Математика и Информатика

2018/5, стр. 444 - 454

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova
E-mail: mariq.gachkova@gmail.com
Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
236, Bulgaria Blvd.
4003 Plovdiv, Bulgaria
Martin Takev
E-mail: takevm@gmail.com
Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
236, Bulgaria Blvd.
4003 Plovdiv, Bulgaria
Elena Somova
E-mail: eledel@uni-plovdiv.bg
Faculty of Mathematics and Informatics
Plovdiv University “Paisii Hilendarski”
236, Bulgaria Blvd.
4003 Plovdiv, Bulgaria

Резюме: The paper presents game-like elements suitable for the realization of a gamified e-course and their representation as components in the e-learning environment Moodle. An example of the design of a gamified e-learning course in Moodle is shown. The paper contains comparison charts for the assessment of the course participants. Feedback of the effectiveness of certain aspects of the gamified e-course is collected by a survey.

Ключови думи: gamification; e-learning course design; e-learning

I. Introduction

In accordance with the development of technology and the evolution of the learning environment, the needs of modern learners have changed. Educators often use games and game-like environments (Gachkova & Somova, 2016) to attract learner’s attention during the instructional process (Kocadere & Caglar, 2018). Gamification, the use of game elements in non-game contexts, has become a popular technique to enhance instructional outcomes in both education and organizational learning, and many recommendations have appeared regarding such learning environments1) (Kapp, 2012), (Landers & Callan, 2012).

Gamification of learning is an educational approach to motivate students to learn by using video game design and game elements in learning environments (Kapp, 2012). Gamification, broadly defined, is the process of defining the elements, comprising games, make those games fun and motivate the players to play them continually, and then using those same elements in a non-game context to influence behavior (Deterding, Dixon & Khaled, 2011).

Gamification can be provided in two variants (Kapp, 2012): structural gamification (without any changes to the learning content) and content gamification (consisting of altering the learning content to make it more game-like).

Some Learning Management Systems are using methods and ideas from games and propose gamification, like GENIE, TalentLMS, Moodle, Frog and Expertus One.

For example, GENIE 2 implements the following game-like elements: rewarding with badges and points for achieving learning goals, preparation of leaderboards for stimulating the competitive spirit, putting deadlines to tasks, and learning through gradually passing through levels.

The cloud-based platform for e-learning TalentLMS4) supports gamification through: giving points for performed actions (going through learning resources for example), collecting various badges for passed tests, receiving certificates and awards for finishing a course, re-certificate on certain time periods, leaderboards – displayed by charts and diagrams and passing the course by levels.

Although Moodle is not a platform designed for gamification, it has most of the popular game-like elements, which were explained in (Somova & Gachkova, 2016) and we will use in the current study.

The aim of the paper is to make a research on learner’s opinion about gamified approach in learning and the obtained impact in learning quality and efficiency, according to students. For this purpose, a gamified e-course has to be created.

Section 2 presents the used methodology approach in this case study. Section 3 shows the design of our e-course, including game-like elements and assignments. Participants in the course and their user types are determined in Section 4. Analysis of the of assignments’ assessment is presented in Section 5. A COLLES survey with participants and an analysis of the survey results are given in Section 6. The paper ends with a conclusion summarizing the contributions of the authors as well as with some ideas for future works.

II. Methodological Approach

The study is designed as a case study based on structural gamification (Kapp, 2012) of a standard learning environment. (Kapp, 2012) describes structural gamification as the application of game elements to propel a learner through content with no changes to the content itself. The content does not become gamelike, only the structure around the content. The primary focus behind this type of gamification is to motivate the learners to go through the content and to engage them in the process of learning through rewards (for example: gaining points for watching a video or completing an assignment).

Structural gamification in our study is achieved by including some gamebased elements in the e-course sources, that are explained in the next section. Participants use the gamified learning environment for ten weeks. Based on weekly assignments, the participants are evaluated. The research process consists of 4 phases:

– The design of the gamified e-course in e-learning environment;

– Determination of participant types in the case study;

– Analysis of the assessment of assignments included in the gamified e-course;

– Analysis of the answers collected by COLLES Survey included in the gamified e-course.

III. The Design of Gamified e-Learning Course

A gamified e-learning course is designed for use in this study. The course supports the discipline “Modeling and management of business processes” in the bachelor’s degree program “Business information technologies” at University of Plovdiv “Paisii Hilendarski”, Bulgaria. The e-course is realized in the learning management system Moodle3). In Table 1 gamification elements are presented as Moodle components.

The e-learning course is arranged so that each learning week corresponds to one level (totally 10 levels). The course uses 4 levels with entry requirements and rules.

Levels include quests (assignments), suitable to the current week’s subject. There are various quests, such as preparing a project, building a wiki, taking a test or reading an article. Some of the assignments are set as individual tasks and others have to be finished as a team work.

During the learning process, learners are awarded points for completing assignments. Only those with a certain score are able to pass onto the next level. The learners without sufficient score to unlock the next content, could re-send corrected assignments a second time (game-based learning model uses game cycle by (Garris, Ahlers & Driskell, 2002)).

8 assignments are set in the current gamified e-course (see Table 2), and 7 of them need assessment. 7 of the assignments are individual (marked with I in Table 2) and 1 is a group one (marked with G in Table 2). Levels 2, 4, 8 and 9 have entry requirements a set of nested restrictions to apply complex logic, every level can start only if the following 3 conditions are met:

– The previous assignment(s) is finished;

– The previous assignment(s) is finished with the minimum required points in assessment (e.g. equal or greater than 30%);

– The deadline is met (timelines are set).

Table 1. Gamification elements used during the design of gamified e-course in Moodle

Gamication elementMoodle realizationLevelto unlock the levels)QuestIndividual or Group assignmentBadgeMoodle custom badgeLeader boardVisible report with the assignment’s points and ranksBonusPoints for nishing an assignmentRewardAdditional recourses with interesting facts, etc., unexpectedlyreceived after completing some work in the courseComboAdditional instructions/help for the next assignment or forreaching special requirements
Game RulesLearning process rulesStory/historyDescription of the learning resources and activitiesGame progressCourse progressStatusDi󰀨erent character is attached to each level (section)TeamMoodle GroupTime frameTime restrictions for tests and assignments

Out of the levels (marked with level 0 in Table 2), the participants have a group assignment to build a wiki resource. In the last level, learners have to answer the questions in a COLLES Survey.

Table 2. Gamified e-course components (by levels)

Level012345678910EntryRequirementsyesyesyesyesAssignment (I/G)GIIIIIIIForumyesyesyesyesyesyesyesyesyesyesyesBadges(B1/B2/B3)B3B1,B2B1,B2B1,B2B1,B2B1,B2B1,B2Point BonusesyesyesyesyesyesyesyesCombosyesyesyesyesyesRewardsyesyesyesyesyesyesyesyes

The gamified e-course is designed to give badges for a set of requirements. On Table 3 the used three types of badges (B1/B2/B3) are presented, and each one of them has different requirements. There are two methods to achieve the badges in the course – automatically, when the user meets some certain criteria and manually – by the teacher, who can decide to give the badge to the student.

Students can receive different prizes: bonuses like points for finishing an assignment, special combos like additional instructions and help for the next assignment, or unexpected rewards like additional recourses with interesting facts, etc.

To provoke competitive spirit, learners’ scores (ordered from highest to lowest) are placed on a leader board, visible for all learners, with the points they earn throughout the course.

As a social component, students have forums in each level where they can share their accomplishments with other learners, share how they have achieved them or discuss the problems in quests.

Table 3. Types of badges set in gamified e-course

Type of BadgeDescriptionAchievement TypeFirst Finished (B1)The learner should be the rst that nishedand sent the assignment.AutomatedBest result (B2)The learner should have more than 80% fromthe maximum points.AutomatedBest group work (B3)The team should have the best result in theassignment. Each learner from the awardedteam receives the badge.Manual

Students receive different character (status) on each level (for example: Worker – level 1, Team Leader – level 2, …, President – level 10). Some story/history is added in the description of the learning resources and activities. For example, the story of assignment 2 is: To obtain the higher position “Team Leader” in the company “Progress Ltd” you have to model a diagram for the business process “Purchasing a property” with following activities and requirements: ….

At any time, students can see their course progress (current position in the course, to where are checked passed resources and activities by teacher or students themselves).

All the students, who have started with the gamified e-course and did not pass some of the levels, are left to continue with the standard e-course without gamified elements.

IV. Participants and User Types

1. Participants in the case study

For the analysis of the results and statistics, data is obtained from 113 undergraduate students, enrolled in the education program “Business information technologies” at the University of Plovdiv “Paisii Hilendarski”, Faculty of Mathematics and Informatics. Opportunity to choose between standard and gamified e-learning environment is given to the students. A total of 41 students have preferred to participate in the designed gamified e-course and 27 of them have completed the full list of assignments. There are three reasons for the remaining 14 participants to discontinue the gamified e-course:

– The participants did not meet the time criteria the time limits are set for 4 assignments in the e-course;

– The participants did not meet the points criteria for some of the assignments the participants could not meet the target for minimum points required;

– The participants prefer to continue learning in a standard e-course.

2. Determination of user types

One of the theoretical models outside the field of gamification suggests that the use of new technologies in training, including gamification, may lead to poor instructional outcomes when people are not comfortable and experienced with them (Landers & Callan, 2012). (Landers & Armstrong, 2017) concludes that the learner’s lack of experience with virtual worlds and poor attitude towards the value of virtual worlds for training would minimize any benefit from using virtual worlds.

Based on these studies, at the beginning of the course students have the ability to choose between gamified or standard e-learning environment. 41 of 113 students have preferred to participate in the gamified variant of the course.

(Bartle, 1996) examined players expectations and produced the first effort at player categorization, classifying players using their act/interact preferences and orientation (world/player). He considers 4 categories (killer, achiever, explorer and socializer) described in Table 4.

Table 4. Game elements according to the user type

User typeDenition (Bartle, 1996)Game elementsKillerTries to dominate other players by actingon the people in the environmentLeader board, Points, Courseprogress, Status, CombosAchieverActs in the world and care about theassignments in the environment in orderto winBadges, Levels, Courseprogress, BonusesExplorerInteracts with the world. They want toexplore the environment and discover asmany new things as possibleQuests (Individualassignments), Rewards,HistorySocializerInteracts with the people in an environmentand usually takes advantage of thecommunication function to socializeForums, Quests (GroupAssignments), History

According to (Kocadere & Caglar, 2018), learning environments should be designed to incorporate a variety of elements so that each player type is able to encounter those that attract them. We suggest some appropriate game elements in

Table 4 to attract each learning (player) type.

V. Analysis of the Assessment of Assignments

The main assessment of the students in the gamified e-course is done by the first six assignments in levels 1, 2, 4, 5, 6 and 8. At the end all students (from both variants of the course) fill in a test. The total number of students that passed the exam (in their first attempt) is 59, where 27 of them have finished the gamified course and 32 – the standard e-course.

Fig. 1 shows the extended chart with average students’ scores (in points, where the maximal points per assignment are 100) for each assignment and the count of participating students.

Figure 1. Average students’ scores vs. count of participating students

Fig. 2 shows the average scores of only those students, who have successfully completed the whole gamified course. It is obvious that the lower scores have been achieved for the first three assignments. We think this has mainly happened, because the previous students’ experience with gamification is poor or is missing.

Figure 2. Average assessment of students that entirely completed the gamified e-course (by levels)

This is also one of the reasons that many students discontinue the gamified course. The other reasons are lack of time to follow time requirements, preferences for easier learning process without many activities (regardless of the learning quality), not attracted of the game approach, etc. The percentages of discontinued students are as follows: after level 1 – 50%, level 2 – 29%, level 4 – 0%, level 5 – 14%, level 6 – 7% and level 8 – 0%. Thus, most of the participants (79%) discontinue the course after the first two assignments.

VI. Analysis of the Colles Survey

The gamified e-course is designed including COLLES (The Constructive On-Line Learning Environment Survey)5). The survey provides feedback on the effectiveness of certain aspects of online learning. By definition COLLES survey is carried out twice with the same questions; the first time, in the beginning of the course – to find out what the student wants (so called “Preferred”) and the second time, at the end of the learning – to find out what actually happened (so called “Actual”).

Current survey is divided into six categories: Practical importance, Self-criticism, Dialogic, Teaching help, Mutual assistance and Understandability. Students can choose from five-points Likert scale to answer the questions in COLLES survey. Possible values in the scale are scored as follows: 1 – Almost Never, 2 – Seldom, 3 – Sometimes, 4 – Often, 5 – Almost Always.

Figure 3 shows summarized results, divided into the six categories of the conducted COLLES survey.

According to students, the achieved “Teaching help” is higher than expected. In four categories (” Practical importance”, “Self-criticism”, “Dialogic” and “Mutual assistance”), students’ “preferred” answer is scored higher than the “actual” answer. But we have to take into account that the maximum difference calculated between both answers for “Practical importance” category is 0,91 (total of 5).

In category “Understandability” of the gamified course, the “actual” average score is equal to the “preferred” score of the involved students. This means that the participants are satisfied with the understandability of the course.

Figure 4 presents in details the results of COLLES survey for the category “Understandability”. The students’ opinions are shown in 4 categories: “understanding other students”, “other students understand me”, “understanding teacher” and “teacher understands me”.

Figure 3. COLLES survey results for gamified e-course by categories

The average results for “Actual” and “Preferred” answers in each category is more than 3 (Sometimes) total of 5. Presented as a percentage, average “Understandability” is more than 75%.

Figure 4. COLLES survey results for the category “Understandability” of the gamified e-course

Students give higher assessment to “Preferred” according to “Actual” state for the categories “teacher understands me” and “understanding other students” and lower assessment to others. It is obvious that students have obtained more understanding from teachers in the learning process than they expected. The same situation is with “other students understand me”. Something more, these values strongly incline to the answer “Almost Always”.

VII. Conclusions

The presented gamified e-learning course is proposed together with a standard e-learning course to give students options to choose the more appropriate environment for their learning. In the game-like environment there are 4 types of learners (players): killer, achiever, explorer and socializer, which are attracted to different activities and environment components. Our gamified learning course is intended for all learning (player) types, because the course design incorporates a variety of elements, so that each learning type is able to encounter those that attract them.

In conclusion, the current study is thought to provide further clarity about the result of designing and applying gamified learning courses. Due to the given analysis in Section 5 and 6, the results of this study can be summarized in 4 main points:

– Students, that participate in the gamified e-course, spend more time working on assignments in the learning environment, than the students who preferred the standard e-course;

– Students in the gamified e-course have higher grades than the students, attending the standard e-course;

– Students in the gamified e-course are searching for less explanations than students in the standard e-course;

– The average understandability of students in the gamified course is equal to their preferences and higher than 75%.

Our future work in this field continues with design and realization of a Moodle module for gamified learning, which will make the realization of a gamified course in Moodle with all game-like elements (some of them now missing) easier.

NOTES

1. Brousell, L. (2013). How gamification reshapes corporate training. http://www. cio.com/article/728268/How_Gamification_Reshapes_Corporate_Training. Accessed 09.07.2018

2. GENIE. http://www.growthengineering.co.uk/genie-content-authoring-tool/. Accessed 09.07.2018

3. Moodle. https://moodle.org. Accessed 09.07.2018

4. TalentLMS. http://www.talentlms.com/. Accessed 09.07.2018

5. The Constructivist On-Line Learning Environment Survey (COLLES). https:// surveylearning.moodle.com/colles/. Accessed 09.07.2018

REFERENCES

Bartle, R. (1996). Hearts, clubs, diamonds, spades: Players who suit MUDs, Journal of MUD research, 1(1), 19 – 58.

Deterding, S., Dixon, D. & Khaled, R. (2011). From game design elements to gamefulness: defining ‘gamification’, 15th International MindTrek Conference. New York: ACM, 2011, 9 – 15.

Gachkova, M. & Somova, E. (2016). Game-based approach in E-learning, IX National Conference „Education and Researches in Information Society”, 26 – 27.05.2016, Plovdiv, 2016.

Garris, R., Ahlers, R. & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441 – 467.

Kapp, K. M. (2012). The gamification of learning and instruction: Gamebased methods for trainig and education. San Francisco: Pfeiffer.

Kocadere, S. A. & Caglar, S. (2018). Gamification from player type perspective: A case study, Educational Technology & Society, (21) 3.

Landers, R. N. & Armstrong, M. B. (2017). Enhancing instructional outcomes with gamification: An empirical test of the Technology

Enhanced Training Effectiveness Model, Computers in Human Behavior, Vol. 71, June 2017, 499 – 507.

Landers, R. N. & Callan, R. C. (2012). Training evaluation in virtual world: Development of a model, Journal for Virtual Worlds. Research, 5(3), 1 – 20.

Somova, E. & Gachkova, M. (2016). An Attempt for Gamification of Learning in Moodle, International Conference on e-Learning (eLearning’16), 08 – 09 September 2016, Bratislava, Slovakia, ISSN: 2367-6787 (online), ISSN: 2367-6698 (print), ISSN: 2367-6701 (cdrom), 2016, 201 – 207.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева