Математика и Информатика

https://doi.org/10.53656/math2021-4-1-fin

2021/4, стр. 367 - 379

FINANCIAL PROJECTS AND LOANS WITH DIFFERENT, DECURSIVE ANNUITIES, INTEREST RATES AND CAPITALIZATION PERIODS WITH THE USE OF EXCEL

Sead Rešić
SCOPUS: 57217345017
E-mail: sresic@hotmail.com
Department of mathematics
Faculty of Science
University of Tuzla
4 Univerzitetska St.
Tuzla Bosnia and Herzegovina
Vehbi Ramaj
E-mail: vehbiramaj@yahoo.com
Business Faculty
University of “Haxhi Zeka”
Peja Kosovo
Biljana Petković
E-mail: biljana.p85@gmail.com
Banking and Auditing
Faculty of Finance
Alfa BK University
Belgrade Serbia
Samira Aganović
E-mail: samira.aganovic@rtvfbih.ba
Faculty of Economics
University of Tuzla
Tuzla Bosnia and Herzegovina

Резюме: The authors of the paper have innovated and explored the theory of size relations of a financial project, the duration of its creation, the determination of its price, the duration of use and financing of the price of a project. The duration of use of a financial project has two planned time intervals. The first time interval is planned for repayment of the loan amount of the project price, and the second one is for acquisition of the planned profit. A new model of loan repayment is used – with different; decursive annuities, interest rates and periods of capitalization. The introduced theory was applied to calculations in the form of a financial project model using Excel.

Ключови думи: financial project; loan; annuities; interest rates; capitalization

Introduction

Projects with planned duration, price, price financing and duration of use are financial projects, projects in general. Project holders are mostly legal entities or individuals. Project funding can be self-financing, loan (credit), and a combination of both. Project management and administration is mainly performed by project management with associates.

The topic of the paper is innovation and research of the theory for the introduction of a model of a financial project, with loan financing of its price, which can be supported by spreadsheets (MS Excel). Among other things, the theory will be based on the application of complex, conformal capitalizations, by discounting and discounting the amounts of the present term to the amounts of earlier and later terms of the same time course.

1. Planned loan financing of the project price amount by tranche payments

Loan financing of the project price can be done by paying one tranche at the beginning of the project or by paying two or more tranches in the time interval of project development. The general theory will be introduced for \(m\) different tranche amounts with different payment terms, different interest rates and different lengths of capitalization period.

Sizes with introduced marks for the 1st capitalization period:

(1) Amount of the \(1^{\text {st }}\) tranche, \(T R_{1}\)

(2) Payment term of the \(1^{\text {st }}\) tranche, \(T E_{0}\) in format dd.mm.yyyy hh: mm: ss

(3) Length of the \(1^{\text {st }}\) capitalization period, in days, \(d_{1}\)

(4) Length of the \(1^{\text {st }}\) capitalization period, in years, \(g_{1}=\tfrac{d_{1}}{365}\)

(5) Amount of the annual interest rate, \(P_{1}\)

(6) Amount of the annual interest factor, \(R_{1}=1+P_{1}\)

Sizes with introduced marks for the \(\mathbf{2}^{\text {nd }}\) capitalization period:

(1) Amount of the \(2^{\text {nd }}\) tranche, \(T R_{2}\)

(2) Payment term of the \(2^{\text {nd }}\) tranche, \(T E_{2}=T E_{0}+d_{1}\) in format dd.mm.yyyy hh: mm: ss

(3) Length of the \(2^{\text {nd }}\) capitalization period, in days, \(d_{2}\)

(4) Length of the \(2^{\text {nd }}\) capitalization period, in years, \(g_{2}=\tfrac{d_{2}}{365}\)

(5) Amount of the annual interest rate, \(P_{2}\)

(6) Amount of the annual interest factor, \(R_{2}=1+P_{2}\).

Sizes with introduced marks for \(\boldsymbol{m}\) capitalization period:

(1) Amount \(m\) of the tranche, \(T R_{\mathrm{m}}\), for \(m \in\{3,4, \ldots, M\}\)

(2) Term of payment \(m\) tranche, \(T E_{\mathrm{m}}=T E_{\mathrm{m}-2}+d_{\mathrm{m}-1}\)

(3) Length \(m\) of the capitalization period, in days, \(d_{m}\)

(4) Length \(m\) of the capitalization period, in years, \(g_{m}=\tfrac{d_{m}}{365}\)

(5) Amount of the annual interest rate, \(P_{\mathrm{m}}\)

(6) Amount of the annual interest factor, \(R_{\mathrm{m}}=1+P_{\mathrm{m}}\)

(7) Term end \(m\) of the capitalization period, \(T E_{\mathrm{m}}=T E_{\mathrm{m}-1}+d_{\mathrm{m}}\)

(8) Amount of self-financing for term \(T E_{\mathrm{m}}, S F\)

Input values for calculations are: tranche amounts, payment term of the \(1^{\text {st }}\) tranche (\(T E_{0}\) ), length of capitalization period in days, annual interest rate amounts and self-financing amount (\(S F\) ).

Some or all of the tranche amounts, capitalization periods and interest rates may have equal values.

Price of the project and length of its development:

(1) Date of completion of the project, \(T E_{\mathrm{m}}=T E_{\mathrm{m}-1}+d_{\mathrm{m}}\),

(2) Discounted amount of the first tranche \(E T R_{1}\) for the date of completion of the project, \(E T R_{1}=T R_{1} \cdot R_{1}{ }^{g}{ }^{l} \cdot R_{2}{ }^{g 2} \ldots R_{m}{ }^{g m}\)

(3)Discountedamount of the \(2^{\text {nd }}\) tranche \(E T R_{2}\) forthedate of completionoftheproject, \(E T R_{2}=T R_{2} \cdot R_{1}{ }^{g l} \cdot R_{2}{ }^{g 2} \ldots R_{m}{ }^{g m}\)

(4) Discounted amount \(m\) of the tranche \(E T R_{\mathrm{m}}\) for the project completion date, \(E T R_{m}=T R_{m} \cdot R_{m}{ }^{g m}\),

(5) Amount of the project cost \(G_{0}\); the sum of discounted tranche amounts, reduced by the amount of self-financing, \(G_{0}=E T R_{1}+E T R_{2}+\ldots+E T R_{\mathrm{m}}-S F\)

(6) Length of the project development period, in days, \(R d=d_{1}+d_{2}+\ldots+d_{\mathrm{m}}\) or \(R d=T E_{\mathrm{m}}-T E_{0}\)

(7) Length of the project development period, in years, \(R g=\tfrac{R d}{365}\)

In addition to the price and length of the development period, the project has a planned duration, which begins with the deadline for the development of the project. The duration of the project has \(n\) internal time intervals for decursive presentation of the amount in Bosnia and Herzegovina convertible marks (KM) of the two sides of the business; DEBT (expenditures, expenses) and DEMAND (receipts, revenues). The amounts of the DEBT side \(D u\) are negative or zero (\(\mathrm{Du} \leq 0\) ), and the amounts of the DEMAND side \(P o\) are positive or zero (\(P o \geq 0\) ), at the end of the time interval with the internal rate \(p\). The sum of the amount DEBTED and the amount RECEIVED is BALANCE \(S\), i.e. \(S=D u+P o\), for the same term of the time interval of the internal rate \(p\).

The amount of the balance \(S\) in relation to the amounts owed \(D u\) and claimed Po, has the following relations:

(1) \(S \gt 0 S \gt 0\) for \(P o \gt |D u| P o \gt |D u|\),

(2) \(S=0 S=0\) for \(P o=|D u| P o=|D u|\),

(3) \(S \lt 0 S \lt 0\) for \(P o \lt |D u| P o \lt |D u|\).

In general, the discounted amount \(D S\) of the balance \(S\) in relation to the project price amount \(G_{0}\) and its term, determines the absolute payback \(A O\) of the project price for the internal rate \(p\) of the time interval.

The relative payback \(R O\) of the project price amount is the quotient of the absolute payback amount and the project price amount \(R O=\tfrac{A O}{G_{0}}\) or expressed as a percentage, \(R O \%=\tfrac{A O}{G_{0}} \cdot 100 \%\).

A series of balance amounts, \(S_{1}, S_{2}, \ldots, S_{\mathrm{n}}\) has a number of discounted amounts, \(D S_{1}, D S_{2}, \ldots, D S_{\mathrm{n}}\) for the start date of the project. There are a number of discounted amounts through partial sums \(D S_{1} ; D S_{1}+D S_{2} ; \ldots ; D S_{1}+D S_{2}+\ldots+D S_{\mathrm{n}}\), each of which, starting from the first, can repay the amount of the project price \(G_{0}\), if:

\(S U M_{1}=D S_{1} \geq G_{0} ; S U M_{2}=D S_{1}+D S_{2} \geq G_{0} ; S U M_{n}=D S_{1}+D S_{2}+\ldots+D S_{n} \geq G_{0}\).

By definition, the partial sums are absolute repayments, i.e.:

\(S U M_{1}=A O_{1}, S U M_{2}=A O_{2}, \ldots, S U M_{\mathrm{n}}=A O_{\mathrm{n}}\).

If within the planned duration, the project is not in operation for some reason, then all partial sums of the discounted balance amounts are equal to zero. In this case, it is necessary to calculate the increased project price amounts for the amounts of compound interest by capitalization periods. For negative balance amounts, the project beneficiary has losses with adequate, new loan amounts.

The best option is to repay the project price with the first partial amount \(S U M_{1}=D S_{1} \geq\) \(G_{0}\) ), that is, the discounted amount of the first balance \(S_{1}\).

The worse option is to repay the project price with the last partial amount, \(S U M_{\mathrm{n}}=D S_{1}+D S_{2}+\ldots+\mathrm{DS}_{\mathrm{n}} \geq G_{0}\).

The last partial amount cannot repay the amount of the project price, if it is:

\(D S_{1}+D S_{2}+\ldots+D S_{\mathrm{n}} \leq G_{0}\).

It is desirable that all amounts of the balance be positive, that is \(S_{1} \gt 0, S_{2} \gt 0, \ldots, S_{\mathrm{n}} \gt 0\) and that their discounted amounts can repay the amount of the project price up to and including the time interval of the ordinal number \(k\) for \(1 \leq k \leq n\). Some balance amounts may be equal to zero or negative amounts, with the proviso that all discounted balance amounts may repay the project cost. Therefore, a loan with \(k\) different, decursive annuities that are successively equal to the balance amounts has been contracted to repay the project price: \(\mathrm{a}_{1}=S_{1}, a_{2}=S_{2}, \ldots a_{\mathrm{k}-1}=S_{\mathrm{k}-1}, a_{\mathrm{k}}=S \leq S_{\mathrm{k}}\).

The last amount of the annuity \(a_{\mathrm{k}}\) is to cover the last balance of the debt. At the end of the time interval of the ordinal number \(k\), the project price was repaid, and the rest of the balance \(S_{\mathrm{k}}-a_{\mathrm{k}}=P_{1} \geq 0\) was the first amount of profit \(P_{1} \geq 0\). The following balance amounts, \(S_{\mathrm{k}+1}, S_{\mathrm{k}+2}, \ldots, S_{\mathrm{n}-\mathrm{k}}\), get the role of the amount of profit, \(P_{2}=S_{\mathrm{k}+1}, P_{3}=S_{\mathrm{k}+2}, \ldots\), \(P_{\mathrm{k}+1}=S_{\mathrm{n}-\mathrm{k}}\). Like balance amounts, profit amounts can be positive (greater than zero), negative (less than zero), and can have an amount equal to zero.

In general, in the loan repayment calculations, the amount of the \(1^{\text {st }}\) profit \(P_{1}\) presents the financial condition of the project beneficiary after the loan repayment, based on:

(1) For \(P_{1} \gt 0\), it follows that the loan has been repaid and the amount of the new balance is profit;

(2) For \(P_{1}=0\), it follows that the loan has been repaid and the amount of the new balance is profit;

(3) For \(P_{1} \lt 0\), it follows that the loan has been repaid and the amount of the new balance is profit or the amount of new debt, \(G_{000}=\left|P_{1}\right|\).

The amount of the new debt will be paid by the project beneficiary at the time of its arrival or will contract a new loan with the same or another creditor.

The following theory is based on the planned equalization of internal rates of return for balance amounts, with interest rates for annuity amounts, for periods of capitalization of ordinal numbers from 1 to \(k\).

2. Sizes and their relations for project cost repayment periods

During the duration of the project, the repayment of the project price amount is planned with the balance amounts in the first \(k\) capitalization periods of different durations with different interest rates.

Sizes of the 1st capitalization period:

(1) Start date of the \(1^{\text {st }}\) capitalization period, \(T_{0}=T E_{\mathrm{m}}\) in format dd.mm.yyyy hh: mm: ss

(2) Amount of the project cost, \(G_{0}\)

(3) Amount of the \(1^{\text {st }}\) balance; amount of 1st annuity, \(S_{1}=a_{1}\),

(4) Annual interest rate, \(p_{1}\)

(5) Annual interest rate factor, \(r_{1}=1+p_{1}\)

(6) Length of the \(1^{\text {st }}\) capitalization period, in days, \(x_{1}\)

(7) Length of the \(1^{\text {st }}\) capitalization period, in years, \(y_{1}=\tfrac{x_{1}}{365}\)

(8) Amount of the \(1^{\text {st }}\) discounted balance; the amount of the absolute repayment, for the term \(T_{0}, D S_{1}=S U M_{1}=A O_{1}=\tfrac{S_{1}}{r_{1} y_{1}}\)

(9) Relative payback of the project price, in percentage, \(R O_{1} \tfrac{A O_{1}}{G_{0}} \cdot 100 \%\)

Sizes of the \(\mathbf{2}^{\text {nd }}\) capitalization period:

(1) Start date of the \(2^{\text {nd }}\) capitalization period, \(T_{1}=T_{0}+x_{1}\)

(2) Amount of \(2^{\text {nd }}\) balance, amount of \(2^{\text {nd }}\) annuity, \(S_{2}=a_{2}\)

(3) Annual interest rate, \(p_{2}\),

(4) Annual interest factor, \(r_{2}=1+p_{2}\),

(5) Length of the \(2^{\text {nd }}\) capitalization period, in days, \(x_{2}\),

(6) Length of the \(2^{\text {nd }}\) capitalization period, in years, \(y_{2}=\tfrac{x_{2}}{365}\)

(7) Amount of the \(2^{\text {nd }}\) discounted balance for the term \(T_{0}, D S_{2}=\tfrac{S_{2}}{r_{1} y_{1, r_{2}} y_{2}}\)

(8) Sum of the \(1^{\text {st }}\) and \(2^{\text {nd }}\) discounted balance; the amount of the \(2^{\text {nd }}\) absolute payback, for the term \(T_{0}, S U M_{2}=A O_{2}=D S_{1}+D S_{2}=\tfrac{S_{1}}{r_{1} y_{1}}+\tfrac{S_{2}}{r_{1} y_{1, r_{2}} y_{2}} \leq G_{0}\)

(9) Relative payback of the project price, in percent, \(\mathrm{RO}_{2} \tfrac{\mathrm{AO}_{2}}{\mathrm{G}_{0}} \cdot 100 \%\)

Sizes \(\mathbf{k}^{\text {th }}\) of the capitalization period:

(1) Term of the beginning \(k^{\mathrm{th}}\) of the period of capitalization, \(T_{\mathrm{k}}=T_{\mathrm{k}-2}+x_{\mathrm{k}-1}\),

(2)Relation of the amount of the \(k^{\text {th }}\) balance, \(k^{\text {th }}\) annuity and the amount of the first profit, \(S_{\mathrm{k}}=a_{\mathrm{k}}+P_{1}\)

(3) Annual interest rate, \(p_{\mathrm{k}}\)

(4) Annual interest rate factor, \(r_{\mathrm{k}}=1+p_{\mathrm{k}}\)

(5) Length of the \(k^{\text {th }}\) capitalization period in days, \(x_{\mathrm{k}}\)

(6) Length of the \(k^{\text {th }}\) capitalization period in years, \(y_{k}=\tfrac{x_{k}}{365}\)

(7) Amount of the \(k^{\text {th }}\) discounted balance, for term \(T_{0}, D S_{k}=\tfrac{S_{k}}{r_{1}^{y_{1}}, r_{2}^{y_{2}} \ldots . r_{k}^{y_{k}}}\)

(8) Sum of the \(1^{\text {st }}\) till \(k^{\text {th }}\) discounted balance; the amount of absolute repayment, for the term \(T_{0}, S U M_{k}=A O_{k}=D S_{1}+D S_{2}+\cdots .+D S_{k}=\) \(S U M_{k}=A O_{k}=D S_{1}+D S_{2}+\cdots \cdot+D S_{k} \tfrac{S_{1}}{r_{1} y_{1}}+\tfrac{S_{2}}{r_{1} y_{1, r_{2}} y_{2}}+\cdots+\tfrac{S_{2}}{r_{1} y_{1,} r_{2} y_{2, \ldots, r_{k}} y_{k}} \leq G_{0}\)

(9) Relative payback of the project cost, in percent, \(R O_{k} \tfrac{A O_{k}}{G_{0}} \cdot 100 \%\),

(10) Term end of the \(k^{\text {th }}\) capitalization period, \(T_{\mathrm{k}}=T_{\mathrm{k}-1}+x_{\mathrm{k}}\)

(11) Length of the \(k^{\text {th }}\) capitalization period in days, \(D \mathrm{x}=x_{1}+x_{2}+\ldots+x_{\mathrm{k}}\), or \(D \mathrm{x}=T-T_{0}\)

(12) Length of the \(k^{\text {th }}\) capitalization period in years, \(D y=\tfrac{D x}{365}\)

The annuity \(a_{\mathrm{k}}\) for the term \(T_{0}\) has a discounted amount \(D a_{\mathrm{k}}=G_{0}-\left(D S_{1}+D S_{2}+\ldots+D S_{\mathrm{k}-1}\right.\).

The amount of the annuity \(a_{\mathrm{k}}\) determines the discounted amount of its discounted amount for the term \(T_{\mathrm{k}}\), i.e. \(a_{k}=D_{a_{k}} \cdot r_{1}{ }^{y_{1}} \cdot r_{2}{ }^{y_{2}} \ldots . r_{2}{ }^{y_{2}}\)

The first amount of profit \(P_{1}\) in the \(\mathrm{k}^{\text {th }}\) period of capitalization determines \(P_{1}=S_{\mathrm{k}}-a_{\mathrm{k}}\).

Therefore, it is planned to repay the project price with a loan amount \(G_{0}\) with interest amounts \(K_{\mathrm{i}}\), planned different annuity amounts \(a_{\mathrm{i}}\), different lengths of capitalization periods \(x_{\mathrm{i}}\) )and different interest rates \(p_{\mathrm{i}}\), for \(i \in\{1,2, \ldots, k\}\). Some or all of the stated amounts may be the same.

What follows is the introduction of the theory for making a repayment plan for this new loan repayment model.

3. Loan of various annuities, interest rates and capitalization periods

Primary loan amounts at the beginning and end of the 1st capitalization period:

(1) Amount of the loan at the beginning of the \(1^{\text {st }}\) capitalization period, \(G_{0}\)

(2) Term of the beginning of the loan capitalization, \(T_{0}\) in format dd.mm.yyyy hh: mm: ss

(3) Planned amount of annuities at the end of the \(1^{\text {st }}\) capitalization period, \(a_{1}=S_{1}\)

(4) Amount of the remaining debt at the end of the \(1^{\text {st }}\) capitalization period, \(G_{1}=G_{0} . r_{1}^{y_{1}}-a_{1}\)

(5) Amount of interest at the end of the \(1^{\text {st }}\) capitalization period, \(K_{1}=G_{0} \cdot\left(r_{1}{ }^{y_{1}}-1\right)\)

(6) Repayment amount at the end of the \(1^{\text {st }}\) capitalization period, \(b_{1}=a_{1}-K_{1}\)

(7) Amount repaid at the end of the \(1^{\text {st }}\) capitalization period, \(\mathrm{O}_{1}=\mathrm{b}_{1}\)

(8) Amount of the loan price at the end of the \(1^{\text {st }}\) capitalization period, \(C_{1}=G_{0} \cdot\left(r_{1}{ }^{y_{1}}-1\right)\) Primary loan amounts at the beginning and end of the \(\mathbf{2}^{\text {nd }}\) capitalization period:

(1) Start date of the 2nd capitalization period, \(T_{1}=T_{0}+x_{1}\)

(2) Planned amount of annuities at the end of the \(2^{\text {nd }}\) capitalization period, \(a_{2}=S_{2}\)

(3) Amount of the remaining debt at the end of the \(2^{\text {nd }}\) capitalization period, \(G_{2}=G_{1} \cdot r_{2}{ }^{y_{2}}-a_{2}\)

(4) Amount of interest at the end of the \(2^{\text {nd }}\) capitalization period, \(K_{2}=G_{1} \cdot\left(r_{2}{ }^{y_{2}}-1\right)\)

(5) Repayment amount at the end of the \(2^{\text {nd }}\) capitalization period, \(b_{2}=a_{2}-K_{2}\)

(6) Amount repaid at the end of the \(2^{\text {nd }}\) capitalization period, \(O_{2}=O_{1}+b_{2}\)

(7) Amount of the loan price at the end of the \(2^{\text {nd }}\) capitalization period,

\(C_{2}=G_{0} \cdot\left(r_{1}{ }^{y_{1}} r_{2}{ }^{y_{2}}-1\right)\) …

Primary loan amounts at the beginning and end of the \(\boldsymbol{k}^{\text {th }}\) capitalization period:

(1) Beginning date of the \(k^{\text {th }}\) capitalization period, \(T_{\mathrm{k}-1}=T_{\mathrm{k}-2}+x_{\mathrm{k}-1}\)

(2) Term of the end of the \(k^{\text {th }}\) capitalization period, \(T_{\mathrm{k}}=T_{\mathrm{k}-1}+x_{\mathrm{k}}\)

(3) Amount of the balance at the end of the \(k^{\text {th }}\) capitalization period, \(S_{\mathrm{k}} \geq a_{\mathrm{k}}\)

(4) Amount of annuity at the end of the \(k^{\text {th }}\) capitalization period, \(a_{\mathrm{k}}=S \leq S_{\mathrm{k}}\)

(5) Amount of the \(1^{\text {st }}\) profit at the end of the \(k^{\text {th }}\) capitalization period, \(P_{1}=S_{\mathrm{k}}-a_{\mathrm{k}}\)

(6) Amount of the remaining debt at the end of the \(k^{\text {th }}\) capitalization period, \(G_{k}=G_{k-1} \cdot r_{k}{ }^{y_{k}}-a_{k}=0\)

(7) Amount of interest at the end of the \(k^{\text {th }}\) capitalization period, \(K_{k}=G_{k-1} \cdot\left(r_{k}{ }^{{ }^{y_{k}}}-1\right)\)

(8) Amount of repayment at the end of the \(k^{\text {th }}\) capitalization period, \(b_{\mathrm{k}}=a_{\mathrm{k}}-K_{\mathrm{k}}\)

(9) Amount repaid at the end of the \(k^{\text {th }}\) capitalization period, \(O_{\mathrm{k}}=O_{\mathrm{k}-1}+b_{\mathrm{k}}\)

(10) Amount of the loan price at the end of the \(k^{\text {th }}\) capitalization period, \(C_{k}=G_{0} \cdot\left(r_{1}{ }^{y_{1}} r_{2}{ }^{y_{2}} \ldots r_{k}{ }^{y_{k}}-1\right)\)

The introduced theory is supported by spreadsheets (MS Excel) data processing without additional programming, shown on the example of one financial project.

4. Application of Excel in making an example of a financial project

Example 1:

With the term \(T E_{1}=24.03 .2017\) 09:54:22, the preparation of the financial project of loan financing began with the payment of the \(1^{\text {st }}\) tranche of the amount, \(T R_{1}=35,800 \mathrm{KM}\). After \(d_{1}=300\) days, the \(2^{\text {nd }}\) tranche of the amount was paid, \(T R_{2}=29,000 \mathrm{KM}\). After the next \(d_{2}=220\) days, the \(3^{\text {rd }}\) tranche of the amount \(T R_{3}=31,200\) KM was paid when the financing of the project was completed, and, after \(d_{3}=380\) days, its development was completed. There was no self-financing of project development costs, to reduce the loan amount.

Annual interest rates have been agreed for the capitalization of tranches and the calculation of the project price, successively: \(P_{1}=4.2 \%, P_{2}=4.5 \%\) and \(P_{3}=4.9 \%\). During the duration of the project, 4 time intervals are planned: \(x_{1}=150\) days, \(x_{2}=235\) days, \(x_{3}=310\) days and \(x_{4}=255\) days, to repay its price \(G_{0}\), planned decursive balance amounts; \(S_{1}=-7.420 \mathrm{KM}, S_{2}=0.000 \mathrm{KM}, S_{3}=59.530 \mathrm{KM}\), and the amount \(S \leq S_{4}=69.845 \mathrm{KM}\). Successive annual internal rates are planned: \(p_{1}=5.1 \%, p_{2}=5.3 \%, p_{3}=5.5 \%\), and \(p_{4}=5.9 \%\) for discounting and discounting the balance amount.

Using spreadsheet processor, calculate: the amount of the project price and the length of its development, the absolute and relative repayability of the project price amount with partial amounts of discounted balance amounts, the amount of the balance, covering the last remaining loan debt, and the amount of the \(1^{\text {st }}\) profit. Make a loan repayment plan for the project cost amount, with different annuity amounts, equal to different balance amounts, for planned equal internal balance rates and interest rates for annuities with different capitalization period lengths. Present the amounts of the primary loan amounts graphically.

The representation of the example model was done by the use of MS Excel data processor, through a spreadsheet containing 4 sheets. The cells with input values are highlighted in yellow color, the cells, containing nested and cloned values are white, and cells, presenting the output amounts are in green color.

In the \(1^{\text {st }}\) spreadsheet (Figure 1), the tranches were capitalized with the calculation of the project price amount \(G_{0}=104.062,292 \mathrm{KM}\) and the length of the project development period \(R d=900\) days or \(\mathrm{Rg}=2,465753425\) years.

35.800,000KM24.03.2017 09:54:22300days0,821 917 808years0,042 000 0004,200%1,042 000 00029.000,000KM18.01.2018 09:54:22220days0,602 739 726years0,045 000 0004,500%1,045 000 00031.200,000KMThelength of the first capitalization period in years, g1=d1/365=Table1: Planned financing of the projectprice amount with aloan in tranches:Amount ofthefirst tranche,TR1=Deadlinefor payment ofthe first tranche, TE1=Length of the first capitalization period in days, d1=Annual interest rate for the firstcapitalization period, P1=Annualinterest ratefactor for thefirst capitalization period,R1=1+P1=Amount of thesecond tranche,TR2=Term of payment of thesecond tranche,TE2=TE1+d1=Thelength of the second capitalization period in days, d2=Thelength of the second capitalization period in years, g2=d2/365=Annual interest rate for the second capitalization period, P2=Annual interest rate factorfor the second capitalization period, R2=1+P2=Theamountof thethird tranche, TR3=
26.08.201809:54:22380days1,041095890years0,0490000004,900%1,04900000010.09.201909:54:2239.968,721KM31.300,366KM32.793,205KM0,000KM104.062,292KM900days2,465753425yearsThe length ofthethird capitalization period in years, g3=d3/365=Thedeadline for payment of thethird tranche, TE3=TE2+d2=The length ofthethird capitalization period in days, d3=Annualinterest rate for thethird capitalization period, P3=Annualinterest ratefactorfor thethird capitalizationperiod,R3=1+P3=Deadlinefor completion offinancing the planned project price, TE4=TE3+d3=Discounted amountofthefirsttranchefortheterm(TE4),ETR1=TR1*R1^g1*R2^g2*R3^g3=Discounted amount of thesecondtranchefortheterm(TE4),ETR2=TR2*R2^g2*R3^g3=Discounted amount of thethird tranchefor the term (TE4),ETR3=TR3*R3^g3=Theamountofdiscounted tranche amounts with theamountofself-financing,G0=ETR1+ETR2+ETR3-SF=Length of project development deadline in days, Rd=d1+d2+d3=Length of project development deadline in years, Rg=Rd/365=Amount ofself-financing (SF),for theterm (TE4),SF=

Figure 1. Static form of he spreadsheet 1

In the \(2^{\text {nd }}\) spreadsheet (Figure 2), the decursive amounts of the balance were discounted for the period of the beginning of the duration and repayment of the project price. Calculations of the amount of absolute and relative payback of the project price for the first 4 capitalization periods were performed:

\[ \begin{aligned} & A O_{1}=A O_{2}=-7.269,124 \mathrm{KM} ; R O_{1}=R O_{2}=-6,986 \% \\ & A O_{3}=46.640,124 \mathrm{KM} ; R O_{3}=44,819 \% \\ & A O_{4}=107.488,520 \mathrm{KM} ; R O_{4}=103,292 \% \end{aligned} \]

Table2: Determining theamount ofprojectcost coverageand theamount ofthefirstprofitThestartdateofthelstprojectpricerepaymentperiod,TO=TE4=10.09.201909:54:22Plannedprojectcost,G0=104.062,292KMTheamountofthelstbalance at the endofthelstprojectpricerepaymentperiod,Sl=-7.420,000KMAnnual interestrateofthelstprojectpricerepaymentperiod,pl=0,051 000 0005,100%Annual interestfactorofthelstprojectpricerepaymentperiod,rl=l+pl=1,051 000000Lengthofthelstprojectpricerepaymentperiod,indays,xl=150daysLengthofthelstprojectpricerepaymentperiod,in years,yl=xl/365=0,410958 904yearsDiscountedamountofthelstbalanceforthebeginning ofthelstperiod,DSl=SUMl=AOl=Sl/rlyl=-7.269,860KM;AOlRelativepaybackoftheprojectprice, inpercent,ROl=(SUM1/G0)*l00%=-6,986%Thestartdateofthe 2ndprojectpricerepaymentperiod,Tl=T0+xl=07.02.2020 09:54:22Theamountofthe 2ndbalance at the endofthe 2ndprojectpricerepaymentperiod,S2=0,000KMAnnual interestrateofthe 2ndprojectpricerepaymentperiod,p2=0,053 000 0005,300%Annual interestfactorofthe 2ndprojectpricerepaymentperiod,r2=1+p2=1,053000000Lengthofthe 2ndprojectpricerepaymentperiod,indays,x2=235daysLengthofthe 2ndprojectpricerepaymentperiod,in years,y2=x2/365=0,643835616yearsDiscountedamountofthe 2ndbalanceforthebeginning ofthelstperiod,DS2=S2/(r1yl*r2y2)=0,000KMAmountdiscount.balance amount;absolutepaybackoftheprojectcost,SUM2=AO2=DS1+DS2=-7.269,860KMRelativepaybackoftheprojectprice, inpercent,RO2=(SUM2/G0)*100%=-6,986%Thestartdateofthe3rdprojectpricerepaymentperiod,T2=Tl+x2=29.09.202009:54:22Theamountofthe3rdbalance at the endofthe3rdprojectpricerepaymentperiod,S3=59.530,000KMAnnual interestrateofthe3rdprojectpricerepaymentperiod,p3=0,055 000 0005,500%Annual interestfactorofthe3rdprojectpricerepaymentperiod,r3=1+p3=1,055000 000Lengthofthe3rdprojectpricerepaymentperiod,indays,x3=310daysLengthofthe3rdprojectpricerepaymentperiod,in years,y3=x3/365=0,849 315 068yearsDiscountedamountofthe3rdbalanceforthebeginning ofthelstperiod,DS3=S3/(r1yl*r2y2*r3y3)=53.909,984KM
Amount of discountedbalance amounts;absolutepayback,SUM3=AO3=DS1+DS2+DS3=46.640,124KMRelativepaybackoftheprojectprice, inpercent,RO3=(SUM3/G0)*100%=44,819%Thestartdateofthe4thprojectpricerepaymentperiod,T3=T2+x3=05.08.202109:54:22Theamountofthe4thbalance at the endofthe4thprojectpricerepaymentperiod,S4=69.845,000KMAnnual interestrateofthe4thprojectpricerepaymentperiod,p4=0,057 000 0005,700%Annual interestfactorofthe4thprojectpricerepaymentperiod,r4=1+p4=1,057000 000Lengthofthe4thprojectpricerepaymentperiod,indays,x4=255daysLengthofthe4thprojectpricerepaymentperiod,in years,y4=x4/365=0,698 630137yearsDiscountedbalance amountforthebeginning ofthelstperiod,DS4=S4/(r1yl*r2y2*r3y3*r4y4)=60.848,396KMTheamountofthediscountedbalance amount;absolutepayback,SUM4=AO4=DS1+DS2+DS3+DS4=107.488,520KMRelativepaybackoftheprojectprice, inpercent,RO4={SUM4/G0)*100%=103,292%Theend dateofthe4thprojectpricerepaymentperiod,T4=T3+x4=17.04.202209:54:22Discountedamountoftheprojectpricecoveragebalance,DS=G0-{DS1+DS2+DS3)=57.422,168KMTheamountoftheprojectcostcoveragebalance;amount4.annuity,S=a4=S4-Pl=65.912,195KMDiscountedamountofthelstprofitfromthe4thcapitalizationperiod,DP1=SUM4-G0=3.426,227KMTheamountofthelstprofitfromthe4thperiodof capitalization,Pl=DPl *rlyl *r2y2*r3y3*r4y4=3.932,805KM

Figure 2. Static form of spreadsheet 2

In the \(3^{\text {rd }}\) spreadsheet (Figure 3), the calculations of the amounts of the primary loan were performed, for the primarily known annuity amounts \(a_{1}=S_{1}=-7.420\) \(\mathrm{KM}, a_{2}=S_{2}=0.000 \mathrm{KM}\), and \(a_{3}=S_{3}=59.530 \mathrm{KM}\). The amount of coverage annuity was calculated: \(a_{4}=S=65.912,195 \mathrm{KM}\) for the rest of the loan debt, and the amount of the \(1^{\text {st }}\) profit \(P_{1}=3.932,805 \mathrm{KM}\).

The loan repayment period is \(R x=950\) days or \(R y=2,603\) years.

Table3:Loanwithdifferent annuity amounts,interestrates andcapitalizationperiodsTable3.1: Amountsof primary amountsat the beginning andendof the 1st loan capitalization pe:riodLoanamount (projectprice),G0=104.062,292KMLoancapitalizationstart date,T0=10.09.2019 09:54:22The end dateofthelstcapitalizationperiod,Tl=T0+xl=07.02.202009:54:22lstannuity amount(lstbalanceamount),al=Sl=-7.420,000KMAmount 1.ofthe remaining debt,Gl=G0*rlyl-al=113.631,420KMlnterestamount, Kl=G0*(rlyl-1)=2.149,128KMAmountof lstrepayment,bl=al-Kl=-9.569,128KMLoanrepaymentamount,Ol=bl=-9.569,128KMLoanpriceamount,Cl=G0*(rlyl-1)=2.149,128KMTable3.2:Amountsof primaryamounts at theendofthe2ndloan capitalization periodThe end dateof the2ndcapitalizationperiod,T2=Tl+x2=29.09.202009:54:222nd annuity,amount(2ndbalanceamount),a2-S2=0,000KMAmount 2.ofthe remaining debt,G2=G1*r2y2-a2=117.473,151KMlnterestamount, K2=Gl*(r2y2-1)=3.841,731KMAmountof2ndrepayment,b2=a2-K2=-3.841,731KMAmountrepaid,O2=O1+b2=-13.410,859KMLoanpriceamount,C2=G0*(rlyl*r2y2-1)=5.739,999KMTable 3.3: Amountsof primary amountsat theendofthe3rdloan capitalization periodTermof the end of the3rdloancapitalizationperiod,T3=T2+x3=05.08.2021 09:54:22Thirdannuity amount (third balanceamount),a3=S3=59.530,000KMAmount3.residualdebt,G3=G2*r3y3-a3=63.408,323KMAmountof 3rdinterest,K3=G2*(r3y3-1)=5.465,171KMAmount3.repayment,b3=a3-K3=54.064,829KMAmountrepaid,O3=O2+b3=40.653,969KMLoanpriceamount,C3=GO*(rlyl*r2y2*r3y3-1)=10.848,301KM
Table3.4:Amounts of primary amounts at theendofthe 4thloan capitalization period,profit amount(Pi)andloanrepaymentperiodTheenddate of the4th loancapitalizationperiod,T4=T3+x4=17.04.2022 09:54:22The amount ofthefourthbalance,S4=a4+Pl=69.845,000KMTheamountofthelstprofitfrom the4thperiod ofloancapitalization,Pl=S4-a4=3.932,805KMAmountof thefourthannuity (amountof theprojectpricecoveragebalance),a4=S=S4-Pl=65.912,195KMAmount4.remaining debt,G4=G3*r4y4-a4=0=0,000KMlnterestamount,K4=G3*(r4y4-l)=2.503,873KMRepaymentamount,b4=a4-K4=63.408,323KMAmountrepaid,O4=O3+b4=104.062,292KMLoanpriceamount,C4=G0*(rlyl*r2y2*r3y3*r4y4-1)=15.385,899KMLoanrepaymenperiod, indays,Rx=T4-T0=950,000daysLoanrepaymentperiod, inyears,Ry=Rx/365=2,603years

Figure 3. Static form of spreadsheet 3

In the \(4^{\text {th }}\) spreadsheet (Figure 4) there is a loan repayment plan with primarily known different, decursive annuity amounts, for 4 capitalization periods of different lengths and different interest rates. With the amounts of the primary values of the loan repayment plan, their graphic overview is harmonized, (Figure 4).

Table 4: Load repayment plan of different annuiѝes, interest rates and capitalizaѝon periods

Ordinalnumber(i)Terms(Ti)Remainsof debt(Gi-1)Annuies(ai)Interests(Ki)Repayments(bi)Amountsrepaid(Oi)Loan prices(Ci)010.09.201909:54:22104.062,292107.02.202009:54:22113.631,420-7.420,0002.149,128-9.569,128-9.569,1282.149,128229.09.202009:54:22117.473,1510,0003.841,731-3.841,731-13.410,8595.739,999305.08.202109:54:2263.408,32359.530,0005.465,17154.064,82940.653,96910.848,301417.04.202209:54:220,00065.912,1952.503,87363.408,323104.062,29215.385,899SUM118.022,19513.959,903104.062,292

Figure 4: Static form of spreadsheet 4 copied from List C

Presented example shows a way in which the data processors could support the implementation of one model, based on the introduced theory, of financial project.

The solution is working even if, during the project (as it happen in practice) there are changes in all or some parameters.

Conclusion

In the used literature on the topic of the model of making and loan repay ment of the price of making a financial project, the starting point is the relation \(G_{0}=\tfrac{a_{1}}{r}+\tfrac{a_{2}}{r^{2}}+\cdots+\tfrac{a_{k}}{r^{k}}\). In this relation, the loan amount \(G_{0}\) is equal to the sum of the discounted amounts \(k\) of annual, decursive annuities, for the term of the beginning of loan capitalization, and \(r\) is the annual, decursive interest factor. In this case all annual, decursive annuities \(a_{1}, a_{2}, \ldots, a_{\mathrm{k}}\) are higher than zero and are not related to the planned amounts of the balance, i.e. to the borrowing capacity of the project beneficiary, within its duration. The repayment of the loan is generally equal, annual, decursive annuities or equal repayments, which is not in line with the amounts of the balance, and especially with its negative amounts or amounts equal to zero.

The authors of the paper performed the necessary research and introduced the theory of a new model of loan financing of the amount of the price of a financial project. The new loan model is with different annuity amounts, different lengths of capitalization period and dif ferent interest rates. Annuity amounts are aligned with balance amounts, which means that annuities can have negative amounts and amounts, equal to zero. The last annuity of the loan repayment plan is the annuity to cover the last balance of the debt, which, with the last amount of the balance, determines the amount of the first profit from the project at the end of the loan repayment period. The negative amount of the first profit represents the amount of debt for the term of the end of the loan repayment period. The introduced theory was demonstrated by the use of MS Excel spreadsheet by representation of calculations, related to the Example 1. For each change of one, more or all input amounts, the spreadsheet automatically creates a new loan repayment plan with a graphical overview of the amounts of primary sizes.

REFERENCES

Danielle Stein Fairhurst, D., 2015. Using Excel for Business Analysis: A Guide to Financial Modelling Fundamentals 2nd Edition.

Benninga, S., 2006. Principles Finance With Excel. Oxford: Oxford Universty Press.

Benninga, S., 2014. Financial Modeling fourth edition.

Alastair, L., 2011. Day, Mastering Financial Mathematics in Microsoft Excel. Great Britain.

Joachim Häcker, Dietmar Ernst,Financial Modeling: An Introductory Guide to Excel and VBA Applications in Finance 1st ed. 2017 Edition.

Zdravka Aljinović, Z., Marasović, B. & Šego, B., 2011. Financijsko modeliranje. Split.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева