Математика и Информатика

2020/1, стр. 51 - 66

GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum
E-mail: mark@kaye.ac.il
Kaye Academic College of Education
8 414 201 Beer Sheva
Israel
Erga Heller
Judith Zamir, Ph.D
Lior Solomovich
Kaye Academic College of Education
8 414 201 Beer Sheva
Israel
Judith Zamir

Резюме: In today’s technologically enhanced world, mathematics competitions have become accessible to more boys and girls interested in challenging tasks. In previous studies, we were focused on the issue of attracting girls to mathematics generally, and math competitions specifically. We found that boys showed better results. Furthermore, across all five grades (2 – 6), the girls’ performance on some tasks was better than that of the boys. Further investigation is required to ascertain the existence of a particular trend, and the possible underlying factors. In this paper we present gender-related issues pertinent to virtual training for the Israeli Mathematical Kangaroo Contest in Grades 5 and 6. We evaluated whether any differences existed in participation patterns between boys and girls, and their performance in online problem-solving programmes.

Ключови думи: gender; online mathematics competitions; challenge; problemsolving

Introduction

Many educators express concern about the gender gap in mathematics performance and the under-representation of women in science, technology, engineering and mathematics (STEM) careers (Hyde, Lindberg, Linn, Ellis & Williams, 2008). Gender inequity is particularly evident in data related to the number of girls that participated in the International Math Olympiad, or the number of female professors in university mathematics and engineering departments (Hyde & Mertz, 2009).

Several researchers have highlighted mathematics performance in favour of boys (Aunola, Leskinen, Lerkkanen, & Nurmi, 2004), (Githua & Mwangi, 2003), (Marsh, Martin, & Cheng, 2008), whereas others (Lindberg, Hyde, Petersen & Linn, 2010) have claimed that no significant gender gap exists in mathematics. Moreover, Robinson and Lubenski (Robinson & Lubenski, 2011), and Brown and Kanyongo (Brown & Kanyongo, 2010) showed that over the last four decades, girls have achieved slightly better grades than boys in mathematics.

As Halpern et al. (Halpern et al., 2007) pointed out, ‘There are no single or simple answers to the complex question about sex difference in mathematics’, and all ‘early experience, biological factors, educational policy, and cultural context’ need to be considered when approaching this question. Gherasim, Butnaru and Mairean (Gherasim, Butnaru & Mairean, 2013) also argued that there is a need for more studies on gender differences in order to fill the gaps regarding the mechanisms that are conducive to enhancing mathematical performance.

In what way do gender differences appear (if at all) in the context of mathematics competitions? Niederle and Vesterlund (Niederle & Vesterlund, 2010) found that gender differences in competitive performance are not reflective of differences in non-competitive performance. Gneezy, Niederle and Rustichini (Gneezy, Niederle & Rustichini, 2003) even revealed that the gender gap in performance under competitive conditions is three times greater than that under non-competitive conditions. Leedy, LaLonde and Runk (Leedy, LaLonde & Runk, 2003) studied the beliefs held by students participating in regional math competitions, as well as those held by their parents and teachers. They found that mathematics is still viewed as a male-dominated discipline, while girls and women fail to acknowledge the existence of the bias. They argue that the task of the school is not to ignore or deny differences in learning styles, attitudes and performance, but to acknowledge and use them to develop strategies aimed at providing gender-equitable education. However, there is insufficient data regarding how gender-related differences are manifested in mathematics competitions and the patterns that emerge from these differences.

Applebaum, Kondratieva and Freiman (Applebaum, Kondratieva & Freiman, 2013) investigated gender issues in the context of the Virtual Mathematical Marathon by studying participation and performance. While observing students’ participation during the first two years of the competition, they found that girls and boys showed similar patterns regarding the decision to remain in the competition, or to abandon it, regardless of the results in previous rounds.

In the present study, we analyse the performance of boys and girls in the first stage of the 2018 Israeli competition (as part of the International Kangaroo Contest). Students participated in online internet training over 16 weeks, during which they had to identify themselves, at home, or sometimes at their schools.

Mathematical competitions: opportunities for learning and fun

Mathematical competitions, in their current form, boast more than 100 years of history and tradition, are organised in different formats, in different venues and for different types of students. They are considered ‘one of the main tools to foster mathematical creativity in the school system’ (De Silva, 2014). Kahane (Kahane, 1999) claimed that large popular competitions could reveal hidden aptitudes and talents and inspire many children and young adults. Bicknell (Bicknell, 2008) found the use of competitions in mathematics programmes to have numerous advantages, such as student satisfaction, enhancement of self-directed learning skills among the students, increased sense of autonomy, and cooperative teamwork skills. The interplay between cognitive, metacognitive, affective and social factors merits particular attention by researchers, because it may give us more insight into the development of mathematical potential in young learners (Applebaum, Kondratieva, & Freiman, 2013).

Among the various competitions, the Kangaroo Contest stands out because of its main objective: the popularisation of mathematics with the special purpose of showing young participants that mathematics can be interesting, beneficial and even fun. The target population of the Kangaroo Contest is not limited to the most mathematically talented students; it aims to attract as many students as possible. Although it has been generally accepted that the vast majority of people find mathematics difficult and very abstract, the number of competitors in the contest proves that this need not be the case. As it attracts a substantial number of competitors, the contest helps to eradicate such prejudice towards mathematics.

Choosing appropriately challenging tasks is an important condition for the successful contribution of mathematical competitions to developing the learning potential of students (Bicknell, 2008). In contrast to other more challenging competitions, the mathematical problems in the Kangaroo Contest are more appropriate and based on the challenging task concept suggested by Leikin (Leikin, 2004). Such tasks should be neither too easy nor too difficult, to motivate students and develop their mathematical curiosity and interest in the subject.

Regarding the tasks and learning opportunities, Brinkmann (Brinkmann, 2009) mentioned that when students of Grades 7 and 8 were asked about the most interesting mathematical problems, they selected puzzles, while commenting that the problems should not be too difficult. For example, more than half of the students cited one of the 2003 Kangaroo Contest problems as ‘a fascinating math problem’, which targeted spatial abilities in the context of paper folding (Brinkmann, 2009). Moreover, Applebaum’s (Applebaum, 2017) recent study confirmed earlier research showing that spatial thinking and mathematics are inter-related, especially in the early grades, thus indicating that early intervention is crucial for closing the achievement gaps in math.

Gender-related data on mathematics competitions: is there an issue?

Several educators express concern regarding gender differences in mathematics performance and the under-representation of women in STEM careers (National Academy of Science, 2006); (Hyde et al., 2008). Gender inequity is particularly evident in data related to the number of girls participating in the International Math Olympiad, or the number of female professors in the mathematics and engineering departments of universities (Hyde & Mertz, 2009). This problem can be addressed in several ways.

First, some psychologists look for gender differences in brain structure, hormones, the use of the brain’s hemispheres, nuances of cognitive or behavioural development, and consequent spatial and numerical abilities that may predispose males to a greater aptitude for, and success in mathematics (Halpern, 1997; Jessel & Moir, 1989). However, several relevant findings in the literature are inconsistent (Spelke, 2005), partly due to the fact that experience alters brain structures and functioning (Halpern et al., 2007).

Second, detailed measurements of students’ achievements in mathematics are being recorded by educators at different stages of schooling, in an attempt to identify when the gender gaps in mathematics first occur, as well as further dynamics of the gap. Many studies are consistent in their observation that the gender gap becomes more evident as students’ progress towards higher grades, especially if testing involves advanced topics in mathematics and higher cognitive level items. In contrast to earlier findings, more current data provide no evidence of a gender difference favouring males in the high school years (Hyde & al., 2008).

Yet another interesting observation is that ‘… as a practical matter, achievement gains are insufficient unless the self-beliefs of girls have changed correspondingly’(Lloyd, Walsh & Yailagh, 2005, p.385). Research that views gender differences through the lens of the attribution theory (e.g. Bandura,1997) suggests that girls tend to attribute their math successes to external factors and efforts, and their failures to their own lack of ability (self-defeating pattern); whereas boys tend to attribute their successes to internal factors, and their failures to external factors (self-enhancing pattern). It is better for an individual to attribute success to ability, rather than effort, because ability attributions are more strongly related to motivation and skill development (Schunk & Gunn, 1986). These patterns partially explain the poorer achievement of girls (Lloydet & al., 2005).

According to Asante (Asante, 2012), the attitudes of secondary students towards mathematics are influenced by a set of factors including the‘ school environment, teachers’ attitudes and beliefs, teaching styles and behaviour and parental attitudes towards mathematics’. That study was focused on girls being discouraged from studying math, and strongly argued that girls receive less encouragement and support in the classroom than boys. Williams (Williams, 2006) showed that many classrooms create an atmosphere of competition among students. Such an atmosphere plays to the strength of boys, who are socialised to compete, but often intimidates girls, who are more often socialised to collaborate.

The third way to address the gender gap in mathematics is to investigate the influence of socio-cultural factors. With regards to mathematical performance, parents tend to have greater expectations for sons than they have for daughters, and this influences the students’ results (Leder, 1993). Even talented and motivated girls ‘are not immune to the ill effects of gender bias’ (Leedy & al.,2003, p. 290). In this respect, it is unfortunate that the stereotypes that girls and women lack mathematical ability persist and are widely held by parents and teachers (Hyde & al., 2008).

Leedy & al. (Leedy et& al., 2003) studied the beliefs held by students participating in regional math competitions, as well as those held by their parents and teachers. They found that mathematics is still viewed as a male domain by men, while girls and women fail to acknowledge the existence of the bias. Other researchers have found interesting results showing that gender differences in mathematics performance are declining, or non-existent in gender-equal countries (Else-Quest, Hyde, & Linn, 2010); (Guiso, Monte & Sapienza, 2008). Leedy & al. ( Leedy et& al., 2003) also argue that the task of the school is not to ignore or deny differences in learning styles, attitudes and performance, but acknowledge and use them to develop strategies aimed at providing gender-equitable education.

In conclusion, in all three perspectives in research on gender in mathematics – cognitive, instructional and socio-cultural – careful consideration of how the data are collected, examined and interpreted is necessary. This is because no single approach provides a fully consistent theory that could explain the existing gender differences observed at a higher level of mathematical tasks. As Halpern et al. (Halpern et& al., 2007) point out, ‘there are no single or simple answers to the complex question about sex difference in mathematics’, and all ‘early experience, biological factors, educational policy, and cultural context’ need to be considered when approaching this question.

Technology and gender: what patterns emerge in mathematics competitions?

While the previous section summarises research related to gender issues in mathematics education that show no conclusive findings, similar observations can be drawn from technology-related studies that we will review briefly. Forgasz (Forgasz, 2006) reports that when referring to classroom practices that involve computers as a learning tool, mathematics teachers held gender-based beliefs about their students. They assumed that the incorporation of technology has more positive effects on male classroom engagement and their affective responses, and thus, the technological approach was more beneficial to learning in boys.

At the same time, Wood and Viskicand Petocz (Wood & Viskicand Petocz, 2003) found no gender differences in the use of computers among students, nor in their attitudes towards the use of computers. This agrees with ideas expressed by Williams (Williams, 2006) quoted above, who reviewed studies, which showed that girls are just as confident and active as boys in creating webpages, writing blogs, reading websites, and chatting online, among other activities.

As mentioned in the publications (Freiman, Kadijevich, Kuntz, Pozdnyakov & Stedoy, 2009 and Freiman & Applebaum, 2009), the internet can be a suitably challenging environment on which mathematics competitions and problem-solving activities can be organised, and can potentially contribute to the development of mathematical ability and giftedness. In a recent analysis of middle-school students participating in a web-based mathematics competition, Jacinto and Carreira (Jacinto & Carreira, 2013) argued that although one cannot conclude that by solving problems online, students do better in mathematics, their data provides evidence that the use of technology tends to involve more complex mathematical thinking.

As one among a powerful set of extra-curricular activities, such as mathematical clubs, mathematical camps and mathematics competitions (Olympiads), online mathematics competitions play a significant role in nurturing interest and motivating young learners of mathematics, as well as identifying and fostering the most capable and talented (Bicknell, 2008); (Karnes & Riley, 1996); (Skvortsov, 1978).

The choice of appropriately challenging tasks is also an important condition for the success of mathematics competitions in developing the learning potential of students. The tasks should motivate students to persevere with task completion and develop mathematical curiosity and interest in the subject. Furthermore, tasks must support and advance students’ beliefs about the creative nature of mathematics, the constructive nature of the learning process, and the dynamic nature of mathematical problems as having different solution paths. They should also support individual learning styles and the further development of knowledge.

Gender issues among Israeli students in Israeli national and international tests

In National Israeli Math tests, for Grade 5, gaps were found in favour of boys (about a quarter of standard deviation on average), which seemed to have expanded somewhat over the years 2012 – 2017. For Grade 8, the achievements of boys and girls In the National Israeli Math tests were similar during the years 2012 – 2017. A similar trend is observed when comparing the achievements of Israeli boys and girls in the Trends in International Mathematics and Science Study (TIMSS) (2007, 2011 and 2015).

The gap in favour of boys by an average of 16 points (about 1/6 of standard deviation on average) was again observed in the PISA (Programme for International Student Assessment) tests in mathematics literacy in the years 2006, 2009 and 2012 (Rapp, 2015).

In the following section we describe the structure of the Kangaroo Contest Virtual Training (KCVT), which allowed us to collect the appropriate data.

Structure of the Kangaroo Contest Virtual Training (KCVT)

The official aim of the KCVT is to motivate students to prepare themselves for the International Kangaroo Contest. The hidden aim of the KCVT is to get students more involved in mathematical activities and improve their mathematical thinking skills.

According to our model of the KCVT, one set of eight non-routine challenging problems was posted every week on a specific website (www.kangaroo4u.tik-tak.co.il) over 16 weeks, from November 2018 to March 2019. In total, 16 sets of eight problems were offered to the participants. All problems were ordered according to increasing difficulty: sets 1–6 were defined as the ‘easy level’; sets 7 – 12, the ‘average level’; and sets 13–16, the‘high level’.

Every registered member was able To login, to choose a problem, to solve it and to submit an answer by selecting it from a multiple-choice menu (with five distractors). The automatic scoring system immediately evaluated the performance of the students by producing a score for the problems and adjusting the total score, which affected the overall standing.

Participants could join the KCVT, solve as many problems as they wished, withdraw, and return at any time. The tasks were selected by a team of experts in mathematics and included material from previous tests of the International Kangaroo Contest.

The study

Research questions

In this study, we used data from the KCVT stage to investigate the following research questions:

– Are there any differences between boys and girls regarding their persistence in participation in the KCVT?

– Are there any gender-related patterns in the participation of boys compared with that of girls according to different levels of difficulty?

Methods

A quantitative methodology was followed based on the analysis of an external database software. The implementation of t-tests and descriptive statistics enabled the researchers to compare several variables between the performance of girls and boys, respectively.

Participants

Every student who opted to participate in the contest (possibly due to the encouragement of parents) was able to do so without conditions (such as a test or interview). The only requirement was the payment of a very low registration fee by the student. The age range of the students was between 11 and 12 years, and they came from various regions of Israel, including large cities as well as smaller cities and villages, and different socioeconomic backgrounds. In total, there were 1005 children, 546 boys and 459 girls, who took part in the KCVT.

Results

In order to investigate the first sub-question, we collected and analysed data about the participation of boys and girls in each of 16 sets (N1 – N16). We collected and compared the numbers of website visits for boys and girls separately.

In order to address the second sub-question, we analysed data about the attempts of boys and girls to solve either all or some particular problems from each set. For example, some students could have attempted only the questions from the easy level (sets 1 – 6). We were interested in whether the student tried to remain in a safe zone or take greater ‘risks’by solving average-level problems (sets 7 – 12), or even high-level problems (sets 13 – 16). In this respect, we wanted to determine whether a virtual problem-solving environment allowed girls to exhibit risk-taking behaviour at a rate comparable to that of boys. We compared the number of girls and boys among this group. The next section presents our findings.

Regarding the first research question, in Figure 1, we present the descriptive data regarding the participation of boys and girls in the KCVT. According to our findings, no significant differences were observed between the behaviour of boys and girls in the KCVT. For each set, the level of participation was approximately the same for boys and girls.

Figure 1. Level of participation

The percentage of participants among boys and girls showed similartrends, and decreased in a similar pattern as follows: in the N1 set 82.2% of the boys and 81.1% of the girls participated; in the N4 set, 41.4% of the boys and 40.1% of the girls participated; in the N8 set, 26.9% of the boys and 22.7% of the girls participated; in the N12 set, 14.7% of the boys and 13.1% of the girls participated, and at the end, in the N16 set, 1.8% of the boys and 2.2% of the girls participated.

No significant differences were found between the participation of boys and girls among specific sets of different levels of difficulty, including the easy (sets 1 – 6), average (sets 7 – 12), and high (sets 13–16) levels. We also evaluated the percentage of boys and girls who submitted different numbers of tasks in total (1 – 16).In Figure 2, we present the collected data.

Figure 2. Total number of completed tasks

The percentage of girls who submitted only one task (out of 16) was larger (but not significantly so) than that of boys (25.7% [girls] vs. 23.1% [boys]). In general, this means that about a quarter of all participants left the training after the first set of problems. After the first two sets of problems, an additional 16.1% of the girls and 16.8% of the boys left the training. After submitting a total of three sets, 57.7% of the girls and 51.3% of the boys left the training. No gender differences were observed in the persistence of participants in the KCVT.

In order to address the second sub-question, we analysed the data regarding the mean values for boys and girls among all sets, and then evaluated the means among sets of the same difficulty level. In Table 1, we present the data based on the gender differences among all participants who attempted the tasks over 16 weeks.

Table 1. Success rates of boys and girls for each set of mathematical problems

GenderBoysGirlsNMean(of 40)S. D.NMean(of 40)S. D.tdfp - value(2-tailed)Easy levelSet 144925.6610.04837226.2610.128-0.8588190.391Set 235522.6811.86230323.6311.681-1.0366560.301Set 329326.5911.39825027.3411.014-0.7795410.436Set 422622.0412.24118420.9212.0090.9224080.357Set 519725.4812.23314724.7611.7670.5493420.583Set 617725.9312.36813624.3411.5281.1753000.241Average levelSet 714822.8714.04710421.6313.0620.7172310.474Set 814721.5612.79210420.5813.5340.5882490.557Set 912621.7513.0598322.7711.589-0.5802070.562Set 1010225.2913.6948121.8513.1441.7191810.087Set 1110821.5713.3196219.5214.2490.9451680.346Set 128019.9413.7456022.3314.186-1.0071380.316High levelSet 136519.6212.9095519.1812.3890.1871180.852Set 144218.5713.9812917.4114.2440.340690.735Set 152423.7513.1263319.3912.1041.295550.201Set 161012.0014.1811015.5013.427-0.567180.578

Based on the data presented in Table 1, no significant gender differences were found in any of the 16 sets. In Table 2, we present the data based on gender differences among the different levels of difficulty of the tasks. Based on the data presented in Table 2, no significant gender differences in scores were found when students attempted tasks of different levels of difficulty. We also compared the total number of boys and girls who achieved scores in four quartiles (out of a total of 640). In Table 3, we present those findings. No significant gender differences were found in this data.

Table 2. Success rates of boys and girls at each difficulty level of mathematical tasks

GenderBoysGirlsSetsNMean (of 40)Std. DeviationNMean (of 40)Std. DeviationEasy 1–650624.72211.48343324.82911.206Average 7–1224822.22013.42516321.45613.240High 13–168219.46913.3656818.54112.847

Table 3. Percentage of boys and girls within four quartiles of scores

GenderBoysGirls1–160Number445379%81.582.6161–320Number5452%9.911.3321–480Number3515%6.43.3481–640Number1213%2.22.8546459

Preliminary Results and Discussion

A total of 1005 students participated in at least one round (out of a total of 16 rounds) of the KCVT. More boys (546, or 54.33%) participated than girls (459, or 45.7%). Our data showed no significant differences in participation based on gender; girls seemed to have been just as active as boys.

Furthermore, Figures 1 and 2 show the change in the level of participation over each round. We can conclude that the numbers of boys and girls who participated in the training were nearly the same in each set. Thus, the girls who decided to continue participation were just as persistent as the boys.

The number of tasks submitted by gender, according to Figures 1 and 2 showed no significant differences between girls and boys in the number of attempts, as it related to the level of difficulty. This observation is particularly important, in view of the fact that in a regular classroom setting ‘teachers perceived that girls … produced fewer exceptional, risk-taking behaviours than did boys’ (Williams, 2006).

The dynamics of the success rates were similar between the girls and boys in all rounds (Tables 1 and 2). In addition, both sexes were more successful on easier levels and less successful in the more difficult levels (average and high).

Conclusions

The gender issue in mathematics, i.e., girls being under-represented in the STEM-related fields, remains unresolved. Thus, every inclusive endeavour to popularise mathematics by attracting all students merits particular attention. The KCVT is a fine example of such inclusive competitions. With limited research available on the patterns of participation and the results of the contest, it is important to investigate the gender-related issues. Following our analysis of the results of participants from Grades 5 – 6 in the 2018 Israeli KCVT, we found no significant differences between the behaviour of boys and girls during the training.

We also found no differences between the achievements of boys and girls who attempted problems with different levels of difficulty. These results are consistent with earlier studies that have also shown no gender differences in mathematical performance (Ajai & Imoko, 2015), (Applebaum & al., 2013), (Devine, Fawcett, Szűcs & Dowker, 2012).

However, the data yield no far-reaching conclusions about the factors that might explain these findings. Other aspects, such as encouragement from parents to participate and gender issues in the use of technology should be considered in future studies. Furthermore, further research and analysis over the next few years would be worthwhile, to determine whether the pattern re-appears. Deeper analysis is required regarding the tasks that were solved more efficiently by girls and the methods they used to solve those tasks.

Our preliminary data analysis has several limitations. The major limitation is our inability to see the solutions of the students. We also are not aware of the reasons for the early departure of some students from the training. Furthermore, we do not know whether participants were assisted by family members/internet / books or other sources. Nevertheless, we observed similar participation rates, risk-taking behaviours and persistence among both genders. This similarity is consistent with the findings of other researchers (Lloyd & al., 2005), (Williams, 2006), who reported non-significant gender differences in mathematics at the junior high-level, as well as equal abilities and interest among both boys and girls during their participation in online activities.

Our future work will use more data and look at more detailed analyses, including interviews with students, which could reveal the reasons for their behaviour, and insightful comments about their thoughts and attitudes during this online problem-solving activity.

REFERENCES

Ajai, J. & Imoko, B. (2015). Gender differences in mathematics achievement and retention scores: A case of problem-based learning method. International Journal of Research in Education and Science, 1 (1), 45 – 50.

Applebaum, M., Kondratieva, M. & Freiman, V. (2013). Mathematics competitions and gender issues: A case of the virtual marathon. Mathematics Competitions, 26 (1), 23 – 40.

Applebaum, M. (2017). Spatial Abilities as a Predictor to Success in the Kangaroo Contest. Journal of Mathematics and System Science, 7, 154 – 163.

Asante, K. O. (2012). Secondary students’ attitudes towards mathematics. IFE Psychologia: An International Journal, 20 (1), 121 – 133.

Aunola, K., Leskinen, E., Lerkkanen, M. & Nurmi, J. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96 (4), 699 – 713.

Bandura, A. (1997). Self-efficacy: The Exercise of Control. New-York: Freeman.

Bicknell, B. (2008). Gifted Students and the Role of Mathematics Competitions. Australian Primary Mathematics Classroom 13 (4), 16 – 20.

Brinkmann, A. (2009). Mathematical Beauty and its Characteristics – A Study on the Students’ Point of View. The Mathematics Enthusiast 6 (3), 365 – 380.

Brown, L. I. & Kanyongo, G. Y. (2010). Gender Differences in Performance in Mathematics in Trinidad and Tobago: Examining Affective Factors. International Electronic Journal of Mathematics Education 5 (3), 113 – 130.

De Silva, J. C. (2014). The Curriculum, Creativity and Mathematical Competitions. In Proceedings of the Problem@Web International Conference: Technology, Creativity and Affect in Mathematical Problem Solving, edited by S. Carreira, N. Amado, K. Jones, and H. Jacinto, 8. Faro, Portugal: Universidade do Algarve.

Devine, A., Fawcett, K., Szűcs, D. & Dowker, A. (2012). Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behavioral and Brain Functions, 8(1), 33 – 41.

Else-Quest, N. M., Hyde, J. S. & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136 (1), 103 – 127.

Forgasz, H. (2006). Factors that encourage or inhibit computer use for secondary mathematics teaching. Journal of Computers in Mathematics and Science Teaching, 25 (1), 77 – 93.

Freiman, V. & Applebaum, M.(2009). Involving Students in Extra-Curricular School Mathematical Activity: Virtual Mathematical Marathon Case Study. In: Search for Theories in Mathematics Education.Proceedings of the 33rd Conference of the International Group for the Psychology in Mathematics Education, edited by M. Tzekaki, M. Kaldrimidou, and H. Sakonidis, 1, 203 – 205.

Freiman, V., Kadijevich, D., Kuntz, G., Pozdnyakov, S. & Stedoy, I. (2009). Challenging mathematics beyond the classroom enhanced by technology. In: Challenging Mathematics in and Beyond the Classroom.The 16th ICMI Study. New ICMI Study Series, Vol. 12, edited by E. Barbeau, and P. Taylor, 97 – 133. New York: Springer.

Gherasim, L. R., Butnaru, S. & Mairean, C. (2013). Classroom environment, achievement goals and maths performance: Gender differences. Educational Studies, 39 (1), 1 – 12.

Githua, B. N. & Mwangi, J. G. (2003). Students’ mathematics self-concept and motivation to learn mathematics: Relationship and gender differences among Kenya’s secondary-school students in Nairobi and Rift Valley provinces. International Journal of Educational Development, 23 (5), 487 – 499.

Gneezy, U., Niederle, M. & Rustichini, A. (2003). Performance in competitive environments: Gender dif ferences. The Quarterly Journal of Economics, 118 (3), 1049 – 1074.

Guiso L., F. Monte, F. & P. Sapienza, P. (2008). Differences in Test Scores Correlated with Indicators of Gender Equality. Science 320:1164 – 1165.

Halpern, D. F. (1997). Sex Differences in Intelligence.Implications for Education. American Psychologist, 52 (10): 1091 – 1102.

Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S. & Gernsbacher, M. A. (2007). The Science of Sex Difference in Science and Mathematics. Psychological Science in the Public Interest 8 (1): 1 – 51.

Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B. & Williams, C. C. (2008). Diversity, gender similarities characterize math performance. Science 321: 494 – 495.

Hyde, J. S. & Mertz, J. E. (2009). Gender, Culture, and Mathematics Performance. Proceedings of the National Academy of Sciences of the United States of America 106 (22): 8801 – 8807.

Jacinto, H. & Carreira, S. (2013). Beyond-School Mathematical Problem Solving: a Case of students with media. In Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education, edited by Lindmeier, A. M. & Heinze, A., 3: 105 – 112.

Jessel, D. &.Moir, A. (1989). Brain Sex.The Real Difference Between Men and Women. New York: Dell Publishing.

Kahane, J.-P. (1999). Mathematics Competitions. ICMI Bulletin 47.

Karnes, F. A. & Riley, T. L. (1996). Competitions: Developing and nurturing talents. Gifted Child Today, 19 (2), 14 – 49.

Leder, G. C. (1993). Mathematics and gender. In: Handbook of Research on Mathematics Teaching and Learning, edited by D. A. Grouws, 597 – 622. Reston, VA: National Council of Teachers of Mathematics.

Leedy, M. G., LaLonde, D. & Runk, K. (2003). Gender equity in mathematics: Beliefs of students, parents, and teachers. School Science and Mathematics, 103 (6), 285 – 292.

Leikin, R. (2004). Towards High Quality Geometrical Tasks: Reformulation of a Proof Problem. In: Proceedings of the 28th International Conference for the Psychology of Mathematics Education, edited by M. J. Hoines, and A. B. Fuglestad, 3, 209 – 216.

Lindberg, S., Hyde, J., Petersen, J., & Linn, M. (2010). New Trends in Gender and Performance in Mathematics: A Meta-Analysis. Psychological Bulletin 136 (6): 1123 – 1135.

Lloyd, J. E., Walsh, J. & Yailagh, M. S. (2005). Sex differences in performance attributions, self-efficacy, and achievement in mathematics: If I‘m so smart, why don‘t I know it? Canadian Journal of Education/ Revue Canadienne De l‘Education, 28 (3) , 384 – 408.

Marsh, H. W., Martin, A. J. & Cheng, J. H. (2008). A multilevel perspective on gender in classroom motivation and climate: Potential benefits of male teachers for boys? Journal of Educational Psychology, 100 (1), 78 – 95.

National Academy of Science (2006).Beyond Bias and Barriers: Finding the Potential of Women in Academic Science and Engineering.Washington, D.C: National Academic Press.

Niederle, M. & Vesterlund, L. (2010). Explaining the gender gap in math test scores: The role of competition. Journal of Economic Perspectives, 24 (2), 129 – 144.

Rapp, Y. (2015).Gender Gap in Students’ Performance Mathematics and Language. Ministry of Education, Israel.

Robinson, J. P. & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school: Examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48 (2), 268 – 302.

Schunk, D. H. & Gunn, T. P. (1986). Self-efficacy and skill development: Influence of task strategies and attributions. The Journal of Educational Research, 79 (4), 238 – 244.

Skvortsov, V. (1978). Mathematical olympiads. Socialist Mathematics Education, Burgundy Press, Southampton, USA, 351 – 370.

Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science: A critical review. American Psychologist, 60(9), 950 – 958.

Williams, B. T. (2006). Girl power in a digital world: Considering the complexity of gender, literacy, and technology. Journal of Adolescent & Adult Literacy, 50 (4), 300 – 307.

Wood, L., Viskic, D. & Petocz, P. (2003). Toys for boys? In: Which way social justice in mathematics education? 263 – 276. Westport, CT: Praeger Publishers.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева