Математика и Информатика

https://doi.org/10.53656/math2022-5-5-mon

2022/5, стр. 435 - 449

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva
E-mail: sissiy88@uni-plovdiv.bg
Department of Computer Science
Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria
Rositsa Doneva
E-mail: rosi@uni-plovdiv.bg
ECIT Department
Faculty of Physics and Engineering Technology
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria
Milen Bliznakov
E-mail: milen@uni-plovdiv.bg
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria

Резюме: The market for new students is highly competitive. For this reason, higher education institutions (HEIs) can no longer rely on traditional strategies to hit enrolment goals. HEIs leadership must leverage new approaches, tools and skills to optimize the enrolment process, monitor the student enrolment campaign and improve marketing strategies to attract suitable students for future campaigns. This paper proposes a solution that facilitates and optimizes these processes. It introduces a model for monitoring student enrolment campaigns and a prototype of a correspondent software tool StEnrAnalyst, designed for the needs of different stakeholder groups (top and middle management, responsible bodies for student enrolment campaigns). StEnrAnalyst allows them to monitor the student enrolment campaign, generate reports for candidate students and enrolled student and make timely data-driven decisions to improve the process of applying and enrolling new students. Experiments with the model and StEnrAnalyst are conducted based on the information infrastructure of a typical Bulgarian university.

Ключови думи: data analytics;student enrolment;intelligent data analysis; monitoring; higher education

1. Introduction

Nowadays, the market for new students is highly competitive. Many higher education institutions (HEIs) receive funding based on their enrolled students. HEIs leadership are worried about how their institutions can improve management strategies to attract more students and increase enrolment rates. For this reason, among the main activities for any HEI are conducting and monitoring student admission campaigns.

Achieving enrolment goals by relying solely on traditional practices is no longer enough. Managers of HEIs must leverage new approaches and skills to compete in today’s higher education marketplace (Simon 2020). The HEIs must embrace technology to deliver on modern student needs and eventually develop successful strategies to meet institutional requirements and enrolment goals (Unifyed 2020).

To facilitate the submission of documents for application, enable a more efficient enrolment process and earn a competitive edge, almost all HEIs implement student admission systems that allow future students to apply online. In addition, these systems help HEIs to guide prospective students through incomplete sections of the admissions process and provide them with personalised automated communication, improve response times for questions, and monitor marketing and student enrolment campaigns. These systems store personal data for prospective students (sex, age, location), data for previous training (educational institution, graduation success) and the desired study programmes. After conducting the entrance exams, responsible bodies from HEIs input exam results, and then the system ranks the candidates and sends automated notifications regarding acceptance status. By using software solutions to inform students where they are in the enrolment process, HEIs leadership can free their administrative staff by taking student application management and many data entry tasks off their plate (Ricoh 2022).

The large amount and variety of data stored in student admission systems allow HEIs to implement data analytics tools to optimize the enrolment process, monitor the current student enrolment campaign and improve marketing strategies to attract suitable students for future campaigns. In this case, developing effective enrolment strategies and ensuring student success comes down to better using the available data (Rapid Insight).

Data has no real value until higher education managers extract information from the data to make better decisions that lead to success (Eiloart 2017). To use analytics appropriately to meet enrolment goals, HEI leadership must invest in the right tools, technology, and talent to help look at data differently (Simon 2020). In recent years, HEIs have begun implementing data analytics tools to outline realistic targets to strategically tackle inefficiencies and solve declining student enrolment problems (Unifyed 2020).

Data analytics tools can help HEIs understand and leverage their data to identify and attract students and forecast enrolment. The use of data analytics during admission campaigns allows HEI leadership to monitor how many inquiries are coming in and turn into applications and how many applications turn into starts. HEIs can explore available data on prospective students (incl. demographic and performance data) to predict which applicants are most likely to be accepted and enrolled and the cities from which they will come so that intervention steps can be taken proactively (Simon 2020; Wiley2020;Ekowo& Palmer 2016; Kabakchieva 2012). By identifying and targeting applicants and students who are the best fit for the HEI, HEIs can operate more efficiently, enrol students more likely to graduate, and offer higher quality experiences (Wiley 2020; Slapak& Jenkins 2020).

Data analytics tools also help HEIs assess admissions and enrolment marketing campaign performance on-the-fly and identify new opportunities for management of the enrolment process and marketing efficacy (Allegro Analytics 2019; Delcoure& Carmona 2019).

Modern analytical tools support HEIs managers (deans, vice-deans, vice-rector, rector) to make decisions for improving the students’ recruitment process. Data analytics tools allow them to monitor and evaluate current campaign performance against previous periods, discover enrolment trends (Kardan et al. 2013), identify the actions associated with attracting and recruiting students (Delcoure& Carmona 2019), align marketing and sales resources and budgets, optimize student recruitment and enrolment processes, increase visibility and real-time access of campaign performance (Candlefox 2022). The data analysis on enrolled students shows how well the institution performs at a detailed level. HEIs managers can use results to identify key trends that could affect the overall success of admission to HEI. Suitable for tracking trends are the most preferred study programmes and whether there are study programmes preferred mainly by women or men (e.g. whether the percentage of women applying for STEM curricula is close to that of men). Ultimately, connecting data with decision-making within enrolment management areas enables analytically focused institutions to thrive at a time when others feel the unintended consequences of choosing not to invest (Simon 2020).

In addition, data analytics allow anyone to perform extensive education analysis and share key findings across the HEI (Eiloart 2017). From this perspective, data analytics tools are an effective way to monitor and improve the performance metrics of the HEI itself.

This paper proposes a solution that facilitates and optimizes these processes. It introduces a model for monitoring student enrolment campaigns and a prototype of a correspondent software tool StEnrAnalyst, designed for the needs of different stakeholder groups (top and middle management, responsible bodies for student enrolment campaigns). StEnrAnalyst allows them to monitor the student enrolment campaign, generate reports for candidate students and enrolled students and make timely data-driven decisions to improve the process of applying and enrolling new students. Experiments with the model and StEnrAnalyst are conducted based on the information infrastructure of a typical Bulgarian university.

2. Model for monitoring of student enrolment campaign

When submitting application documents, the following data for each candidate student are stored in the student admission system: full name, address, telephone number, grades from the diploma for completed secondary education, desired study programme, required competitive exams and information on paid application fee. These data are inputted by the candidate student (when applying online) or by a member of Committee for acceptance of documents (when students submit documents on-site).

When conducting the competitive examinations, the chairman of each committee for reviewing the competitive exams shall enter the grades from the first and second examinations and the final score from the competitive exam. Then a member of the Committee for declassification of works enters the scores from the exams of each candidate student, and then the system performs a ranking of students.

Based on a literature review in the field (Simon 2020; Unifyed 2020; Rapid Insight 2022; Wiley 2020; Ricoh 2022) and data stored in the student admission system of a typical Bulgarian University 4 models with a set of indicators that serve as a business logic basis of the developed data analytics tool are proposed (see Section 3).

The models for monitoring student enrolment campaign defines what data the tools can extract from the institutional information infrastructure that stakeholders can use to monitor student enrolment campaign at the university. These models are developed for the needs of four different stakeholders’ groups – programme managers (PM), deans (D), rector (R), committees for organizing and conducting a student enrolment campaign (secrecy of examination works, reviewing the competitive exams, announcing the results of exams and rankings, enrolment of accepted students) (C). Each model consists of measurable indicators allowing the relevant stakeholder to track data for students’ enrolment for different purposes, e.g. monitoring, analysis, forecast, intervention, and recommendations.

Models are built as hierarchies of indicators of different levels. Indicators from Level 1 represent the object/subject to which the collected and aggregated data relate – candidate student, interest in study programmes, enrolled students, competitive exams, gender gap. These indicators group together Level 2 indicators that allow the relevant stakeholder to track specific data. Each Level 2 indicator contains a set of measurable attributes whose values are extracting from the student admission system and system for enrolment of admitted students. Table 1 presents the proposed models in general and their indicators of Level 1 and Level 2 for each stakeholder group. Indicators of Level 2 that are part of the model for the relevant stakeholders are marked with “+”.

Table 1. Models for monitoring of student enrolment campaign

Indicator –Level 1Indicator – Level 2PMDRC1. Candidatestudents1.1.Numberofsubmitteddocumentsfromcandidatestudents++1.2. Number of candidate students per region++1.3. Number of candidate students per town+1.4.Average success from the diploma for completedsecondary education per candidate student+1.5. Grades from the diploma for completed secondaryeducation per candidate student+1.6. Desired study programmes per candidate student+++1.7. Requested exams per candidate student++1.8. Ranking result per candidate students+++
Indicator –Level 1Indicator – Level 2PMDRC2. Interestin studyingprogrammes2.1. Number of candidate students with an interest in thestudy programme++++2.2. Number of candidate students with an interest in thestudy programme (rst wish)++++2.3. Number of candidate students with an interest in thestudy programme (second wish)++++2.4. Number of candidate students with an interest in thestudy programme (third wish)++++2.5. Number of submitted declarations for next rankingper study programme++++3. Enrolledstudents3.1. Number of enrolled students per study programme++++3.2. Number of enrolled students per professional eld++3.3. Number of enrolled students per faculty++3.4. Number of enrolled students with excellent gradesfrom competitive exams per study programmes+++3.5. Number of enrolled students with excellent gradesfrom competitive exams per faculty++3.6. Number of enrolled students with excellent gradesfrom competitive exams per professional eld++3.7.Averagescoreofenrolledstudentsperstudyprogramme+++3.8.Maximumscoreofenrolledstudentsperstudyprogramme++++3.9.Minimumscoreofenrolledstudentsperstudyprogramme++++3.10. Number of enrolled students from each region perstudy programme+++3.11. List of enrolled students per study programme+++4.Competi-tive exams4.1. Number of candidate students with only matriculationexams++4.2. Number of candidate students who have submitteddocuments for taking the exam++4.3.Average grade per exam++4.4. Number of candidate students who took each exam++4.5.Number/ratioofcandidatestudentswithgradesExcellent 6.00 per exam++4.6.Number/ratioofcandidatestudentswithgradesExcellent, Very good, Good, Satisfactory and Poor per exam++4.7. Grades from competitive exams per student++
Indicator –Level 1Indicator – Level 2PMDRC5. GenderGap5.1. Numbers/ratio of women and men among candidatestudents per study programme++++5.2. Numbers/ratio of women and men among candidatestudents per professional eld++5.3. Numbers/ratio of women and men among candidatestudents per faculty++5.4. Numbers/ratio of women and men among candidatestudents per study programme (rst wish)++++5.5. Numbers/ratio of women and men among enrolledstudents per professional eld (rst wish)++5.6. Numbers/ratio of women and men among enrolledstudents per faculty (rst wish)++5.7. Numbers/ratio of women and men among enrolledstudents per study programme+++5.8. Numbers/ratio of women and men among enrolledstudents per professional eld++5.9. Numbers/ratio of women and men among enrolledstudents per faculty++5.10.Average grade of women and men per exam+5.11.Maximumscoreofenrolledmaleandfemalestudents per study programme+++5.12.Minimumscoreofenrolledmaleandfemalestudents per study programme+++

Data Analytics tool description

Based on the proposed models (Section 2), a corresponding data analytics tool for monitoring student enrolment campaign StEnrAnalyst is designed and implemented.

As a result of an analytical review of software solutions for extracting, analysing and visualizing data from various information sources, technologies and tools for tool development were selected. The StEnrAnalyst tool is developed by the integration of existing software solutions JasperReportsServer and Jaspersoft Studio tools (developed by TIBCO Jaspersoft) and the software framework Dynamic Presentation Framework (developed by a team working at the University of Plovdiv).

Fig. 1. StEnrAnalyst architecture

The architecture of the StEnrAnalyst tool (see Fig. 1) follows the standard type of 3-tier architecture with well-known three layers – Presentation, Application and Data layers. The software framework DPF is at the core of the StEnrAnalyst Presentation Layer. Through DPF, user request the generation of a report by a chosen template and view the result of the request (so called visualized report). There are currently four separate user roles: programme managers (PM), deans (D) and rectors (R), and committees (C). The report templates design tool Jaspersoft Studio is used for implementing the core functionality of the StEnrAnalyst Application Layer and its business logic. Key elements of this functionality are modelling the developed models for the needs of four different stakeholder groups (see Section 2) and acquisition of values for the models’ indicators of different levels from the student enrolment system used at HEI and/or other systems from the information infrastructure. Data Layer of the StEnrAnalyst application includes various databases of the institutional information infrastructure (student information system, student admission system, student enrolment system, etc.) as well as the JasperReports Server repository itself. JasperReport Server addresses them to retrieve the necessary data when generating reports.

In the first stage, the institutional information infrastructure (including student admission system and student enrolment system) of a typical Bulgarian university (namely the University of Plovdiv “Paisii Hilendarski”) has been analysed. The analysis has been done in terms of its use as a data source (about the training, the results achieved, etc.) when forming values of the indicators from the proposed models.

In the second stage, templates of reports were designed using Jaspersoft Studio based on the proposed models as sets of indicators (see Table 1) for the needs of different stakeholders (programme managers, deans and rector, members of committees) when making decisions for the management of the university processes. All developed templates of reports have been stored on the JasperReports Server. JasperReports Server plays an intermediate role between the three architectural layers. Firstly, DPF requests the REST services of JasperReports Server to run a chosen template and generate a report through the Service Client. Then JasperReports Server Web Service interface responds to HTTP requests from the client application.

StEnrAnalyst help HEIs leaderships to take operational, management level or middle level management decisions.

The tool fills the templates with data directly retrieved from university information systems or obtained through calculations and generates monitoring reports depending on the user’s role. The last is because indicators from Level 1 and Level 2 are the same for different stakeholder groups, but they differ in the Level 3, and this is embedded in the designed templates. For example, a programme manager can generate reports that provide data only for the study programme for which s/he responds, while the reports generated by the rector/vice-rector contain data for the entire university. For example, for the Indicator 2.1. Number of candidate students with an interest in the study programme the related data sources for acquisition of values of the indicators of Level 3 and the indicators/values themselves for each user role will be different (see Table 2).

Table 2. Indicators of Level 3 according to user role for Indicator 2.1

User roleInput dataOutput ValuesPM (ProgrammeManager)Study ProgrammeNumber of candidate studentsD (FacultyManagers: Dean,Vice Deans)Study ProgrammeWithout input data for the wholefacultyProfessional eldStudy programmeNumber of candidate studentsR (UniversityManagers: Rector/Vice-Rector)Study ProgrammeFacultyWithout input data for the wholeuniversityProfessional eldStudy programmeFacultyNumber of candidate students
User roleInput dataOutput ValuesC (Committeesfor organizingand conducting astudent enrolmentcampaign)Study ProgrammeFacultyWithout input data for the wholeuniversityProfessional eldStudy programmeFacultyNumber of candidate students

Therefore, the generated reports for each stakeholder group contain different data retrieved from the data source depending on the user’s role in StEnrAnalyst (PM, D, R and C). Reports can be generated automatically by the StEnrAnalyst according to a predetermined schedule and stored in its repository, or user can request the report generation when s/he wants to see the current situation. User with access rights can visualize and download each of the stored reports.

The data processing results are presented in tables and charts. Users can use them to perform various analyses on the retrieved data. For example, StEnrAnalyst allows the vice-rector to:

– monitor how many candidate students have submitted documents and from which region candidate students come;

– keeps track which exams have the most applications;

– monitor ranking result;

– monitor which are the most desired study programmes;

– track submitted declaration for next ranking;

– monitor the number of enrolled students;

– monitor the ratio of enrolled students with excellent grades from competitive exams, average score, maximum and minimum score of enrolled students;

– monitor the number of enrolled students from each region per study programme;

– generate list of enrolled students for each study programme;

– monitor the ratio of students ranked only with matriculation exams;

– monitor average grade per exam and number of candidate students who took each exam;

– monitor the number of candidate students with Excellent, Very Good, Good and Satisfactory grades of competitive exams;

– generate report with grades from competitive exams;

– monitor student enrolment campaign in terms of equality between women and men;

– generate annual reports for enrolment campaign;

– track trends by comparing monitoring results from different periods;

– make data-informed decisions to improve student enrolment campaign and the results achieved and determine whether the measures taken are effective and sustainable.

The StudEnrAnalyst is tested by users with different roles. Figures 2 – 4 show parts of 2 generated reports.

The user with the role Vice-Rector generated a report for indicator 3.2. The number of enrolled students per professional field. The report shows that for the academic year 2022/2023, the most enrolled students are in study programmes from professional field 1.3. Pedagogy of training in ... (524 students). The number of newly enrolled students in study programmes from professional fields 2.2. Philology (515 students) and 4.6. Natural sciences, mathematics and informatics (508 students) are also high. The students’ interest is the weakest in study programmes in professional fields 8.4. Theatre and movie art, 2.3. Philosophy, 2.4. Religionand Theology, 5.11. Biotechnologies and 8.2. Fine arts 8 students enrolled in professional field 8.3, 14 students in professional fields 2.3 and 2.4 and 15 students in professional fields 5.11 and 8.2

The majority of students in full-time education have chosen study programmes in professional fields 2.1. Philology (444), 1.3. Pedagogy of training in… (409) and 1.2. Pedagogy (408). A large part of the students who will study in part-time form of study has chosen study programmes in professional fields 4.6. Informatics and computer sciences (139) and 1.3. Pedagogy of training in ... (108). It is striking that students are interested in study programmes in professional fields 3.7. Administration and Management (173) and 3.8. Economics (256) in paid form, and the most of them have chosen study programmes part-time – 134 and 182 students, respectively. The increased interest in these study programmes in a paid form of education is due to the fact that in recent years, at the national level, there has been a significant reduction in places for state-sponsored training in study programmes in the relevant professional fields.

On the basis of the reports generated by the tool for different years, the HEIs management can compare the trends in student enrolment and their interest in study programmes in all professional fields. Fig. 3 shows the generated report for Indicator 3.2 for the previous year (2021). The results show that there is a greatly increased interest in study programmes from some professional fields (e.g. 4.6., 5.3.), while the students’ interest in others has decreased significantly (e.g. 3.2., 3.6., 3.7., 3.8., 4.2., 4.3., 4.5., 5.11., 8.4., 9.1.). Such comparisons allow HEI leadership to analyse the reasons for decrease in the interest of students in study programmes, take corrective measures to increase the students’ interest (e.g. organizing a wider application campaign to attract more students, improving the material base, increasing the quality of education, etc.), as well do all the best to maintains high standards for study programmes in which there has been increased interest in recent campaigns.

Fig. 4 presents a generated report of the average score of the applicant students in the competitive university entrance exams (Indicator 4.3). The high results of the exam in the Russian language (5.69) and Physics (5.61) are impressive, as well as the low average result of the exam in History of Bulgaria (3.07). Based on these results, the HEI management and members of the committee that organizes these entrance exams can study in-depth the reasons for high/low average grades and take corrective measures (e.g. stimulating members of the faculty staff to conduct preparatory courses for the exams with low results that will lead to better performance of candidate students during the next enrolment campaign).

Fig. 2. Generated report for Indicator 3.2 (2022)

Fig. 3. Generated report for Indicator 3.2 (2021)

Fig.4. Generated report for Indicator 4.3

4. Conclusions

StEnrAnalyst is provided for real-time testing at the University of Plovdiv. Different stakeholder groups will use the tool to generate reports needed for monitoring of students’ enrolment campaigns. Feedback from the ongoing evaluation of the tool by various stakeholder representatives will be taken into account in the development of the final version.

In the future, the functionality of the tool will be expanded to allow data extraction for other quantitative indicators. In addition, all users will have access to dashboards that will allow them to track tendencies based on different factors

The tool can be adapted for the needs of each HEI, regardless of the type of the relevant university information systems. For this purpose, it needs to identify data analytics purposes and map the context at the university.

Acknowledgements

The paper is partly supported within the project MU21-FTF-018 “Application of big data analysis methods in higher education” of the Scientific Research Fund at the University of Plovdiv “Paisii Hilendarski”.

REFERENCES

SIMON, J., 2020. Leveraging analytics to boost enrolment.

https://universitybusiness.com/leveraging-analytics-in-enrollmentmanagement/.

UNIFYED, 2020. Data Analytics & Student Recruitment: Boosting Student enrolment In Higher Ed.https://unifyed.com/blog/dataanalytics-outlining-student-enrollment-strategies-in-higher-ed.

RICOH, 2022. Enrolment Management Solutions. https://www.ricohusa.com/en/industries/higher-education/enrollment-managementsolutions.

RAPID INSIGHT, 2022. How to Optimize Enrolment Management with Predictive Analytics?

https://www.rapidinsight.com/wp-content/uploads/2022/06/OptimizeEnrollment-Ebook-1-compressed.pdf.

EILOART, J., 2017. How schools and universities are succeeding with data analytics. https://www.itproportal.com/features/how-schoolsand-universities-are-succeeding-with-data-analytics/.

WILEY, 2020. 5 Ways Artificial Intelligence May Influence Higher Education Admissions & Retention. https://edservices.wiley.com/ artificial-intelligence-in-higher-ed-admissions-retention/.

EKOWO, M., PALMER I., 2016. Predictive Analytics in Higher Education. Retrieved from:

https://www.newamerica.org/education-policy/reports/predictiveanalytics-in-higher-education/.

KABAKCHIEVA, D., 2012. Student performance prediction by using data mining classification algorithms. International journal of computer science and management research, 1(4), 686 – 690.

SLAPAK, D., JENKINS, W., 2020. AI Conversations: Reimagining Success in Higher-Education.

https://www.cio.com/article/3565200/ai-conversations-reimaginingsuccess-in-higher-education.html.

ALLEGRO ANALYTICS, 2019.How Allegro uses analytics to boost student enrolment.https://allegrolearnings.com/wpcontent/ uploads/2019/04/Allegro_Analytics.pdf.

DELCOURE, N., CARMONA, J.S., 2019. Enrollment management analytics: a practical framework, Journal of Applied Research in Higher Education, 11(4), 910 – 925. https://doi.org/10.1108/ JARHE-10-2018-0209.

KARDAN, A., SADEGHI, H., GHIDARY, S., SANI, M., 2013. Prediction of student course selection in online higher education institutes using neural network. Computers Education, 65, 1 – 11.

CANDLEFOX, 2022. How the Candlefox Provider Dashboards Empower Campaign Performance Through Data. https://www.candlefox.com/ blog/provider-dashboards/.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева