Математика и Информатика

https://doi.org/10.53656/math2024-4-7-geo

2024/4, стр. 443 - 456

GEOGEBRA IMPACT IN AVOIDING COMMON MISTAKES STUDENTS MAKE IN HANDLING EXPONENTIAL FUNCTIONS

Shpresa Tuda
OrcID: 0009-0005-5743-6635
E-mail: shpresa.tuda@students.unt.edu.mk
Mother Teresa University
Skopje North Macedonia
Shpetim Rexhepi
OrcID: 0000-0001-6720-5009
WoSID: AAG-3073-2021
E-mail: shpetim.rexhepi@unt.edu.mk
Mother Teresa University
12 Udarna Brigada St. 2а/VII
1000 Skopje North Macedonia

Резюме: Exponential functions, symbolized by \(f(x)=a^{x}\), represent fundamental mathematical concepts with extensive applications in real-world scenarios, ranging from population growth to compound interest and radioactive decay (Tuda & Rexhepi 2023). This abstract highlights the significance of GeoGebra, an intuitive mathematical software, in interactive visualization and analysis, particularly in addressing common mistakes students make when engaging with exponential functions. Through its user-friendly interface, GeoGebra facilitates a hands-on approach to learning, offering students a practical and engaging environment to rectify misconceptions and deepen their understanding of the mathematical principles governing exponential functions. This study incorporates a comparative analysis of traditional and technological teaching methods, focused on 2nd-year students at high school “8-Shtatori” in Skopje. By evaluating the efficacy of both approaches in fostering a deeper comprehension of exponential functions, the outcomes contribute valuable insights into pedagogical strategies, shedding light on optimizing the learning experience for students grappling with exponential functions. Additionally, surveys and direct comparisons of solutions with students in the classroom setting provided firsthand observations on how learners interact with the material and identified common mistakes made during problem-solving. The insights gained from these surveys and discussions further informed the development and refinement of the approach, ensuring a comprehensive understanding of both the benefits and challenges associated with learning exponential functions through GeoGebra.

Ключови думи: exponential functions; analysis; students; GeoGebra

1. Introduction

Exponential functions, embodied in the expression , serve as a fundamental and versatile concept in mathematics, finding applications in various real-world phenomena such as population growth, compound interest, and radioactive decay. As we delve into this paper, our focus extends beyond the inherent properties of exponential functions to address the common mistakes students often encounter when navigating these dynamic mathematical models.

In this paper, we draw attention to the seminal work of (Redlin 2018), which underscores the practical utility of exponential models in predicting population sizes, calculating investment returns, and determining the remaining amounts of radioactive substances. Expanding upon this foundational understanding, our paper incorporates insights gained from a visit to school “8-Shtatori” in Skopje, providing valuable firsthand experiences into the challenges students face when attempting to grasp exponential functions, thereby guiding our emphasis on rectifying common misconceptions.

This paper emphasizes the vital role of GeoGebra, a dynamic mathematical software, in aiding comprehension and visualization of exponential functions, while also addressing and rectifying the errors frequently made by students. We draw inspiration from (Kamberi et al. 2022), who recognize the transformative impact of internet resources and engaging visual materials in enhancing understanding of mathematical concepts. Additionally, we acknowledge the findings of (Mollakuqe et al. 2021), who note that while students in lower classes may initially find GeoGebra challenging, its visual and interactive nature significantly aids comprehension, particularly as students progress to higher classes.

The exponential function stands as a mathematical bedrock with farreaching implications across various domains. Originating from the concept of exponentiation, its modern definition extends its applicability to real, complex numbers, and beyond, embracing diverse mathematical objects. While the theoretical understanding of exponential functions is essential, their practical significance lies in their ability to model dynamic processes and phenomena observed in the real world. In this study, we delve into the exploration of exponential functions, aiming to not only uncover their inherent properties but also to showcase their practical applications and relevance in everyday life. Through the integration of technology, particularly GeoGebra software, we aim to provide a comprehensive understanding of exponential functions and their real-world implications.

The integration of GeoGebra serves as a cornerstone in our approach, leveraging its intuitive platform to address the challenges highlighted during the visit to “8-Shtatori”. We acknowledge the findings of (Mollakuqe et al. 2021), who noted that while students in lower classes may initially find GeoGebra challenging, its visual and interactive nature significantly aids comprehension, particularly as student’s progress to higher classes.

Through GeoGebra, we seek to empower students, educators, and researchers alike to not only explore and visualize exponential functions but also rectify common mistakes, fostering a deeper and more accurate understanding of these vital mathematical concepts.

2. Research method

1. In the initial phase of this research, an exhaustive review of existing literature on exponential functions will be undertaken. The primary focus will be on delineating foundational concepts, exploring real-world applications, and identifying prevalent mistakes made by students. Works by scholars, including (Redlin 2018), (Kamberi et al. 2022), and (Mollakuqe et al. 2021), will be scrutinized to establish a comprehensive and theoretical foundation for this study. This literature review aims to provide a solid framework for understanding the current state of knowledge in the field, informing subsequent stages of the research methodology.

2. Observational visit to school “8-Shtatori” in Skopje: As part of this research, an observational visit to “8-Shtatori” in Skopje will be conducted to gain firsthand insights into the challenges students face when dealing with exponential functions. Engagements with educators and students during this visit will provide qualitative data on the specific mistakes and misconceptions prevalent in the educational context of “8-Shtatori”. This observational component aims to enrich the research by incorporating real-world perspectives into the study of common mistakes associated with exponential functions.

3. Interviews and Surveys: To complement the observational findings, interviews will be conducted with educators at school “8-Shtatori” to gather qualitative insights into their teaching methods and perceptions of student challenges with exponential functions. Additionally, surveys will be administered to students, aiming to collect quantitative data on their experiences, understanding, and potential mistakes related to exponential functions. The combination of interviews and surveys will contribute to a comprehensive understanding of both qualitative and quantitative aspects of student challenges.

4. Integration of GeoGebra: GeoGebra, a dynamic mathematical software, will be integrated as an instructional tool during this research paper. The impact of GeoGebra on student learning will be evaluated through a combination of surveys, direct observations, and assessments. This aspect of the research focuses on assessing how GeoGebra aids in rectifying common mistakes made by students and enhancing their overall understanding of exponential functions.

5. Analysis of Student Work: Samples of student work related to exponential functions will be collected and analyzed. The analysis will involve categorizing and examining the types of mistakes commonly made by students, with a focus on identifying recurring patterns and trends. Student work, including homework assignments, quizzes, and tests, will serve as valuable sources of data for understanding the specific challenges students face in comprehending exponential functions.

6. Comparative Study: A comparative analysis will be conducted to assess the effectiveness of both traditional teaching methods and the integration of GeoGebra in addressing common mistakes associated with exponential functions. Quantitative data from surveys and assessments will be utilized to measure improvements in student comprehension, providing insights into the comparative efficacy of each approach.

7. Data Analysis: Quantitative and qualitative data collected throughout the research will undergo rigorous statistical analysis. The analysis aims to identify correlations, patterns, and trends related to student mistakes, GeoGebra usage, and overall learning outcomes. This systematic approach will enhance the robustness of the research findings.

3. Exponential function The exponential function, denoted as:

(1)

where is represented as an exponent, is a fundamental mathematical concept. This positive-valued function of a real variable extends its applicability to complex numbers and various mathematical objects such as matrices or Lie algebras. Initially rooted in the concept of exponentiation, the modern definition allows for rigorous extension to all real arguments, including irrational numbers.

The significance of the exponential function in pure and applied mathematics is profound, leading mathematician Walter Rudin to assert that it is “the most important function in mathematics” (Rudin 1987). This function finds broad applications owing to its versatility and prevalence in mathematical models.

The exponential function is expressed in the form:

(2)

where:

- denotes the function's value at a specific point on the real number line;

- is a constant known as the “initial value” or “-intercept”, representing the function's value when ;

- is a constant referred to as the“base” of the exponential function. It is a positive real number greater than 0 and not equal to 1;

- serves as the independent variable, capable of assuming any real number.

4. Comparative Study: Traditional vs. Technological Teaching Methods in school “8-Shtatori” – Skopje

Together with 2nd-year high school students, we delved into the fascinating world of exponential functions, utilizing a range of teaching methods to enhance their understanding and engagement. The central focus of our session was to compare the effectiveness of the traditional classical method of teaching and the use of GeoGebra software.

Below, we presented mathematical tasks related to exponential functions using both approaches, allowing these 2nd-year high school students to experience both the conventional and technological ways of learning. This collaborative endeavor not only enriched the students'understanding of exponential functions but also highlighted the practical implications of incorporating technology into mathematical exploration.

5. Analyzing exponential functions: a comparative study of classical and GeoGebra solutions

Task 1: Modeling Population Growth (fig. 1).

Figure 1. Task 1 — classical and GeoGebra solution

Objective: Explore how exponential functions can be used to model population growth and understand its implications.

Implementation:

Pen-and-Paper Exploration:

Understanding the Model: Students analyzed the exponential function as a model for population growth.

Algebraic Analysis: Through manual calculations, students determined the behavior of the function and its implications for population growth.

Graphical Representation: Students graphed the function manually, visualizing how the population grows exponentially over time.

GeoGebra Analysis:

Dynamic Visualization: Transitioning to GeoGebra software, dynamically visualized the population growth model, observing how changes in parameters affect population dynamics.

Interactive Exploration: With GeoGebra, students interactively explored the graph of the exponential function, observing how slight adjustments in parameters affect its shape and behavior.

Comparison of Approaches: By comparing the manual and GeoGebra approaches, students gained a comprehensive understanding of the exponential function , merging classical problem-solving techniques with modern technological tools.

Interactive Exploration: Students interactively explored the graph, adjusting parameters to simulate different scenarios and understand the impact on population growth.

Real-World Applications: Discussed real-world examples where exponential functions are used to model population growth, such as demographic studies and urban planning.

Results:

Pen-and-Paper Findings: Students gain insights into how exponential functions can model population growth and understand the implications for real-world scenarios.

GeoGebra Observations: Utilizing GeoGebra, students experience the dynamic visualization of population growth, facilitating a deeper understanding of exponential functions and their practical applications.

Task 2: Exploring the Exponential Function (fig. 2).

Objective: Investigate the behavior and properties of the exponential function through both traditional pen-and-paper methods and GeoGebra software.

Implementation:

Pen-and-Paper Exploration:

Analysis of Key Properties: Students analyzed the exponential function using pen and paper, focusing on understanding its key properties such as domain, range, and behavior.

Algebraic Manipulation: Through manual solution methods, students refined their algebraic skills by solving equations involving the exponential function .

Figure 2. Task 2 – classical and GeoGebra solution

Graphical Representation: Students graphed the function manually, gaining insights into its graphical behavior, including exponential growth.

GeoGebra Analysis:

Visualization with GeoGebra: Transitioning to GeoGebra software, students utilized its dynamic visualization capabilities to graph the function digitally.

Interactive Exploration: With GeoGebra, students interactively explored the graph of the exponential function, observing how changes in parameters affect its shape and behavior.

Comparison of Approaches: By comparing the manual and GeoGebra approaches, students gained a comprehensive understanding of the exponential function , merging traditional problem-solving techniques with modern technological tools.

Results:

Pen-and-Paper Findings: Through manual exploration, students gained insights into the algebraic properties and graphical behavior of the exponential function . They developed proficiency in solving equations involving exponential functions and understanding their fundamental properties.

GeoGebra Observations: Utilizing GeoGebra, students experienced the dynamic visualization of the function's graph, enabling interactive exploration and deeper comprehension. They observed how slight adjustments in parameters lead to significant changes in the graph, reinforcing their understanding of exponential growth.

Task 3: Exploring Exponential Functions with Different Bases (fig. 3).

Figure 3. Task 3 – classical and GeoGebra solution

Function: .

Implementation:

Pen-and-Paper Exploration:

Identify Key Properties: Students analyzed the general exponential function , recognizing that the base determines the nature of exponential growth or decay.

Variation of Bases: Students considered different values for to observe how the base influences the shape and behavior of the exponential function. This allowed them to understand the concept of exponential growth or decay across various bases.

GeoGebra Analysis:

Transition to GeoGebra: After exploring the general exponential function on pen and paper, students utilized GeoGebra software to draw the graphs of different exponential functions , with different bases.

Visualization and Comparison: With GeoGebra, students graphically compared multiple functions such as , and their inverses. This visual comparison highlighted how different bases influence the function’s shape and rate of change.

Results:

Pen-and-Paper Findings: Students understood how altering the base affects the exponential function’s growth or decay. They observed diverse patterns based on the base’s value, noting variations in the curve’s steepness and direction.

GeoGebra Observations: In GeoGebra, we explored various exponential functions with a dynamic slider to vary the base. By drawing the graphs of functions such as , and , students observed the following:

Increasing Functions: The graphs exhibited rapid growth with increasingly steep curves as the base increased. Functions with larger bases grew more quickly, illustrating exponential growth vividly.

Decreasing Functions: Conversely, functions , and showed an exponential decrease. The curves flattened as increased, with the decay becoming slower for functions with smaller bases.

This practical example allowed students to visually compare the effects of different bases on exponential growth and decay, enhancing their understanding of how the base influences the function’s behavior.

6. Common mistakes in handling exponential functions

After solving the task involving the exponential function , students were asked to identify common mistakes in handling exponential functions. The task provided an opportunity for students to apply their understanding of exponential functions.

The common mistakes identified, as seen in the figure above and other mistakes of the students, as they were discussed as teachers, we dictated to the students to write as comments where the mistakes are made most often, as written by the students in the accompanying photo/figure (fig.4), include:

Figure 4

Figure 5

inaccurate computation of -values (lack of understanding of basic mathematical operations, order of operations);

inadequate representation of a point in the coordinate system;

incorrect representation of the axis intercept in the numerical axis;

errors in identifying asymptotes;

incorrect drawing of the coordinate system (incorrect division of the segment).

These observations offer valuable insights into areas where students may need additional support and guidance in mastering exponential functions. By addressing these common mistakes, students can enhance their understanding and proficiency in handling exponential equations effectively.

In the following, we present some of the most frequent mistakes that students make when solving exponential equations.

During the experience in the classroom, we noticed that these mistakes are mostly made by forgetting the properties of exponents, which according to the curriculum in North Macedonia are taught in the first year, while the exponential function is in the third year. For this reason, for the first hours of the exponential function, we suggest repeating the properties of exponents and solving different tasks with them.

In the first task in fig. 5 student multiplies the exponent 2 by only, which is a mistake. The exponent 2 must be multiplied by the binomial , while in the second task operations on exponents are done without making sides with the same bases.

As mentioned above, it is forgetting the rules of exponents. The students usually compare the obtained results with the software and see that they do not correspond. GeoGebra in this case only prompts the students to ask questions since the mistake was made unconsciously.

7. Overcoming common mistakes in exponential functions After pinpointing common mistakes made by students in handling exponential functions, our next crucial step was to engage in a constructive discussion on how to circumvent these errors. In the discussion, we included:

Enhancing -Value Recognition: Emphasized the importance of mastering basic operations and the correct order of operations. Provided targeted practice exercises to reinforce these fundamental mathematical concepts.

Improving Point Representation: Introduced visualization techniques and practice exercises to refine skills in presenting points graphically.

Correcting Axis Intercept Representation: Clarified the proper methods for representing intercepts on the numerical axis.

Provided examples and walkthroughs to ensure students grasped the correct procedures.

Refining Asymptote Identification: Offered additional exercises specifically focused on identifying asymptotes. Encouraged the use of multiple approaches to confirm the accuracy of asymptote determinations.

Ensuring Accurate Coordinate System Drawing: Guided students in the correct division of segments when drawing the coordinate system. Facilitated interactive sessions where students can apply these principles in real-time.

8. Results and discussion

In order to gather insightful feedback, we administered a survey to our students, probing their experiences and perceptions regarding the use of GeoGebra handling with exponential functions. The survey comprised two key questions aimed at evaluating the effectiveness of GeoGebra in aiding the visualization and computation of exponential functions.

Survey questions:

1. Did GeoGebra make it easier for you to visualize and study exponential functions?

2. Did using GeoGebra assist you in accurately computing -values, particularly in understanding basic mathematical operations?

Table 1. Answers of the two questions

Options1stquestion2ndquestionYes1916No47

Among the responses received for the first question, 19 students answered affirmatively, indicating that GeoGebra indeed eased the process of visualizing and plotting exponential functions. On the contrary, 4 students reported that they did not find GeoGebra helpful in this regard.

In response to the second question, 16 students acknowledged that GeoGebra aided them in accurately computing -values, especially concerning basic mathematical operations. However, 7 students expressed that they did not observe a significant improvement in this aspect.

The survey findings revealed a notable consensus among students regarding the benefits of GeoGebra, particularly in the context of understanding exponential functions. Many students lauded the dynamic interface of GeoGebra, which allowed them to visualize and interact with exponential concepts in ways surpassing traditional methods. The software's ability to dynamically illustrate various parameters, generate custom graphs, and offer real-time feedback received widespread praise from the students.

Moreover, the survey responses underscored that GeoGebra not only made complex mathematical concepts more accessible but also fostered a sense of engagement and curiosity among students. The hands-on experience with GeoGebra was credited with significantly enhancing students'understanding of exponential growth compared to conventional classroom approaches.

In conclusion, the unanimous agreement among students on the efficacy of GeoGebra for understanding exponential functions highlights the software's invaluable contribution to the learning experience. It serves as an enriching and empowering tool for mathematical exploration, enabling students to grasp complex concepts with greater ease and engagement.

9. Tasks Description

Duration: The tasks were conducted over a one-hour session, focusing on exploring exponential functions using both traditional pen-and-paper methods and GeoGebra software.

Scope: The tasks aimed to compare the effectiveness of traditional penand-paper methods with GeoGebra software in teaching exponential functions to second-year high school students. Objectives included introducing the concept of exponential functions, providing hands-on exploration, identifying common mistakes, and evaluating student understanding.

Preparation: Prior to the session, materials including printed worksheets and GeoGebra software were prepared. The classroom was arranged for collaborative learning, and instructions for using GeoGebra were provided.

Data Collection: Data were collected through observation, task completion, surveys, and discussions during the session. Feedback from students was gathered to assess understanding, preferences, and experiences.

Reporting: Following the session, a report summarized findings, observations, and student feedback, highlighting the effectiveness of GeoGebra in enhancing student engagement and understanding of exponential functions.

10. Conclusion

In conclusion, the exponential function stands as a mathematical bedrock with far-reaching implications across various domains. Originating from the concept of exponentiation, its modern definition extends its applicability to real, complex numbers, and beyond, embracing diverse mathematical objects.

As we explore exponential functions, it becomes evident that their influence extends beyond mere mathematical abstraction. They offer a powerful tool for modeling dynamic processes, providing insights into real-world phenomena. The integration of tools like GeoGebra further enhances the educational aspect, offering an interactive platform for students to visualize and understand exponential functions.

This journey into the realm of exponential functions has unveiled not only their theoretical underpinnings but also the practical applications and the challenges students often face. By delving into the common mistakes encountered by students and leveraging educational tools, such as GeoGebra, we aim to enhance the learning experience and foster a deeper understanding of this fundamental mathematical concept.

REFERENCES

ALIU, A., REXHEPI, S., ISENI, E., 2021. Analysis and comparison of commitment, homework, extra hours, preliminary grades, and testing of students in mathematics using linear regression model. Mathematics Teaching Research Journal, vol. 13, no. 3, pp. 21 – 52.

JUPRI, A., SISPIYATI, R., CHIN, K.E., 2021. An Investigation of Students’ Algebraic Proficiency from A Structure Sense Perspective. Journal on Mathematics Education, vol. 12, no. 1, pp. 147 – 158. doi: 10.22342/jme.12.1.13125.147-158

KAMBERI, S., LATIFI, I., REXHEPI, S., ISENI, E., 2022. The influence of practical illustrations on the meaning and operation of fractions in sixth grade students, Kosovo-curricula. International Electronic Journal of Mathematics Education, vol. 17, no. 4, em0717. doi: 10.29333/iejme/12517

MOLLAKUQE, V., REXHEPI, S., ISENI, E., 2021. Incorporating GeoGebra into teaching circle properties at high school level and it’s comparison with the classical method of teaching. International Electronic Journal of Mathematics Education, vol. 16, no. 1, em0616. doi: 10.29333/iejme/9283

REDLIN, L., STEWART, J., WATSON, S., 2018. Precalculus, Mathematics for Calculus (7thed.), CENGAGE Learning. https://jhevonorg.files. wordpress.com/2019/09/precalculus_mathematics_for_calculus_7thfirst-five-sections.pdf

RUDIN, W., 1987. Real and Complex Analysis (3rd ed.). New York, NY: McGraw-Hill, Inc. Professional Book Group. ISBN: 978-0-07-054234-1.

TUDA, S., REXHEPI, S., 2023. Exploring Exponential Functions Using Geogebra. Brillo Journal, vol. 3, no. 1, pp. 43 – 58. doi: 10.56773/bj.v3i1.45

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева