Математика и Информатика

Educational Technologies https://doi.org/10.53656/math2022-1-3-dev Образователни технологии

2022/1, стр. 30 - 44

DEVELOPING PROBLEM SOLVING COMPETENCY USING FUNCTIONAL PROGRAMMING STYLE

Резюме: This paper is dedicated to the challenges of the education that high school students are facing while developing specific competencies related to the functional programming style (FPS). The presented educational approach consists of two components: first, learning FPS by comparing it with the imperative, procedural, object-oriented and logic programming paradigms and second, using competencies based approach for solving practical problems with functional programming. The paper presents a problem set and the phases of its application in the learning process. The results and the analysis of the approach are presented in two groups of high school students which develop successfully their specific competencies for using FPS for practical problem solving. The presented results show that the students are understanding easier FPS and its differences from their known paradigms (imperative, procedural, object-oriented and logical) by using a problem set with properly prepared practical problems which they can solve in multiple ways which lead them to the FPS solution.

Ключови думи: functional programming; education; software engineering; competency

Introduction

In the Computer Science (CS) education in general and profession “Applied programmer” (PAP) (Staribratov 2020), the students are learning and acquiring the competencies of the functional programming style (FPS). The acquired knowledge, skills and competencies for FPS are listed in the National standards in education (NSE)1) for the PAP. Two groups of students were observed. After an analysis of the problems which the students are facing while learning FPS as part of the National programme “Education for IT Career“ (NPEITC)2) of Ministry of Education and Science (MES) of Bulgaria was found that the students have difficulties with learning and applying FPS because for them this is a whole new way of thinking and constructing a solution of a problem. As part of their education in NPEITC the students have access to e-learning resources on a Moodle-based platform3) .This paper provides a problem set and the phases of developing FPS competencies. The problem set offers practical approach for comparative learning of the functional, imperative, procedural, object-oriented and logic programming paradigms. On the other side, the accomplished education is directed towards development of the competency of the learners which means that they need to solve real and practical challenges. The problems which they receive are not formulated in the terms of FPS. Instead they are practical and require the possession of specific competencies allowing the future professionalists to effectively analyse the problems and pick FPS approach for its solution.

The ideas of competency-based education (CBE) are developed in the last 50 years. The present article considers the European qualification framework (EQF) for lifelong learning4). It is worth to mention the results in this area achieved in the professional education in Bulgaria by applying competency-based education for the profession “System Programmer“ in the frame of “Bulgarian-German project for improving the opportunities for employment of young people in Bulgaria“ (Staribratov 2009) where they develop the foundations of the National educational standard (NES) for the profession. CBE for PAP is compliant with the related competency European Commission frameworks 4), 5), 6) and the recommendations of the IT business in Bulgaria7), 8) regarding the competencies which the job applicants should have.

NPEITC provides education for high school students based on the developed standards, curriculum and programmes. One of the educational modules in the curriculum is „Functional programming“ (FP). According to the Level 4 of EQF there are units of learning outcomes (ULO) in the NES. The described learning outcomes, including knowledge, skills and competencies, are reflected in the curricula for both theoretical and practical education and can be generalized as the ability to solve practical problems by using FPS.

Developing FPS competencies during education

In November 2020 a training in module FP was conducted as a part of the curriculum of NPEITC. Two groups were observed: students at High School “Hristo Botev“ in Chepintsi, Bulgaria and Vocational High School of Electronics and Engineering “Konstantin Fotinov“ Burgas, experienced similar difficulties and obstacles in learning FPS. The participants are facing the challenge to form competencies for using FPS related with its essence and application. The main problem which occurs for the students during the FP module is related to the new programming style which is different compared to the ones (imperative, procedural, object-oriented, logical) which they know and understand to this moment. FPS offers many advantages such as modularity, easier code maintenance, lower code redundancy, helps easier and more effective data processing and more (Hughes 1989). Teodosiev (Teodosiev 2006; 2010; 2011) analyses the problems of the programming education and the different programming paradigms, including FPS and researches the influence of the programming style. According to his research the programming language and paradigm strongly influences the ability of novice programmers to create algorithms and programs. His suggestion is to not only teach programming languages but also different styles of programming and their corresponding good practices.

There are many functional programming languages or possibility for applying of FP – many libraries for C++ (MCNamara 2004), Language Integrated Query (LINQ) in C#, which provides elegant and effective approach for solving many routine problems in programming related to data-processing, there is also a special FP language in the. NET platform called – F#, which provides accessible syntax and supports concurrency.

During the conducted edition of teaching the FP module it was noticed that the students are naturally looking for a parallel between the functional and the procedure paradigms. This happens while the students are attempting to solve problems. A possible reason is that the students already have knowledge in procedural programming, which leads them to intuitively looking for similarities. Sometimes they do not realise that these are two different paradigms and often think that the FP is just an upgrade of their knowledge. While trying to solve a problem initially they look for solutions closer to their familiar style of programming and they are trying to apply their existing knowledge and skills to construct a solution.

To solve this problems the authors of this paper recommend to point the similarities and the differences between the functional paradigm and the other ones, with which the students are already familiar. Another recommendation is to make parallels between solutions using FP and solutions using the procedural approach.

Based on direct observations during the education for the profession “Applied programmer“ in the two groups, it is found that there is a “stereotype“ in favour of the procedural paradigm. The students seem to have difficulties to construct solutions based on the FP for problems that require functional approach. This brings the need to look for approaches to form the competencies for using FPS.

There is a variety of approaches for developing competencies in FPS in the CS education. Generally, they can be separated in two groups – comparative approach and practical approach for learning FP.

An example of a comparative approach is the approach of Joosten (Joosten1993) who proposes comparative analysis of imperative and functional style (Joosten 1993). Banchev (Banchev 2017) analyses the effectiveness of the introduction programming courses using different paradigms – imperative and procedural using Java and Ruby. Another applied approach is using FP as an explanation of the object-oriented paradigm (Kristensen 2001). Thompson (Thompson 1997) suggests an approach for problem solving valid for both procedural and functional programming languages consisting of the following steps: understanding, solution design, coding and reflection. Hanus (Hanus 1997) proposes a generalized model for learning functional and logic programming using the language Curry (Hanus 1995), where the logic programming is considered as an extension of FP (Hanus 2007). Todorova (Todorova 2010) and Zinoviev9) seen functional programming based on λ-calculus as natural subarea of logic programming. Joosten (Joosten 1993) prefers the idea of using FP in the beginning of the CS education and shows in that the students are highly motivated and develop higher level of algorithmic thinking. Satoshy Egi (Egi 2020) suggests FPS oriented towards pattern-matching, allowing to define not only the most basic data processing functions but more practical mathematical algorithms such as Boolean satisfaction problem (or SAT for short) (Eén, 2006) 10), system of equations and so on. Diaconu suggests inductive FP (IFP) for generating modular functional programs and function reusage (Diaconu 2020).

Many authors suggest concepts and approaches for learning FP based on Haskell (Hudak 1989), (Hudak 1999), (Davie 1992), (Bird 1998), (Thompson 1993).

Among the practical approaches we can point out the method of gamification, used for the development of apps, such as Soccer Fun (Achten 2008), block programming (Poole 2019). M. Fansler (Fansler 2015) proposes approach which uses a high-level language to create and manipulate multimedia and interactivity to teach FP. Promising results are shown by Chattopadhyay (Chattopadhyay et all 2018), who proposed learning functional programming through the STEM and STEAM approach in which the students are having fun, learn by experience by programming learning robots with the aim to gain knowledge, develop skills and competencies.

In the presented article it is chosen an approach, based on comparative analysis and analogies between FPS, procedure style and logic programming, taking into consideration the short summary of the different educational approaches, the aims, which are listed in the curriculum and the duration of teaching FP module.

Aim of the research To check the acquired knowledge, skills and competencies integrated in the general competency for FPS of the students regarding their work with practical assignments by the proposed comparative approach with the other programming styles and paradigms.

Research methods

The research uses the following methods: observations, polls with teachers and students, tests, result analysis.

Methodological tools

Methodological tools used in this research:

А) Set of problems which help the development of knowledge, skills and competencies related to the usage of FPS

B) Software and technological means: hardware, educational software for FP Design (phases) of the research – Research of the efficiency of the proposed methodology.

To gain feedback on the achievements of the students acquiring to the competencies listed in the NES and in the curriculum we developed a problem set, a test, and a practical assignment supported by a sample solution.

It is suggested to follow these steps:

1. Solving the problem following the procedural style.

2. Using recursion in procedural style wherever it is possible (for description of algorithms, complex data structures, etc.).

3. Substitution of the procedural style with declarative style and usage of pure functions and recursion.

4. Suggesting a solution which is close to the logic programming.

To achieve that the following sample problems are provided, showing application of the suggested algorithm for transforming the solution, based on a procedural style, to a solution, based on the FPS. A problem set is prepared to develop the competencies related to FSP (see unit 10 of the learning outcomes in the NES), in which alternative solutions are provided in order to allow easier adaptation of the students to the functional paradigm. After presenting and analysing different sample solutions, the students receive multiple problems as a test, which require the acquisition of competencies, related to FPS. The last part of the check of the level of knowledge of FPS is an assignment in which the students should propose practical problems along with the solutions based on FPS.

Research execution

The research consists of 3 main steps: a) Solving problem 1 and 2; b) Test, based on the problems 3 and 4; and c) Verification of the problem-solving competencies by asking students to propose a practical problem and its solution – problems 5 and 6.

The students and their teacher solve problem 1 in 3 ways. The aims are: to show a way to overcome the stereotypes of the procedural way of thinking; to observe the solutions: close to the procedural (imperative) programming style, clean functional programming-based solution, and a solution which corresponds with the logic programming style.

1. Sum of list elements

Write a program which sums the elements of a list Solution:

https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%20 1.%20Sum%20Of%20Elements.hs shorturl.at/irDVY

1 sumElements totalSum list =
2 if null list
3 then totalSum
4 else sumElements (totalSum + head list) (tail list)
5
6 sumElements1 totalSum [] = totalSum
7 sumElements1 totalSum (x : xs) = sumElements1 (x + totalSum) xs
8
9 sumElements2 = foldl (+) 0
10
11 main = do
12 input <- getLine
13 let list = read input :: [Integer]
14
15 let result = sumElements 0 list
16 print result
17
18 let result1 = sumElements1 0 list
19 print result1
20
21 let result2 = sumElements2 list
22 print result2

The task implies multiple solutions, the first of which is close to the procedural style of programming and is easily understandable for the students. The second one is closer to the logic programming and the last one uses the function foldl. According to the poll, the first way is easier and it looks the students are familiar with it. After analysis of the second solution, the students find formal connection between the two ways which they remember, understand and eventually apply. The third way uses the foldl function which offers built-in construction making the solution much shorter.

Problem 2 shows how to solve a practical problem with the help of foldl, zipWith and map functions. The aim is to gain knowledge about these functions.

2. Receipt

Write a program that calculates the total amount of purchases,including 20% VAT. The input for each purchase is its quantity and the unit price without VAT.

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/ Task%202.%20Receipt.hs shorturl.at/sxFH5

1 -- receipt
2 calculateVAT x = x * 1.2
3
4 main = do
5 input1 <- getLine
6 let quantities = read input1 :: [Float]
7
8 input2 <- getLine
9 let prices = read input2 :: [Float]
10
11 let pricesWithVAT = map calculateVAT prices
12 let pricesWithVAT1 = map (* 1.2) prices -- alternatively
13 let values = zipWith (*) quantities prices
14 let totalSum = sum values
15
16 let valuesWithVAT = zipWith (*) quantities pricesWithVAT
17 let totalSumWithVAT = sum valuesWithVAT
18
19 print values
20 print totalSum
21 print (totalSum * 1.2) -- the total sum with the VAT coefficient
22
23 print valuesWithVAT
24 print totalSumWithVAT --the total sum with VAT obtained with summation,
should be the same as the totalSum * 1.2 if everything is correct

This task presents different basic techniques for data processing based on FPS with the help of foldl, map, zipWith and lambda functions.

Problem 3 and 4 are given as a test for individual solving. The students are divided in two groups.

3. Cargo 1

Different by size and count full tanks contain liquid, which should be transported by a tanker, which provides a given capacity. Help the team by deciding if it is possible to fit the cargo by taking into account tanker capacity. You will receive the capacity (free space as volume measure) of the tanker, a list of the diameters, a list of the lengths, and the amount of each tank type. If the cargo does fit in the tanker, output “It is possible to carry”, otherwise print “The load is too large”

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/ Task%203.%20Cargo%201.hs shorturl.at/euR24

1 isPossibleToCarry x y
2| x <= y=3| otherwise"The load is too large"
4

5 isPossibleToCarry1 x y =
6 if x <= y

7then"It is possible to carry"8else

9
10 main = do
11 input <- getLine
12 let tankerVolume = read input :: Float
13
14 input1 <- getLine
15 let diameters = read input1 :: [Float]
16
17 input2 <- getLine
18 let lenghts = read input2 :: [Float]
19
20 input3 <- getLine
21 let tankCounts = read input3 :: [Float]
22
23 let volumes = zipWith (\d l -> pi / 4 * d * d * l) diameters lenghts
24
25 print volumes -- volumes
26 let totalVolumes = zipWith (*) volumes tankCounts
27 let totalVolume = sum totalVolumes
28 print totalVolume
29 print (isPossibleToCarry totalVolume tankerVolume)
30 print (isPossibleToCarry1 totalVolume tankerVolume) -- alternatively

4. Cargo 2

A client would like to order different by size and count tanks. Help the team by deciding whether it is possible the order to be fulfilled with the available sheet metal. You will receive the area of the sheet metal, list of diameters of the tanks, lengths and quantity of the tanks of each kind. If the needed metal sheet is available, print „It is possible to be produced”, otherwise print „There are not enough materials”.

Solution:

https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%20 4.%20Cargo%202.hs shorturl.at/mKR35

1 isPossibleToMake x y

2| x <= y="It is possible to3| otherwise"The materials are not enough"

4
5 isPossibleToMake1 x y =
6 if x <= y

7then"It is possible to make"8else"The materials are not enough"

9
10 main = do
11 input <- getLine
12 let materials = read input :: Float
13 input1 <- getLine
14 let diameters = read input1 :: [Float]
15 input2 <- getLine
16 let lenghts = read input2 :: [Float]
17 input3 <- getLine
18 let tankCounts = read input3 :: [Float]
19 let aroundAreas = zipWith (\d l -> pi * d * l) diameters lenghts
20 print aroundAreas -- around areas
21 let totalAreas = zipWith (*) aroundAreas tankCounts
22 let totalArea = sum totalAreas
23 print totalArea
24 print (isPossibleToMake totalArea materials)
25 print (isPossibleToMake1 totalArea materials) -- alternatively

Results

Problem 3 was solved by 80% of the students, where 60% of them used isPossibleToCarry1 function, 10% of students made mistake in the formula zipWith (\r l->2*3.14*r*r*l), instead zipWith (\d l->pi/4*d*d*l), which is explained by the mixing of the radius and diameter and the formulas for calculating circumference and area.

Problem 4 was solved by 60% of the students, 40% used isPossibleToCarry1, 20% used isPossibleToCarry and 20% did not use a special function.

Problems 5 and 6 are suggested by the students. Please note that the provided solutions are correct.

5. Terracotta and faience

In a building materials store the seller and the client are facing the following problem: The client likes a few kinds of square terracotta tiles for floor and has to calculate how much packages of each should buy. You will receive a sequence of sizes of tiles of each type, amount of tiles in each package of each tile’s type and the area of the room which needs to be covered. Output the sequence of the number of packages of each tile’s type that are needed to cover the area.

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/ Task%205.%20Terracotta%20and%20faience.hs shorturl.at/exzPX

1 squaringList list =
2 if null list
3 then []
4 else head list * head list : squaringList (tail list)
5
6 squaringList1 [] = []
7 squaringList1 (x : xs) = (x * x) : squaringList1 xs
8
9 squaring x = x * x
10
11 squaringList2 = map squaring
12
13 squaringList3 = map (\x -> x * x)
14
15 main = do
16 input1 <- getLine
17 let areaToCover = read input1 :: Double
18 input2 <- getLine
19 let lenghts = read input2 :: [Double]
20 input3 <- getLine
21 let countsPerPacket = read input3 :: [Double]
22
23 let pieceArea = squaringList lenghts
24 let areasPerPacket = zipWith (*) pieceArea countsPerPacket
25 let rec = map recip areasPerPacket
26 let packets = map (areaToCover *) rec
27 let roundedPackets = map ceiling packets
28 print roundedPackets

It is interesting that the problem is solved by similar methods as problem 1 – method close to the imperative programming, logic programming, and to the functional style-based method.

6. Analog watch

Calculate the angle between the arrows of a clock given the coordinates of the hour’s arrow and the minute’s arrow. The origin of the coordinate system is in the centre of the clock-face.

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/ Task%206.%20Analog%20watch.hs shorturl.at/ixNQ2

1 main = do
2 let a = [0.707, 0.707] --sqrt(2)/2 45 degree
3 let b = [-2, 4 * sqrt 3 / 2] -- 120 degree
4 let abScalar = sum (zipWith (*) a b)
5
6 let aLen = sqrt (sum (zipWith (*) a a))
7 -- let aLen = sqrt( foldl (+) 0 (zipWith(*) a a) )-- alternatively
8 let bLen = sqrt (sum (zipWith (*) b b))
9 -- let aLen = sqrt( foldl (+) 0 (zipWith(*) b b) )-- alternatively
10 let cosAngle = abScalar / (aLen * bLen)
11
12 let angle = round (acos cosAngle / pi * 180)
13 print angle

In this problem the students took advantage of the list processing in FPS. The solution is short and shows the power of FPS in applying mathematical formulas.

Discussion

The research shows that the usage of comparative analysis between the different styles of programming leads to mastering the programming paradigms and develops higher level of algorithmical thinking in the students. The proposed approach takes into account the curriculum – both as duration in academic hours and as a sequence of topics. If the sequence of topics is changed, the comparative analysis may be applied a different order.

Regardless of the order, the comparative learning of the paradigms helps to achieve higher level of competency. The learning of the different paradigms in a connected way provides added value in which the Whole is superior to the sum of the Parts.

Of course, if they are more academic hours for learning the FPS module, the practical approach should not be ignored. Grounds for such hypothesis are found in the achievements shown by the students in the “Embedded systems” and the “Operating systems” module (Mollov 2020) where similar approaches were used.

Conclusion

The research results lead to the following conclusions:

1. The procedural style of programming becomes primary way of thinking and the students have hard time with getting to think in terms of FPS.

2. The proposed approach helps to overcome these peculiarities. The result is that students use different approaches for solving FPS-based problems.

3. By the proposed approach the students develop effectively their competencies, related to FPS.

According to the requirements of Unit №10 of the learning outcomes part of NES, the solutions of the problems provided by the students show that they have the needed knowledge, skills and are capable to offer optimal solutions based on FPS. 70% of the students who solved the practical problems have chosen a proper data structure and used proper functions in Haskell.

The students passed successfully their exams on the FP module.

FPS a challenge for the students. They feel more comfortable with the procedural style and it is needed to use different methodologies to ease the students. It could be concluded that: The suggested approach helps to develop FPS, offers opportunity to compare the advantages and the disadvantages of the different paradigms, and develops the ability to choose the proper tools for solving different problems related to software engineering.

Acknowledgement. The authors thank Dr. Ivaylo Staribratov, Assoc. Prof. from Plovdiv University (Bulgaria) for the methodological help regarding the creation of this paper and the research conduction.

NOTES

1. ORDINANCE № 1 of 15.01.2018 for acquiring a qualification in the profession “Applied Programmer” https://www.mon.bg/upload/14210/dos_481030.pdf [Last Visited, 05.08.2020].

2. Ministry of Education and Science, National program “IT Career Training” Portal for e-Training in the specialty “Applied Programmer”, https://www.mon. bg/upload/19218/19RH172pr6-IT-kariera.pdf [Last Visited, 05.08.2020].

3. National program “IT Career Training” Portal for e-Training in the specialty “Applied Programmer” https://it-kariera.mon.bg/e-learning/ [Last Visited, 05.08.2020].

4. European e-Competence Framework, https://www.ecompetences.eu/e-cfoverview Publisher: Publications Office of the European Union ISBN: 97892-79-68006-9 (pdf),978-92-79-68005-2 (print),978-92-79-74173-9 (ePub) ISSN: 1831-9424 (online),1018-5593 (print) DOI: 10.2760/38842 (online) 10.2760/836968 (print) 10.2760/00963 (ePub) [Last Visited, 05.08.2020].

5. The European Qualifications Framework for Lifelong Learning (EQF), http://relaunch.ecompetences.eu/wp-content/uploads/2013/11/EQF_ broch_2008_en.pdf.

6. The digital competence framework for citizens with eight proficiency levels and examples of use (DigComp 2.1), https://op.europa.eu/bg/publication-detail/-/ publication/3c5e7879-308f-11e7-9412-01aa75ed71a1/language-en [Last Visited, 05.08.2020].

7. National competence assessment system MyCompetence https://mycompetence. bg Last Visited, 05.08.2020].

8. Strategic requirements of the software industry for education system reform https://www.basscom.org/RapidASPEditor/MyUploadDocs/Software-IndustryRequirements-for-Educational-Ref.pdf [Last Visited, 05.08.2020].

9. Zinoviev, Anton. 2018. Logichesko programirane, http://logic.fmi.uni-sofia.bg/ zinoviev/lp/lp-20190713.pdf [Last visited 05.08.2020].

10. Philosophæ doctor thesis Hoessen Benoît, Solving the Boolean satisfiability problem using the parallel paradigm, http://www.theses.fr/2014ARTO0406/ document [Last visited 30.08.2020].

REFERENCES

ACHTEN, P., 2008. Teaching functional programming with soccer-fun, Soccer-FunArticle, Available from: doi: 10.1145/1411260.1411270.

BANCHEV, B., 2017. Rolyata na ezika v uvodnoto obuchenie po programirane, X Natsionalna konferentsia „Obrazovanieto i izsledvaniyata v informatsionnoto obshtestvo”, 21 [In Bulgarian].

BIRD, R., 1998. Introduction to Functional Programming using Haskell. Prentice Hall, New York.

CHATTOPADHYAY, A., QUIGLEY, E., HART, R. & PETTY, S., 2018. A BERO CLF Themed Nifty Middle School Module: Teach Functional Programming Using Music and Generate Interest in Coding and Robotics, 98 – 103. Available from: doi. 10.1145/3241815.3241861.

DAVIE, A., 1992. Introduction to Functional Programming System Using Haskell. Cambridge University Press.

DIACONU, A., 2020. Learning functional programs with function invention and reuse Teaching Functional Programming with Soccer-Fun Peter Achten arXiv: 2011.08881 v1 [cs.PL] 17 Nov 2020 Honour School of Computer Science Trinity.

EGI, S. & NISHIWAKI, Y., 2020. Functional Programming in PatternMatch-Oriented Programming Style, The Art, Science, and Engineering of Programming, Published February 17, 2020, Available from: doi: 10.22152/programming-journal.org/2020/4/7 © The Art, Science, 4(3), 2020, article 7; 32.

EÉN, N. & SÖRENSSON, N., 2006. Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1 – 4), 1 – 26.

FANSLER, M., 2015. A Multimedia Library for Teaching Functional Programming Concepts, Available from: doi. 10.13140/ RG.2.1.4000.7529.

HANUS, M., 1992, 1997. Teaching Functional and Logic Programming with a Single Computation Model, Proc. Ninth International Symposium on Programming Languages, Implementations, Logics, and Programs (PLILP’97), Southampton, UK. Springer LNCS, 335–350.

HANUS M., HERBERT, K. & MORENO-NAVARRO, J., 1995. Curry: A Truly Functional Logic Language. Proceedings of ILPS’95 Workshop on Visions for the Future of Logic Programmming, Portland, Oregon, United States, 95 – 107.

HANUS, M., 2007. Multi-paradigm Declarative Languages. Proceedings of the 23rd International Conference on Logic Programming (ICLP 2007), Porto, Portugal. Edited by Verónica Dahl and Ilkka Niemelä. 4670. LNCS. Springer, 2007, 45–75. ISBN: 978-3-540-74610-2. Available from: doi. 10.1007/978-3-540-74610-2_5.

HUDAK P., 1989. Conception, evolution, and application of functional programming languages. ACM Computing Surveys, 21(3): 359 – 411.

HUDAK P., PETERSON, J. & FASEL, J., 1999. A Gentle Introduction to Haskell 98.

HUGHES, J., 1989. Why Functional Programming Matters, Computer Journal, 32(2), 98 – 107. https://www.cs.kent.ac.uk/people/staff/dat/ miranda/whyfp90.pdf [Last Visited, 30.5.2021].

JOOSTEN, S., VAN DEN BERG, K. & VAN DER HOEVEN, G., 1993. Teaching Functional Programming to First-Year Students Article in Journal of Functional Programming, Available from: doi. 10.1017/ S0956796800000599 Source: CiteSeer.

KRISTENSEN, J.T. & HANSEN, M., 2001. Teaching object-oriented programming on top of functional programming, Proceedings – Frontiers in Education Conference 1: TID – 15 – 20, 1, Available from: doi. 10.1109/FIE.2001.963848.

MCNAMARA, B. & SMARAGDAKIS, Y., 2004. Functional Programming with the FC++ Library. Journal of Functional Programming. 14, 429 – 472. Available from: doi. 10.1017/S0956796803004969.

MOLLOV, M. & STOITSOV, G., 2020. Development of STEM Competencies to the Profession “Applied Programmer” in a Virtual Environment, Anniversary International Scientific Conference “Synergetics and Reflection in Mathematics Education”, 16 – 18 October 2020, Pamporovo, Bulgaria, 285–292, Plovdiv: University press, ISBN: 978-619-202-595-3.

POOLE, M., 2019. A Block Design for Introductory Functional Programming in Haskell. 31-35. 10.1109/BB48857.2019.8941214.

STARIBRATOV, I., 2020. Alternativen nachin za profesionalno obrazovanie. Vocational education 22.2: 173 – 178.

TEODOSIEV, T.K., 2006. Problemi na obuchenieto po programirane. Sbornik dokladi na Natsionalnata konferentsiya “Obrazovanieto v informatsionnoto obshtestvo”, Plovdiv, oktomvri, 2006 g., URI: http:// hdl.handle.net/10525/1494, ISBN: 10:954-8986-22-1, 13:978-9548986-22-9 [In Bulgarian].

TEODOSIEV, T.K., 2010. Stilat na programata kato sredstvo za izbyagvane na greshki. Sbornik dokladi na Natsionalna konferentsia „Obrazovanieto v informatsionnoto obshtestvo”, Plovdiv, ARIO, 27-28 may 2010, 87-94, URI: http://hdl.handle.net/10525/1383, ISSN: 1314-0752 [In Bulgarian].

TEODOSIEV, T.K., 2011. Stil na programirane v obuchenieto, Sbornik dokladi na Natsionalna konferentsiya “Obrazovanieto v informatsionnoto obshtestvo”, Plovdiv, ARIO, 26-27 may 2011, 073-079, URI: http://hdl. handle.net/10525/1524, ISSN: 1314-0752 [In Bulgarian].

TODOROVA, M., 2010, Ezitsi za funktsionalno i logichesko programirane. Sofia: Siela, ISBN: 978-954-28-0828-2 [In Bulgarian].

THOMPSON, S., 1997. A Problem Solving Approach in Teaching Functional Programming.

THOMPSON S., 1993. Formulating Haskell. Launchbury J., Sansom P. (eds), Functional Programming, Glasgow 1992. Workshops in Computing. Springer, London. https://doi.org/10.1007/978-1-44713215-8_23.

2025 година
Книжка 4

Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов,

THE IMPACT OF TEACHERS’ GENDER, EDUCATION, AND EXPERIENCE ON FOSTERING MATHEMATICAL CREATIVITY: A QUANTITATIVE STUDY

kombinatorni zadachi. Mathematics and Informatics, 2, 193 – 202. (In Bulgarian). Valkov, M. (2022). Sinhronno distantsionno obuchenie v obrazovatelnata igra “StruniMa”. Pedagogicheski forum, 1, DOI: 10.15547/PF.2022.005, ISSN:1314-7986. (In Bulgarian).

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev1)

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev,Nadezhda Borisova,Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски1),Марияна Николова2)

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev , Tsvetelin Zaevski Anton Iliev , Vesselin Kyurkchiev , Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova , Aharon Goldreich , Nadezhda Borisova

ФОРМИРАНЕ НА КОМПЕТЕНТНОСТИ ЧРЕЗ ПРОБЛЕМНО БАЗИРАНО ОБУЧЕНИЕ

2. Компетентностен подход Компетентностният подход се базира на използването на инте- рактивни методи и нови технологии за обучение, които спомагат за

Книжка 1
ПРЕДИЗВИКАТЕЛСТВА ПРИ ОБХОЖДАНЕТО НА ИНТЕРНЕТ С ЦЕЛ ИЗВЛИЧАНЕ НА ДАННИ

Гл. ас. д-р Георги Чолаков , доц. д-р Емил Дойчев , проф. д-р Светла Коева

AN APPROACH AND A TOOL FOR EUCLIDEAN GEOMETRY

Dr. Boyko Bantchev, Assoc. Prof.

STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva , Rositsa Doneva , Sadiq Hussain Ashis Talukder , Gunadeep Chetia , Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Assist. Prof. Stefan Stavrev, Assist. Prof. Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
MIRROR (LEFT-RECURSIVE) GRAY CODE

Dr. Valentin Bakoev, Assoc. Prof.

THE CONSTRUCTION OF VALID AND RELIABLE TEST FOR THE DIVISIBILITY AREA

Dr. Daniela Zubović, Dr. Dina Kamber Hamzić

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov , Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD- ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Prof. Dr. Jasmin Bektešević, Prof. Dr. Vahidin Hadžiabdić, Prof. Dr. Midhat Mehuljić, Prof. Dr. Sadjit Metović, Prof. Dr. Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Гл. ас. д-р Георги Чолаков , доц. д-р Емил Дойчев , проф. д-р Светла Коева

EVALUATIОN OF CHILDREN’S BEHAVIOUR IN THE CONTEXT OF AN EDUCATIONAL MOBILE GAME

Dr. Margarita Gocheva, Chief Assist. Prof. Dr. Nikolay Kasakliev, Assoc. Prof. Prof. Dr. Elena Somova

Книжка 4
TRIPLES OF DISJOINT PATHS BETWEEN POINTS ON A CIRCLE

Dr. Ivaylo Kortezov, Assoc. Prof.

MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić , Hajnalka Peics , Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Dr. Pohoriliak Oleksandr, Assoc. Prof. Dr. Olga Syniavska, Assoc. Prof. Dr. Anna Slyvka-Tylyshchak, Assoc. Prof. Dr. Antonina Tegza, Assoc. Prof. Prof. Dr. Alexander Tylyshchak

РЕЗУЛТАТИ ОТ ИЗПОЛЗВАНЕТО НА ВИДЕОИГРИ В ОБРАЗОВАНИЕТО: ПРЕГЛЕД НА НЯКОИ ОСНОВНИ ИЗСЛЕДВАНИЯ ОТ ПОСЛЕДНИТЕ ДЕСЕТ ГОДИНИ

Калин Димитров , проф. д-р Евгения Ковачева „Интелигентният педагогически подход насърчава с инер- гията между технологиите и педагогиката и използва дигиталните игри в учебния процес“. Л. Даниела (Daniela 2020)

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Проф. д.п.н. Йордан Табов, проф. д-р Веселин Ненков, гл. ас. д-р Асен Велчев, гл. ас. д-р Станислав Стефанов

УПРАВЛЕНИЕ НА ЗНАНИЯТА ПО СТРУКТУРИ ОТ ДАННИ ЧРЕЗ СМЕСЕНО ОБУЧЕНИЕ

Гл. ас. д-р Валентина Дянкова, д-р Милко Янков

USING SENSORS TO DETECT AND ANALYZE STUDENTS’ ATTENTION DURING ROAD SAFETY TRAINING IN PRIMARY SCHOOL

Assist. Prof. Dr. Stefan Stavrev Assist. Prof. Dr. Ivelina Velcheva

Книжка 2
ALGORITHMS FOR CONSTRUCTION, CLASSIFICATION AND ENUMERATION OF CLOSED KNIGHT’S PATHS

Prof. DSc. Stoyan Kapralov , Assoc. Prof. Dr.Valentin Bakoev , Kaloyan Kapralov

DUAL FORM OF OBTAINING EDUCATION IN THE MATHEMATICS TEACHERS TRAINING SYSTEM: EMPLOYERS’ POSITION

Dr. Hab. Roman Vernydub, Assist. Prof. Dr. Oxana Trebenko, Prof. DSc. Oleksandr Shkolnyi

Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

THE POWER OF A POINT — A VECTOR PERSPECTIVE

Assoc. Prof. Dr. Boyko Bantchev

ФОРМУЛИ ЗА ЛИЦАТА НА НЯКОИ ВИДОВЕ МНОГОЪГЪЛНИЦИ И ПРИЛОЖЕНИЕТО ИМ ЗА ДОКАЗВАНЕ НА ЗАВИСИМОСТИ В ТЯХ

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

ТЕСТОВИТЕ ЗАДАЧИ ОТ ДЪРЖАВНИЯ ЗРЕЛОСТЕН ИЗПИТ ЗА ПРОФИЛИРАЩ УЧЕБЕН ПРЕДМЕТ „ИНФОРМАТИКА“ ПРЕЗ УЧЕБНАТА 2021/2022 ГОДИНА

Доц. д-р Димитър Атанасов , д-р Красимир Манев , доц. д-р Весела Стоименова , държавен експерт Ралица Войнова

2022 година
Книжка 6
BEST E-LEARNING PLATFORMS FOR BLENDED LEARNING IN HIGHER EDUCATION

Kalin Dimitrov, PhD student, Dr. Eugenia Kovatcheva, Assoc. Prof. “When I wanted to learn something outside of school as a kid, cracking open my World Book encyclopedia was the best I could do. Today, all you have to do is go online.” – Bill Gates

MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Dr. Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Dr. Elena Somova, Prof.

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Dr. Lilyana Petkova, Dr. Vasilisa Pavlova, Assist. Prof.

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Dr. Silvia Gaftandzhieva, Assoc. Prof. , Prof. Dr. Rositsa Doneva , Milen Bliznakov, PhD

READINESS OF UKRAINIAN MATHEMATICS TEACHERS TO USE COMPUTER GAMES IN THE EDUCATIONAL PROCESS

Dr. Alina Voievoda, Assoc. Prof. , Dr. Svitlana Pudova, Assoc. Prof. , Dr. Oleh Konoshevskyi, Assoc. Prof.

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Prof. Dr. Nataliya Hristova Pavlova, Michaela Toncheva

Книжка 4
A COMPARATIVE ANALYSIS OF ASSESSMENT RESULTS FROM FACE-TO-FACE AND ONLINE EXAMS

Dr. Emiliya Koleva, Assist. Prof., Dr. Neli Baeva, Assist. Prof

ДВАДЕСЕТ И ШЕСТА МЛАДЕЖКА БАЛКАНСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Доц. д-р Ивайло Кортезов, Мирослав Маринов

PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Dr. Evgeniya Nikolova, Assoc. Prof., Dr. Mariya Monova-Zheleva, Assoc. Prof., Dr. Yanislav Zhelev, Assoc. Prof.

Книжка 3

CONVERTING NUMERAL TEXT IN BULGARIAN INTO DIGIT NUMBER USING GATE

Dr. Nadezhda Borisova, Assist. Prof., Dr. Elena Karashtranova, Assoc. Prof.

RECOGNITION OF PROBLEMATIC EDUCATIONAL SITUATIONS IN COMPUTER MODELING TRAINING

Dr. Hristo Hristov, Assist. Prof. , Radka Cherneva

EFFECTS OF SHORT-TERM STEM INTERVENTION ON THE ACHIEVEMENT OF 9

Amra Duraković , Senior Teaching Assistant, Dr. Dina Kamber Hamzić , Assist. Prof.

Книжка 2
VOCABULARY ENRICHMENT IN COMPUTER SCIENCE FOR INTERNATIONAL STUDENTS AT THE PREPARATORY DEPARTMENT OF THE UNIVERSITY

Dr. Svetlana Mikhaelis, Assoc. Prof., Dr. Vladimir Mikhaelis, Assoc. Prof., Mr. Dmitrii Mikhaelis

STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Dr. Emiliya Koleva, Assist. Prof., Dr. Evgeni Andreev, Assist. Prof., Dr. Mariya Nikolova, Assoc. Prof.

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

DEVELOPING PROBLEM SOLVING COMPETENCY USING FUNCTIONAL PROGRAMMING STYLE

Muharem Mollov, PhD student , Petar Petrov, PhD student

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, PhD student, Dr. Alexandre Ivanov Chikalanov, Assoc. Prof.

КРИПТОГРАФИЯ И КРИПТОАНАЛИЗ С MS EXCEL

Гл. ас. д-р Деян Михайлов

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Dr. Ivaylo Staribratov, Assoc. Prof., Nikol Manolova

КОНТЕКСТУАЛНО ПРЕКОДИРАНЕ

Доц. д-р Юлия Нинова

ДВУПАРАМЕТРИЧНА ЗАДАЧА ЗА ОПТИМАЛНО РАЗПРЕДЕЛЕНИЕ НА РЕСУРСИ

Проф. д-р Росен Николаев, доц. д-р Танка Милкова

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
КРИВОРАЗБРАНИТЕ ВЕРОЯТНОСТИ ПРИ ТЕСТОВЕ ЗА НАЛИЧИЕ НА ЗАРАЗА

Доц. д-р Маргарита Ламбова, гл. ас. д-р Ваня Стоянова

E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Prof. Dr. Elena Somova

PRESCHOOL TEACHERS’ KNOWLEDGE, PERSPECTIVES AND PRACTICES IN STEM EDUCATION: AN INTERVIEW STUDY

Dr. Lyubka Aleksieva, Assoc. Prof., Prof. Dr. Iliana Mirtschewa, Snezhana Radeva, PhD Student

КОНКУРСНИ ЗАДАЧИ БРОЙ 6/2021 Г.

Краен срок за изпращане на решения: 20 януари 2022 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg. Скъпи прияте

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ

Задача 1. Число, което е точен квадрат на естествено число, се записва с няколко единици и една двойка. Докажете, че това число се дели на 11. Решение. Нека е такова число. Можем да го запишем като

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Доц. Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj , Prof. Dr. Sead Rešić , Anes Z. Hadžiomerović , Samira Aganović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Prof. Olha Matiash, Dr. Liubov Mykhailenko, Prof.Vasyl Shvets, Prof. Oleksandr Shkolnyi

КОНКУРСНИ ЗАДАЧИ БРОЙ 5/2021 Г.

Краен срок за изпращане на решения: 20 ноември 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в електр

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 4, 2021 Г.

Задача 1. Намерете всички взаимно прости естествени числа a и b, за кои- то .

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Assoc. Prof. Silvia Gaftandzhieva, Prof. Rositsa Doneva, Assist. Prof. George Pashev, Mariya Docheva

КОНКУРСНИ ЗАДАЧИ БРОЙ 4/2021 Г.

Краен срок за изпращане на решения: 10 октомври 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в елект

РЕШЕНИЯ НА КОНКУРСНИТЕ ЗАДАЧИ БРОЙ 3, 2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели . Решение. От тъждеството

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

MIDLINES OF QUADRILATERAL

Prof. Dr. Sead Rešić, Prof. Dr. Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Д-р Севдалина Георгиева

КОНКУРСНИ ЗАДАЧИ БРОЙ 3/2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели .

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 2, 2021 Г.

Задача 1. В равнината са дадени точка A и окръжност k с център O. Наме- рете геометричното място на центровете на описаните окръжности на три- ъгълници ABC, където BC е диаметър на k. Решение. Ако точката A лежи на окръжността k, то всички триъгълници ABC имат център на описаната окръжност точка O. В този случай търсеното множество е точката O. Нека A е външна за окръжността. Да разгледаме диаметър на k, който е перпендикулярен на AO. Центърът на описаната окръжност за е точ- ка S върху

В ПАМЕТ НА ПРОФ. ДОРУ СТЕФАНЕСКУ

С чувство за голяма загуба съобщаваме на нашите читатели, че на 09.05.2021 година на 69-годишна възраст напусна този свят членът на редакционния съ- вет на списание „Математика и информатика“ проф. д.м.н. Дору Стефанеску. Отиде си един уважаван румънски учен математик, старши заместник-пред- седател на Румънското математическо общество и изпълнителен редактор на Бюлетина на това общество, трикратен президент на Математическото обще- ство на Югоизточна Европа. Математическите способности на

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Задача 1. Да се реши в естествени числа уравнението:

Задача 3. Положителните числа x, y, z, α , β и γ удовлетворяват равен- ствата:

+ += и 2 cos cos cosx y z xy yz zx ++= + + Да се докаже, че от отсечки с дължини x, y и z може да се построи триъгъл- ник с ъгли , и . Решение. От равенството 0 2 cos cos cos sin sin cos cosx y z xy yz zx y z y z x =++− + + = − + + −

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

КОНКУРСНИ ЗАДАЧИ БРОЙ 1/2021

Задача 1. Да се реши в естествени числа уравнението: 5 10 2 nn−+= Задача 2. За положителните числа a, b, c и d е изпълнено равенството 1abcd+++ = . Да се докаже, неравенството: 1 18abcd abcd +++ + ≥

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

В ПАМЕТ НА НИКОЛАЙ ХРИСТОВИЧ РОЗОВ 20.02.1938 – 02.11.2020

С голямо прискърбие посрещнахме вестта, че известният математик, високо еру- дираният образователен деятел и член на редколегията на българското списание „Ма- тематика и информатика“ проф. Николай Христович Розов вече не е сред нас. Неочак- ваната смърт го застигна на поста декан на

КОНКУРСНИ ЗАДАЧИ БРОЙ 6

Задача 1. В турнир участвали 799 отбора, като всеки два отбора изиграли по една среща помежду си (всяка среща завършва с победа на единия то двата отбора). Да се докаже, че има 14 отбора, така че всеки от първите 7 отбора е победил всеки от последните 7.

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Вписаната в ∆ABC окръжност се допира до страните AB, BC и CA съответно в точки P, Q и R. Ъглополовящата на ъгъла при върха C пресича PQ в точка S. Да се докаже, че правите AS и RQ са успоредни. Задача 2. Естественото число n се нарича хубаво, ако множества {1, 2, 3,..., п} може да се разбие на k непресичащи се множества така, че всяко от множест- вото да съдържа средното аритметично на елементите си. Намерете всички хубави числа за k = 2 и k = 3. Задача 3. Намерете всички функци

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека . Да се намери сумата на всички ес- тествени числа от интервала , за които се дели на . Росен Николаев и Танка Милкова, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2019

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа , които са решения на уравнението Милен Найденов, Варна Решение: eдно множество от решения на разглежданото уравнение се описва със следните формули: , , където Задача 2. Средите на диагоналите и на изпъкналия четириъгъл- ник са съответно и , а пресечната им точка е . Ако втората пресечна точка на описаните около триъгълниците и окръжнос- ти е и , да се докаже, че правата с

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Равнобедреният трапец има основи с дължини и , като е такъв, че средите на страните му са върхове на квадрат. Ако дължината на бедрото на е , а разстоянието от пресечната точка на диагоналите му до бедрата е , да се докаже, че . Милен Найденов, Варна

( ) ( ) ( ) 2sin 2019 2 cos 2019 2 2 3 10, 25x x xx + = −+

Решение: тъй като , т.е. когато

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. По пътя между два града има три тунела с обща дължина 2 ки- лометра и 900 метра. Разликата в дължините на втория и третия е 20 пъти по-малка от дължината на първия тунел. Общата дължина на втория и третия е с 500 метра по-голяма от дължината на първия. Да се намерят дължините на трите тунела, ако третият тунел има най-малка дължина. Сава Гроздев, София и Веселин Ненков, Бели Осъм Задача 2. Да се докаже, че във вписан в окръжност четириъгълник е изпълнено неравенството . Хаим Хаи

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2019

Задача 1. Да се намерят всички тройки естествени числа, които са дължи- ни в сантиметри на ръбовете на правоъгълен паралелепипед с телесен диаго- нал . Христо Лесов, Казанлък Решение. Нека са дължините в сантиметри на ръбовете на правоъгълен паралелепипед с диагонал . Изпълнено е равен- ството . Оттук имаме . Следо- вателно . Затова , т.е. . От друга страна, , което означава, че . Затова , т.е. . По този начин получихме, че . Като направим необходимите проверки при

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадени са системите линейни уравнения

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4

THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3

RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina,Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

2019 cm

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Mихаил Aлфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казваме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са проти- воположни върхове на правоъгълник , да се намери броят на пътищата, свързващи и , по които мухата може да мине, когато: а) и n = 6; б) и ; в) m и са произволни естествени числа.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2018

Задача 1. Да се докаже, че: а) се дели на ; б) се дели на . Христо Лесов, Казанлък Решение на Златка Петрова от Ямбол: а) От дефиницията за факториел имаме . Оттук очевидно следва, че разглежданото число се дели на . б) Лесно се проверява, че е просто число. Затова от теоремата на Уилсън следва, че . Сега, като вземем предвид, че , получаваме което доказва твърдение б).

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2017

Задача 1. Да се реши в естествени числа уравнението , ако: а) ; б) . Тодор Митев, Русе Решение: а) . Първо да отбележим следните две твърдения: 1) най-големият общ делител на и е или за всяко цяло . Това твърдение следва непосредствено от равенството ; 2) ако е просто число и дели , то дели . Това твърдение се доказва по следния начин. От условието

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички тройки естествени числа , за кои- то е изпълнено равенството: а) ; в) Христо Лесов, Казанлък

Решение: а) 11 1 1 1 1 nx x x x kx x x x ′ ′ − + − +−  −  = = = =   − −   .

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2017 Г.

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между местата на пър- вата и втората среща е . Ако автомобилът се движи с по-бавно, то той ще срещне първия мотоциклет след тръгването си, а разстоянието между местата на двете срещи ще бъде . Определете разстоянието , ако скоро

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2017

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големи- на кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най- много 300 ореха. Иван събрал в кошницата си известно количество оре- хи и ги преброил по три начина: когато ги вземал по два, накрая оставал един, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три. Тъй като на Иван му харесало числото с тез

Книжка 1
„Децата не разбират това, което четат, и

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ε

2015! 2016! 2017++

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2.

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДАЧУ

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH MODIFIED DICE

Aldiyar Zhumashov

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши в естествени числа уравнението x )!63(1  , ако: а) ; б) . Тодор Митев – Русе

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2017

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което приема най-малка стойност. Христо Лесов – Казанлък Решение: съгласно малката теорема на Ферма за всяко естествено чис- ло и просто число , числото се дели на , т.е. дава оста- тък при деление на . Тъй като е просто число, от тази теорема следва, че дава остатък при деление на и дава остатък

Книжка 5
SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Слави Харалампиев и Румяна Несторова, Враца

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2016

Задача 1. Върху правата е взета произволна точка . Точките

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг съответно автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между места- та на първата и втората среща е . Ако автомобилът се движи с

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2016

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едновременно . Може ли да се приложи това действие краен брой пъти, така че всички числа в таблицата да станат различни, а сумите по всич- ки редове и всички стълбове да са равни? Може ли сумите на числата по диа- гоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Решение: прилагаме действието към единия диагонал

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големина кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най-мно- го 300 ореха. Иван събрал в кошницата си известно количество орехи и ги преброил по три начина: когато ги вземал по два, накрая оставал един орех, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три ореха. Тъй като на Иван му харесало бро

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2016 Г.

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния Решение. Нека е дискриминанта- та на квадратното спрямо уравнение . Сле- дователно . Оттук получаваме равенството . Предполагаме, че

Книжка 2
NDM-PHILOSOPHY OF EDUCATION IN THE 21

Marga Georgieva, Sava Grozdev

ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се определи дали съществуват естествени числа n и k, при които стойността на израза 2017 + 3 + 4 e: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2016

Задача 1. Редицата на Фибоначи се дефинира с равенствата и . Да се докаже, че всяка от редиците и съдържа безброй много двойки съседни членове, които се де- лят на . Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: в началото ще докажем следната Лема. За всяко числата на Фибоначи притежават свойствата: а) последната цифра на числата и е ; б) последната цифра на числата , , и е ; в) последната цифра на числата , , и е .

Книжка 1
ЗАНИМАТЕЛНИТЕ ЗАДАЧИ НА ПОАСОН И МЕТОДЪТ НА ПЕРЕЛМАН ЗА ТЯХНОТО РЕШАВАНЕ И ИЗСЛЕДВАНЕ

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров

ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което най-малка стойност. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2016

Задача 1. За всяко естествено число да се намери растяща редица от естествени числа , , , , , за които е изпълнено равенството Христо Лесов, Казанлък Решение: от условието имаме Затова , , , , и , , .

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Върху правата е взета произволна точка . Точките и лежат в една полуравнина спрямо и са такива, че и са равностранни. Ако е петата на перпендикуляра, спуснат от към , да се намери геометричното място на точката , когато описва . Ксения Горская, Дарья Коптева, Даниил Микуров – Архангелск, Русия

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1/2016

Задача 1. Целочислените редици и са дефинирани чрез равенствата , , , , при . а) Да се докаже, че за всяко цяло число точно едно от числата , и б) Да се определят целите числа , за които и са взаимно прости числа за всяко естествено число . Христо Лесов – Казанлък Решение: дадените рекурентни равенства представяме по следния на- чин: вателно

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едно- временно . Може ли да се приложи това действие краен брой пъти така, че всички числа в таблицата да станат различни, а сумите по всички редове и всички стълбове да са равни? Може ли сумите на числата по диагоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Задача 2. В окръжност с център е вписан разност

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2015

Задача 1. Дадена е функцията , където m, n, ∈ℕ. Ако и са корените на уравнението и е изпълнено

Книжка 4
ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2015

Задача 1. Да се намери сборът от корените на уравненията и . Милен Найденов, Варна Решение. Разделяме двете страни на първото уравнение на и полу- чаваме . Полагаме и уравнението добива вида . Тъй като функцията е растяща (лявата графика на чертежа), то уравнението ално решение . С непосредствена проверка се вижда, че това решение е . Оттук намираме, че е единственото решение на първо- то уравнение. След това разделяме двете страни на второто уравнение на

Книжка 3
{}

Сава Гроздев – София, и Веселин Ненков – Бели Осъм

()

След заместване на намерените две неравенства в дясната страна на . Равенство се достига тогава и само тогава,

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. За всяко естествено число n да се намери растяща редица

()

Задача 2. Нека P е произволна точка от описаната окръжност на на . Ако докаже, че точките лежат на една права. Хаим Хаимов, Варна, и Веселин Ненков, Бели Осъм Решение. Ще докажем, че правите ра на описаната около окръжност . Оттук непосредствено следва

Книжка 1
()

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

{}

2n ≥

()()

.

2015 година
Книжка 6
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадена е функцията , където ,mn∈ . Ако x и x са корените на уравнението f (x) = 0 и е изпълнено (2) (3)ff t xx xx −− ==∈ +  , да се намерят m и n. Росен Николаев, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2015

Задача 1. Параметрите a и b в уравнението 5x + 2x + 4ax  x + 2bx + 4b  a = 0 са такива, че то има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: Тъй като 1 и 2 са корени на даденото уравнение, то след заместване в уравнението се получават съответно равенствата: 5a+2b = 4 и 31a+8b = 188. След решаване на получената система от две уравнения с две неизвестни се полу- чава: a = 4 и b = 8. Заместваме на

МАТЕМАТИКА И ИНФОРМАТИКА MATHEMATICS AND INFORMATICS

BULGARIAN EDUCATIONAL JOURNAL ANNUAL CONTENTS / ГОДИШНО СЪДЪРЖАНИЕ

Книжка 5
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери сборът от корените на уравненията 3.2 8.3 159000 += и 32.11 56697728 x += . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2014

Задача 1. Да се намерят всички рационални стойности на параметъра k, за които уравнението ( ) ( ) , 10k ≠ притежава цело- числени корени. Милен Найденов, Варна Решение: Ако x и x са корените на уравнението, то 2 21 1 2 10 10 k xx kk - + = =- -- е цяло число. Затова 1 10 p k = - е цяло. Оттук получаваме 10 1p k p + = . За дискри- минантата D на уравнението намираме 6 24p D p -- = . Тъй като D трябва да е точен квадрат, то 6 24pn- -= за някое цяло число n. Последното равен

Книжка 4
Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова СОУ „Панайот Волов“ – Шумен ОУ „Никола Йонков Вапцаров“ – Асеновград

МОДИФИКАЦИЯ МЕТОДА ПРОЕКЦИЙ ВЬIЧИСЛЕНИЯ РАССТОЯНИЯ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЬIМИ

Владимир Жук Республиканская специализированная физико-математическая средняя школа-интернат имени О. Жаутыкова

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2014

Задача 1. Намерете всички естествени четирицифрени числа uxyv , за които са изпълнени равенствата и . Милен Найденов, Варна Решение: Събираме почленно равенствата и получаваме . Оттук следва равенството ( ) ( )( ) 1 1 1 12xy uv− −+ − −= . Последното равенство е изпълнено при ( ) 1 11 xy − −= и ( )( ) 1 11uv− −= ; ( ) 1 12xy− −= и ( )( ) 1 10uv− −= ; ( ) 1 10xy− −= и ( )( ) 1 12uv− −= . Оттук лесно се вижда, че търсените числа са: 2222, 5231, 1235, 3152, 3512, 5321, 1325,

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

Contest Problems Конкурсни задачи Рубриката се води от доц. д-р Веселин Ненков КОНКУРСНИ ЗАДАЧИ НА БРОЯ Задача 1. Параметрите a и b са такива, че уравнението 5x

Задача 1. Параметрите a и b са такива, че уравнението 5x + 2x + 4ax - x + 2bx + 4b  a = 0 има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2014

Задача 1. Ако a  3 е нечетно число и k 2 е естествено число, да се намери остатъкът от делението на a с . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: Означаваме с r търсения остатък. При k = 2 е изпълнено равенството . Тъй като , то . Сега от равенството се получава , къ- дето M е цяло число. Ако k = 2l, l k = 2l + 1, l . В този случай получаваме, че . Разглеждаме случая, при който k = 3. От рела- циите и

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички рационални стойности на параметъра , за които уравнението притежава це- лочислени корени. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2014

Задача 1. Да се докаже, че за произволен триъгълник със страни a , и c е изпълне- но неравенството Йонуц Иванеску, Крайова, Румъния Решение: Ако , R и са съответно лицето, радиусът на описа- ната окръжност и полупериметърът на триъгълника, то са изпълнени следните релации: и . От двете равенства лесно се вижда, че разглежданото неравенство е еквивалентно с , което съвпада със споменатото неравенство.

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев СОУ „П. Волов“ – Шумен

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални стойности на a, b и c, при които коре- ните на уравнението 10x a b c x ab bc ca++++ +++= са цели числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2013

Задача 1. Да се намерят всички реални функции : 1, 1,fx +∞ → +∞ , за които при и 0y > е изпълнено равенството fx fx= . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния Решение: Нека 1 log ln ye x == . Тогава fx fx fe== . Полагаме 1fe a => . От условието получаваме a fe fx== , откъдето fx a = . Освен това . Затова, като положим α , получаваме, че търсените функции са fx x = за всички α .

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

УРОК ЗА ИЗПОЛЗВАНЕ НА ФУНКЦИИ В ЗАДАЧИ ПО ИКОНОМИКА

Петя Сярова СОУ „Васил Левски“ – Ямбол

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете цифрите , , и в десетична бройна система, ако е изпълнено равенството . Йон Патралику, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2013

Задача 1. Да се намерят всички наредени тройки от реални числа , за които са изпълнени неравенствата: 2 2 2 28, 6, 3 8.

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова Образцова математическа гимназия „Акад. Кирил Попов” „Колкото човек е по-близо, толкова по-малко вижда“ Зрителна измама, филм на Луи Летерие

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете всички естествени четирицифрени числа , за които са изпълнени равенствата и . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2013

Задача 1. а) Покажете, че ако , то 9 3 15xx x+ +≥ . б) Намерете реалните стойности на , при които за всички , , 1,abc∈ − +∞ , е изпълнено неравенството 31a b c a b c kabc + + + + + +≥ ++ . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: а) Разглежданото неравенство е еквивалентно с 13 1 0 xx + −≥ , което е очевидно при . б) От а) следват неравенствата 9 3 15aa a+ +≥ , 9 3 15bb b+ +≥ и 9 3 15cc c+ +≥ . След почленно събиране получаваме 5 31 3 a b c a

Книжка 2
ФРАКТАЛЬНЫЕ МЕТОДЫ В ФИЗИКЕ

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

ANALYSIS OF PROBLEM SOLVING IN INFORMATICS FOR 12 – 13 YEAR OLD STUDENTS IN BULGARIA

Ivaylo Staribratov, BistraTaneva High School of Mathematics „Akad. Kiril Popov“

МОДЕЛ ЗА РЕШАВАНЕ НА ЕДИН КЛАС ЗАДАЧИ ЗА ПОСТРОЕНИЕ С ДИНАМИЧЕН СОФТУЕР

Ваня Бизова-Лалева Национална търговска гимназия

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако a ³ 3 е нечетно число и k ³ 2 е естествено число, да се намери остатъкът от делението на a с .

Contest Problems Конкурсни задачи РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2013

24 24 2 2 .2 8. 2 8.1024 8. 1000 1 8.10 . 1 23. 1000 1000     == = = + > + =         557 500 3 8.10 . 1 8.10 . 1 8.10 . 12.10 10.10 10 1000 1000 2  = +> += = > =  

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев СОУ „Панайот Волов“

ЕДНО ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ПИТАГОР В ИЗВЪНКЛАСНАТА РАБОТА ПО МАТЕМАТИКА

Румяна Несторова Регионален инспекторат по образованието - Враца

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

ЕДИНАДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

Иван Держански Българска академя на науките

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че за произволен триъгълник със страни a, b и c е из- пълнено неравенството (a+b+c) (2b c + 2c a + 2a b - a - b - c ) £ 27a b c . Йонуц Иванеску, Крайова, Румъния Задача 2. Ако M е множеството на всички равнобедрени триъгълници, стра- ните и лицето на които са естествени числа, да се намерят три триъгълника от M, различните страни на които са последователни естествени числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2013

Задача 1. Реалните числа , , , и са такива, че:

2013 година
Книжка 6

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални функции f (x) : (1, + ) (1, + ), за които при x > 1 и y > 0 е изпълнено равенството f (x ) = (f (x)) . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2013

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата 3 cos cos cos 3 1 216 abc abc abc abc ⎡⎤ ++ ++ −≤++< − ⎢⎥ ⎢⎥ ⎣⎦ .

MATHEMATICS AND INFORMATICS

ГОДИНА LVI / VOLUME 56, 2013 ГОДИШНО СЪДЪРЖАНИЕ / ANNUAL CONTENT СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 96 КНИЖКА 2 / NUMBER 2: 97 – 200 КНИЖКА 3 / NUMBER 3: 201 – 296 КНИЖКА 4 / NUMBER 4: 297 – 400 КНИЖКА 5 / NUMBER 5: 401 – 496 КНИЖКА 6 / NUMBER 6: 497 - 608

Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички наредени тройки от реални числа (x, y, z), за които са изпълнени неравенствата:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2012

Задача 1. За всяко реално число x означаваме с [x] най-голямото цяло число, което е по-малко или равно на x. Да се намерят всички прости числа p, за които числото е просто.

GUIDE FOR AUTHORS

Mathematics and Informatics Journal publishes scientifi c, scientifi c-popular, review and information materials. Papers of scientifi c character should report original research and ideas inspected through expert evaluation by two anonymous and independent referees. It is recommended that the manuscripts are sent as attachment fi les to the following addresses mathinfo@azbuki.bg and sava.grozdev@gmail.com. Disks or other electronic devices are admissible too and in such a case the postal a

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. а) Покажете, че ако , то 9315xx x++≥ .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2012

Задача 1. Да се намерят всички положителни числа x, y и z, за които е изпълнено равенството . Сава Гроздев, София, Веселин Ненков, Бели Осъм Решение: Тъй като 13 = 2197, 2.11 = 2662 и 3.9 . 2187, то x 12, y 10 и z 8. Освен това x и z имат различна четност. Така с непосредствена проверка се вижда, че когато z = 1,3,5,7 при x = 2,4,6,8,10,12 и z = 2,4,6,8 при x = 1,3,5,7,9,11, само x = 2, y = 10, z = 1 е решение на даденото уравнение.

Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се сравнят числата Йонуц Иванеску, Крайова, Румъния Задача 2. Точките E и F са среди съответно на диагоналите AC и BD на чети- риъгълника ABCD. Ако BAE ADE= и , да се докаже, че симе- дианите на триъгълниците ABC, BCD, CDA и DAB съответно през върховете B, C, D и A се пресичат в една точка. Хаим Хаимов, Варна Задача 3. Вписаната в окръжност се допира до , и AB съот-

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2012

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния Решение: Изпълнени са равенствата ! 1! 1 1! 1 !! np Sp C p np + =− +=− +=

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Реалните числа , , , и са, такива че:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2012

Задача 1. Да се намерят всички естествени числа aa a bb b  , за които е изпълнено равенството aa a bb b aa a bb b=   . Николай Белухов, Стара Загора Решение: Нека A aa a=  и B bb b=  . От условието следва равенството .10 . A B AB+= , откъдето .10 1 . A AB =− . Тъй като , 11AA −= , то 1|10 A − , откъдето 1 1 2 .5 AA− += . Ако числата 1A − и 1A + са едновременно нечетни, то , а 1A − и 1A + са степени на петицата с разлика две, което е невъзможно. Остава само възмо

Книжка 1
70-ГОДИШЕН ЮБИЛЕЙ

Навършиха се 70 години от рождението на изтъкнатия български математик проф. дмн Генчо Скордев. Юбилярът е член-кореспондент на БАН и дългогодишен главен редактор на сп. „Математика и информатика“. По този повод е следващият материал, в който авторът разказва свои спомени с исторически характер, свързани с активното му участие в образователните процеси в България по математика и информатика.

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2012

Задача 1. В множеството на реалните числа е дефинирана бинарна опера- ция :⊗ ×→  , където : \0=  , която условно ще наричаме умножение и такава, че за всеки три реални числа , и , където , е в сила ра- венството .ac a bc b ⊗⊗= . Ако е известно, че , да се пресметне 2011 2012 2011 2012⊗⊗⊗ . Живко Желев, Стара Загора Решение: Първи начин (авторско решение). Нека . Тогава .1 11 1 a ata a⊗= ⊗ ⊗ = = . Оттук получаваме 2012. 1 2012 2012 2012 2012 2012 t tt=⊗=⊗ ⊗= =

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2012

Христо Лесов, Казанлък

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

доц. д–р Иван А. Держански (ИМИ–БАН) Десетата Международна олимпиада по лингвистика (МОЛ) се проведе в Любляна (Словения) от 30 юли до 3 август 2012 г. В нея взеха участие 131 ученици, съставящи 34 отбора от 26 страни. За първи път свои състезатели изпратиха Гърция, Китай, Израел, Унгария и Япония. Бяха представени също Австралия, Бразилия, България, Великобритания, Германия, Естония, Индия, Ирландия, Канада, Латвия, Нидерландия, Полша, Румъния, Русия, САЩ, Сингапур, Словения, Сърбия, Чехи

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПР ОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички положителни числа , и , за които е из- пълнено равенството Сава Гроздев, София, Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2011

Задача 1. Да се докаже, че за всяко цяло положително число уравнението има безброй много решения в цели положителни числа

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2011

Задача 1. Едно цяло положително число n ще наричаме “интересно”, ако може да бъде записано във вида , където са цели поло- жителни числа и , а дели c . Да се докаже, че само краен брой цели положителни числа не са “интересни” и да се намери сумата им. Решение: 1) Нека , то тересно”. Остава да отбележим, че , и не са “интересни”. 2) Нека

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2011

Задача 1. На страните AB и на успоредника външно за

Книжка 3
НАЦИОНАЛЕН КОНКУРС „МЛАДИ ТАЛАНТИ” 2012

Георги Дянков През месец май 2012 се проведе финалният кръг на Националния конкурс „Млади таланти”. Състезанието се организира от МОМН и приема разработки на научни проекти от ученици в гимназиален етап и студенти първи курс. Участниците предста- виха свои авторски проекти в различни научни области – естествени науки, социални науки и комуникационни и информационни технологии (ИКТ). Състезанието тази година се отличи с много добри проекти и журито имаше нелеката задача да избере най-добри

СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички естествени числа aa abb b , за които е изпълнено равенството

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2011

Задача 1. Да се определят стойностите на параметъра a, за които уравнението log sin 2011 cos 2011tg x cotg x a x x += + има решение и да се реши уравнението за най-малката от намерените стойности на параметъра. Христо Лесов, Казанлък Решение (Христо Лесов): Изпълнени са следните релации: π αα α за всяко и 2 2 sin 2 tg cotg += ≥ за

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2011

Задача 1. Ако , е цяло положително число, да се докаже, че съществуват безброй много цели положителни числа нено равенството . Веселин Ненков, Бели Осъм Решение (Светлозар Дойчев): Като използваме, че за произволно цяло число

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МЕЖДУНАРОДНИ КОНКУРСИ ЗА РАЗРАБОТВАНЕ НА ПРОЕКТИ

І.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕза ученици, ІІ.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕ за учители

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева

КОНКУРСНИ ЗАДАЧИ

Рубриката се води от Светлозар Дойчев, и Веселин Ненков