefit all its members. For scientists it is a platform for scientific research and methodological developments, for teachers it is an opportunity to develop their professional competencies (in particular, methodological competence), and for students it is an opportunity to join the real educational process at school. Experienced specialists in the field of methods of teaching mathematics have to manage the work of such educational environment.

Analysis of recent research and publications

Ukrainian scientists have an opportunity to discuss dif ferent ways of solving the problem of methodical competence formation for future math teachers and development of methodical competence of working math teachers at the tradition al conference “Problems and prospects of professional training of math teachers” (Vinnytsia, Ukraine). All materials of these conferences are presented in Matiash 2021. It was during the discussions at these conferences on the partnership between the pedagogical university and the school that the idea of creating an educational environment arose, which was joined by the Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University and the National Pedagogical Drahomanov University, teachers of which are the authors of this article.

Not only Ukrainian Methodists were concerned with such problems. For example, in the United States, the Mathematics Teachers Association established a consortium, the MTE-Partnership (Mathematics Teacher Education Partnership 2020), in 2012. This consortium consists of more than 90 universities and more than 100 school systems. This Association has prepared a fundamental document “Guidelines for the training of primary school mathematics teachers.” The guiding principle “Partnership as a foundation” emphasizes the importance of partnership for qualitative prepation of math teachers. We believe that the provisions of the document “Guidelines for the training of primary school mathematics teachers” may be relevant and interesting for the Ukrainian and European realities of math teacher training.

From the analysis of various modern publications on teacher training in European countries (Daemen 2020, Tatto et. al. 2012, Wang 2003, Shvets et. al. 2020, Matiash & Mykhailenko 2020), we can conclude that the problems of methodological training of future math teachers are almost similar in European countries and in Ukraine. In particular, most European scholars in the field of mathematics teaching methods determine the need for close cooperation between teachers of pedagogical universities who train mathematics teachers and practicing math teachers.

As a result of a certain generalization of foreign practice of methodical preparation of future teachers of mathematics (Mykhailenko 2021) we can say that it is important:

– to diversify the forms of training of math teachers (in particular, introduce a dual form of their preparation);

– to improve the content of educational programs for the training of math teachers; to establish cooperation between teachers of pedagogical universities and working teachers to improve the methodological training of future mathematics teachers;

– to analyze the idea of training coaches to teach math teachers (selection of highly professional teachers who will be able to perform the role of coach, determining the content of coaching and the content of teacher’s retraining, highlighting the main forms of cooperation).

In general, the analysis of recent Ukrainian and foreign publications suggests that with the increase in various forms of cooperation between schools and universities, there is a growing interest in empirical research on the diversity and value of these initiatives. In this article, we mostly focused on the problem of developing the methodological competence of mathematics teachers in terms of partnership between the pedagogical university and the school, ie in the educational environment.

The purpose of the article is to determine the essence of a new form of postgraduate continuing education – an educational environment for the development of methodological competence of math teachers and justification of the feasibility of creating such an environment.

THEORETICAL BASIS OF RESEARCH

In the process of many years of research, we came to the following definitions of key concepts for this article:

Methodological competence of a future math teacher is a dynamic combination of methodological knowledge, skills, abilities, certain methodological experience of a student who acquires the profession of math teacher and which he (she) needs for effective methodological activity on formation of mathematical competence of students.

Methodological competence of a working math teacher is a dynamic combination of his (her) awareness and ability to recognize and solve current methodological problems and analyze the feasibility and critically evaluate the effectiveness of techniques and tools used in the process of methodological activities to form mathematical competence of students.

Methodological competence of a teacher of math methodology is a dynamic combination of his (her) methodological knowledge, skills, methodological beliefs and methodical experience of teaching mathematics students, which are enriched by research experience and which are necessary for him (her) to effectively form methodological competence of future math teachers.

The development of methodological competence in teaching mathematics to students is the acquisition of new and improvement of acquired components of methodological competence in teaching mathematics to students, enrichment of experience in methodological activities.

The educational environment for the development of methodological competence in teaching mathematics to students is a system of partnership between the pedagogical university and schools, which covers the purpose and objectives, content, methods, tools and forms of development of methodological competence of math teachers, future math teachers and pedagogical university teachers that accomplish a preparation of future teachers of mathematics.

It should be noted at once that the organization of an effective environment for the development of methodological competence in teaching mathematics to stu dents is not an easy task, but it is important and interesting. A key factor in such a special educational environment is the creative atmosphere of mutually beneficial cooperation of working mathematics teachers, future math teachers and teachers of pedagogical universities, which provide methodological training for future math teachers. Each of these participants has its own goals, objectives, has its necessary value to enrich the experience of methodological activities of other participants in such a professionally creative environment.

A working teacher of mathematics is a carrier of relevant data on real modern methodological problems of teaching mathematics to students, the current state of affairs with the implementation of modern school reforms, the level of motivation and academic achievement of students. The working teacher of mathematics has real methodical experience in real conditions of students preparation in mathematics. The teacher of the pedagogical university, which provides methodological training for future teachers of mathematics, is a carrier of relevant information about innovations in methods of teaching mathematics in Ukraine and abroad, is a researcher of methodological problems, is a connoisseur of modern scientific findings in pedagogy. Future math teachers are a generation of young people who have grown up in the age of computer technology, they are closer to students in age, they are not carriers of methodological stereotypes.

We consider active professional communication, mutual trust, joint work on projects in the atmosphere of friendliness and mutual support should be the basis of effective cooperation for the development of methodological competence in teaching mathematics students, for future and working teachers of mathematics, for teachers of methodological disciplines. Our research suggests that such relationships can be a mutually beneficial opportunity to learn together and develop methodological competence in teaching mathematics to students.

METHODOLOGY OF THE RESEARCH

The effectiveness of the formation of methodological competence of a mathematics teacher depends on many factors, each of which plays a specific role determined by its content and direction of influence. The process of development of methodological competence of math teachers requires special or ganization with strengthening of practical, interdisciplinary and applied aspects. To confirm the correctness of the ideas we held a number of events: tournament of methodological discoveries, competition of methodological talent, master classes of honored teachers of math, scientific and methodical seminars, lectures by experienced teachers of mathematics, scientific and methodological support, publication of the collection of teacher’s and student’s works “Methodological search”, approbation of methodological manuals, scientific-practical conference “Methodological search of math teacher”, etc. We just will briefly describe some of the above activities that had a positive impact on the development of methodological competence of all participants in our educational environment.

Since 2017, the All-Ukrainian Olympiad of Geometric Creativity named after Vyacheslav Yasinskyi has been held annually on the basis of the Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University. Well-known in Ukraine specialists in the methods of teaching mathematics of the National Pedagogical Dragomanov University, in particular, the authors of this article, are actively involved in this Olympiad. One of the directions of this Olympiad is the Tournament of methodological discoveries in teaching students of geometry for teachers of mathematics. Teachers of mathematics in the Tournament of methodological discoveries were able to wider professional communication, to exchange of acquired methodological experience, to present their own original ideas and achievements in the field of methodological activities in teaching students of geometry.

The survey of teachers after their participation in the Tournament showed their satisfaction with the opportunity to hear the assessment of their methodological ideas from specialists in the field of methods of teaching mathematics. At the same time, university teachers who teach methodological disciplines for future math teachers, in the preparation and holding of the Tournament of methodical discoveries had the opportunity to analyze a significant number of competitive works performed by creative math teachers, to participate in discussions during the presentation of teachers’ methodical discoveries, to enrich yourself experience by interesting ideas and techniques.

Since both in the preparation and providing of the Tournament of methodological discoveries took an active part students who qualify as a teacher of mathematics, they were able to observe a competition of the best methodological ideas and beliefs, to compare different methodological approaches to solving typical methodological problems, to participate in the discussion on methodological topics, to gain some experience of immersion in a special educational environment for the development of methodological competence in teaching mathematics to students.

The experience of holding joint methodological meetings of math teachers of different schools and university teachers turned out to be successful. We tested the technologies of collective-group methodological activity, situational learning and technologies of methodological development in the discussions. We also included successful senior master students who performed qualification research in such joint methodological meetings. To ensure parity, we discussed with school administrations the desired topics of speeches by university teachers to mathematics teachers. Thus, it was found that these could be topics of a methodological nature, as well as lectures on elementary mathematics, or the history of mathematics. For example, teachers of mathematics have a significant interest in the issues of deeped mathematics, in the specifics of preparing students for external examinations in mathematics, and so on.

The main basis for conducting master classes by experienced math teachers in our experimental research was the pedagogical university. In the course of the master class the participants get acquainted with new methodological ideas on the topic of the master class, participate in the discussion of the obtained results, ask questions to the master, receive consultations, can offer for discussion their own problems, questions, developments on a subject of a master class, express their proposals for solving the problems under discussion. Our observations in the course of master classes of honored teachers of mathematics of Ukraine (O.V. Kostenko, T.S. Zbozhynska, I.M. Krivosheya, I.A. Kushnir) and surveys of participants of master classes after their holding allow to state a significant increase in interest of future math teachers, as well as teachers of methods of teaching mathematics, to creative methodological activities, to the search for non-standard methods, techniques and means of activating the educational and cognitive activities of students in the process of teaching mathematics.

The authors of this article also systematically hold seminars and workshops for teachers in Ukraine. In a pandemic, these activities are mostly held remotely. In the last 2 years alone, more than 10 author’s seminars and master classes have been held for teachers in Vinnytsia, Zhytomyr, Odesa, Uzhhorod, Kharkiv, Cherkasy, Chernivtsi and Chernihiv.

RESULTS OF THE RESEARCH

Let us consider the results of the investigation of indicators of methodologi cal competence in the experimental group of mathematics teachers that work at the school. The experimental group EG-1 included 21 math teachers who took an active part each year in the decribed above forms of partnership between the university and the school. In this experimental group we found out the formation of the following indicators of methodological competence: willingness and ability to present their own methodological experience; readiness and ability to prepare teaching materials; ability to independently and impartially perceive new methodological knowledge or problems through the prism of their own methodological beliefs; knowledge of innovative pedagogical technologies of teaching mathematics at school.

Mathematics teachers were asked to evaluate the statements concerning the development of their methodological competence before immersion in our educational environment, and as a result of participation in the methodological activities of the department in 2017 – 2018 and 2018 – 2019 school years. It was necessary to evaluate each characteristic separately, using a scale from 0 to 3, where the answer is 3 – yes, 2 – more yes than no, 1 – more no than yes, 0 – no. As the result of the survey for each indicator, a maximum of 15 points could be scored. The obtained results were translated into an average score and displayed in the form of a diagram (Fig.1).

Figure 1. Survey results for the EG-1 group (math teachers that work at the school)

Let us consider the procedure and results of the study of indicators of methodological competence in the experimental group of university teachers who provide methodological training for future teachers (EG 2). The experimental group included 8 teachers of the Department of Algebra and Methods of Teaching Mathematics of Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, who took part every year in the special educational environment we studied. In this group we found out the impact of our tools for the development of methodological competence on the following indicators: willingness and ability to work with stakeholders to achieve goals in teaching mathematics to students; ability to generate new ideas aimed at improving the process of learning mathematics; awareness of the need for self-education, self-development, self-improvement in teaching mathematics to students; willingness and ability to communicate with colleagues on the problems of effective teaching of mathematics to students.

The rating scale for each of the characteristics for the participants of the EG-2 group was the same as for the EG-1 group. The results of the survey of university teachers, who provide methodological training for future teachers of mathematics, were translated into the average score and displayed in the form of a diagram (Fig. 2).

Figure 2. Survey results for the group EG-2 (university teachers)

Statistical analysis of the results of experimental data using Wilcoxon’s T-test allows us to conclude that the level of formation of the studied indicators of methodological competence for all experimental groups increased after using experimental tools to influence the development of methodological competence in teaching mathematics to students.

CONCLUSIONS

In the process of observations, during our activities, we saw that reducing the “distance” between school teachers and university teachers, between school teachers and future teachers opens up significant opportunities for the development of methodological competence in teaching mathematics to students, as each learns from another. The process of such joint learning is a valuable result for the methodological growth of mathematics teachers and improves the conditions and strategies for teaching methods of teaching mathematics at the pedagogical university. In this context, the creation of an educational environment that unites all professionals involved in the formation of professional competencies of math teachers is a natural and logical step.

Indeed, mathematics teachers who join the educational environment, summarize their own methodological experience, develop creatively, increase readiness and ability for professional discussion, find professional expertise and recognition of their own methodological ideas and beliefs; future teachers gain invaluable experience of active communication with many creative teachers of mathematics who have different methodological experience and methodological beliefs; teachers of methodical disciplines receive excellent conditions for their own research on methods of teaching mathematics and a creative platform to improve the conditions for the formation of methodological competence of future teachers of mathematics.

A promising direction for the implementation of the educational environment is the dual form of education by future teachers of mathematics. It allows students to acquire methodological competence directly in the process of working at the school under the guidance of both teachers of pedagogical university and experienced teachers-mentors at the school. In our subsequent publications, we will dwell on this aspect of the problem in more detail.

According to the results of our research, the educational environment aimed at the development of methodological competence in teaching mathematics to students is characterized by: regular, well-planned activities; comfortable conditions of cooperation for the exchange of ideas and experience of methodical activity in teaching mathematics to students; variety of forms and means of cooperation; system of incentives to increase motivation for partnership.

REFERENCES

Daemen, J., et al., 2020. Secondary School Mathematics Teacher Education in the Netherlands. In: Van den Heuvel-Panhuizen M. (eds) National Reflections on the Netherlands Didactics of Mathematics. ICME-13 Monographs. Springer, Cham. Rertieved from: https://doi. org/10.1007/978-3-030-33824-4_9.

Mathematics Teacher Education Partnership, 2020. Rertieved from: https:// www.aplu.org/projects-and-initiatives/stem-education/mathematicsteacher-education-partnership/index.html.

Matiash, O., 2021. Personal cite. Rertieved from: http://matyash.vn.ua/ ua/міжнародна-науково-практична-конфер/.

Matiash, O., Mykhailenko, L., 2020. Opportunities for Method Competence Development of Mathematics Teachers: The Role of Participation in Competitions with Colleagues. Universal Journal of Educational Research, [online], 8(3), 747 – 754. Available from: doi: 10.13189/ujer.2020.080303.

MES of Ukraine., 2018. Nakaz MON Ukrainy vid 16.07.2018 № 776 «Pro zatverdzhennia koncepcii rozvytku pedagogichnoi ocvity [On approval of the concept of pedagogical education]. Rertieved from: https://mon.gov.ua/ua/npa/pro-zatverdzhennya-koncepciyi-rozvitkupedagogichnoyi-osviti. [in Ukrainian].

Mykhailenko, L., 2021. Formation of method competence of a teacher of mathematics in the settings of partnership between a pedagogical university and a school. (Doctoral Dissertation), Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, Bohdan Khmelnytsky Cherkasy National University, Cherkasy.

Tatto, M. et al., 2012. Policy, Practice, and Readiness to Teach Primary and Secondary Mathematics in 17 Countries. [Place of publication not identified]: Distributed by ERIC Clearinghouse.

Wang, A., 2003. Preparing teachers around the world. Princeton, NJ: Educational Testing Service.

Shvets, V.O., Bevz, V.G., Shkolnyi, O.V., Matyash, O.I., 2020. Ukraine: School Mathematics Education in the last thirty years. In A. Karp (Ed.), Eastern European Mathematics Education in the Decades of Change. Cham: Switzerland. Springer.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева