Математика и Информатика

2021/2, стр. 207 - 221

КАЧЕСТВЕНО ИЗСЛЕДВАНЕ НА КОНФЕРЕНТНО ОНЛАЙН ОБУЧЕНИЕ ПРИ СТУДЕНТИ ПО УЕБ ДИЗАЙН

Резюме:

Ключови думи:

1. Конферентно онлайн обучение

В работата се изследва конферентно онлайн обучение при студенти в университетски курс по „Уеб дизайн“ чрез прилагане на качествени методи участващо наблюдение, анкетна карта, събеседване и сравнителен анализ. В проучването под „конферентно онлайн обучение“ следва да се разбира вид интерактивно обучение посредством конферентна платформа, което протича синхронно и асинхронно.

За целите на провеждане на изследователски експеримент се създадоха: програма за провеждане на конферентно онлайн обучение и план за провеждане на качествен експеримент. В контекста на програмата и плана се дискутират характеристики на качествените методи, параметри на провеждане на качествения експеримент, черти на конферентното онлайн обучение, условия и обстоятелства, при които е проведено обучението, начинът на събиране на емпирични данни, както и резултатите от експеримента.

1.1. Непредвидени условия и обстоятелства в образованието

В Закона за висше образование1) са регламентирани образователните форми на обучение. Съгласно него висшето образование се провежда в редовна, задочна, вечерна и дистанционна форма. Чрез Наредба за държавните изисквания за организиране на дистанционна форма на обучение във висшите училища са установени общи положения за организиране и провеждане на онлайн обучение2). Според Закона и Наредбата дистанционната форма на обучение е организиране на учебен процес, при което студентът и преподавателят са разделени по местоположение, но не непременно и по време. Императив в нормативните документи гласи, че: „Дистанционно обучение може да се организира само от висши училища, създадени при условията и по реда на Закона за висшето образование и получили програмна акредитация“.

През учебната 2019/2020 година системата на образование масово премина към провеждане на конферентно онлайн обучение поради епидемичната обстановка, породена от вирусната инфекция COVID-19. Началните и средните училища имаха известна подготовка с т.нар. иновативна методика, част от която включва подходи и методи с използване на електронни ресурси и системи (Stoitsov & Stoitsova, 2017; Stoitsov & Stoitsova, 2019; Mollov, 2019). Висшето образование, поради своята динамика и гъвкавост, реагира на рязката промяна индивидуално на ниво отделно учебно звено – факултет, колеж, университет и пр. Тази промяна в много учебни заведения бе технически обезпечена от платформи за конферентна комуникация. Употребата и ръстът на потребление при водещи платформи като Zoom, Google Meet, Microsoft Team и др.9), се наблюдаваше и в българските университети. В началото това доведе до провеждане на неформален процес на обучение, който породи явление със законова и правна нормативна неуреденост. От една страна, през учебната 2019/2020 година масово се води онлайн процес на обучение в редовна и задочна форма на обучение. От друга страна обаче, съществува регламентирана дистанционна форма на обучение, за която голяма част от образователните институции нямат акредитация. Този правен проблем наложи намиране на решение поради необходимост от законова легитимност на обучението. В противен случай всяко занятие и проведен изпит търпи юридическо оспорване, като например законосъобразността на изпитната оценка. Такова решение се намери чрез поредица от нормативни промени и заповеди на Народното събрание, Министерството на здравеопазването, Министерството на образованието и науката и висшето учебно завадение3),4),5),6). За споменатия период Факултетът по математика и информатика (ФМИ) на ПУ „Паисий Хилендарски“ няма одобрена акредитация за провеждане на дистанционна форма на обучение. За обучението по дисциплината „Уеб дизайн“ на специалност „Софтуерни технологии и дизайн“, независимо от неясната нормативна перспектива в началото на епидемичната обстановка, се разработи система за обучение, включваща конферентна платформа, специализирани уеб източници, дигитални облачни услуги и др. учебни материали, чрез което се организира процес на конферентно онлайн обучение. Вследствие на нейното създаване конферентното онлайн обучение е проведено синхронно и асинхронно. Синхроните конферентни занятия се водят по учебен график чрез платформата Zoom.us. Комуникацията е осъществявана посредством видео, звук и споделен екран за презентиране, демонстрация или симулация. В занятията се правят виртуални обиколки на реални проекти, демонстрации на функционалности на уеб приложения, симулации на изходен код и др. методически подходи. Както при класическото обучение, във виртуалната стая се предполага, че студентите си водят записки за учебните източници.

1.2. Организация на обучението във ФМИ

Във ФМИ академичната година се състои от три триместъра. Учебните планове на специалностите са разработени съгласно Наредбата за държавните изисквания за придобиване на висше образование на образователно-квалификационните степени „Бакалавър“, „Магистър“ и „Специалист“ от 2002 г. в съответствие с Наредба № 21 от 2004 г. за прилагане на система за натрупване и трансфер на кредити и в синхрон с международните стандарти и препоръки на IEEE и ACM7).

1.3. Черти на конферентното онлайн обучение

Характерна черта на конферентното онлайн обучение е, че то протича както синхронно, така и асинхронно. Синхронно е обучението, когато се преподават и усвояват знания, умения и компетенции при едновременно присъствие в реално време на обучаеми и обучаващ във физическа или електронна среда. Асинхронно е обучението, когато се усвояват знания без условието за едновременност на присъствието на обучаем и обучаващ (Hamza & Nuri, 2013). Пример за синхронно обучение са провеждането на лекция, лабораторно упражнение, семинарно упражнение и др. Пример за асинхронно обучение е гледането на видеозапис, повторен прочит на записки от лекционно занятие, подготовка на домашни задания и др.

1.4. Подготовка и провеждане на конферентно онлайн обучение

По дисциплината „Уеб дизайн“ се проведе конферентно онлайн обучение, което задълбочено се изследва чрез качествени диагностични методи. В подготовката на експеримента участваха трима преподаватели – лектор и двама асистенти. По-важните акценти на програмата за провеждане на електронно обучение включиха разрешаването на задачите:

– анализ на традиционното присъствено обучение по дисциплината „Уеб дизайн“;

– проучване за конферентни системи, които да удовлетворяват процеса на обучение;

– адаптация на използваните в предходни години електронни учебни материали;

– създаване на нови уеб инструменти за обучение.

За протичане на обучението се подготвиха и адаптираха редица методични средства. Чрез университетски домейн8) са достъпни: насоки за онлайн обучение, лекции и упражнения, тематични връзки и учебна литература за самообучение, уеб форма за кореспонденция, изисквания за разработка, представяне и защита на курсов проект, връзка към уеб форма за изпращане на домашни работи, хранилище с мултимедийни материали и облачни услуги на Google, анкетна карта за обратна връзка, указания за инсталация и работа с платформата Zoom Meeting, механизъм за проверка на присъствие в конферентно занятие, дидактически правила за работа във виртуалната среда и др. Така посочените технически и методически средства и материали се систематизираха в система за провеждане на конферентно онлайн обучение.

2. Планиране и провеждане на качествен методически експеримент 2.1. Някои характеристики на качествените методи през погледа на конферентното онлайн обучение

В педагогическата наука са обособени две основни направления диагностични изследвания на т.нар. количествени и качествени методи (Ivanov, 2006). В настоящото изследване са приложени качествените методи участващо наблюдение, анкетиране, събеседване и сравнителен анализ на теоретични данни. При сравнителния анализ е използван комбиниран подход на качествената и количествената методология. Основният подход за събиране на данни е участващо наблюдение, при което изследователят е т.нар. „участващ наблюдател“, т.е. той се „доближава“ до изследваните лица и процеси, като непосредствено участва в тях. За целта на изследването е разработена разновидност на участващо наблюдение, и по-конкретно едновременно участие на двама наблюдаващи преподаватели. Единият преподавател води занятието и има класическа роля на участващ наблюдател, докато другият изпълнява функцията на наблюдаващ изследовател. Ефективността на качествените изследвания зависи от способностите на изследователя да превърне себе си в изследователски инструмент (Wilson, 1977). Такъв тип събиране на данни от първа ръка, близо до обстоятелствата, предполага изследователят да мисли, разсъждава и анализира информацията от гледната точка на участниците на терена (Lofland, Snow, Anderson & Lofland, 2005). При провеждането на експеримента, поради наличието на двама преподаватели – участващ наблюдател и наблюдаващ изследовател, добиваната информация е с по-голяма степен на обективност, а ефективността на наблюдение е по-висока. При качествената методология проверката на резултатите се извършва относно изменението на структурата на предмета на изследването, като се наблюдава какви промени настъпват и се търси връзка с условията, при които е осъществено изследването. Това изменение обаче не засяга същността и структурата на изследователския обект (Bizhkov & Kraevski, 2007). Поради тази черта на качествените методи подготвихме качествен диагностичен експеримент, чрез който се изследва конферентното онлайн обучение. Диагностичните методи са приложени съобразно концепцията за провеждане на качествено изследване в областта на методиката на обучението по софтуерни технологии, чиито основни принципи гласят, че: „При провеждането на качествени изследвания изследователят трябва да е „на терен“, в близост до естествената среда на работа на изследваните лица и в активно взаимодействие с тях като участващ наблюдател“; „По време на провеждане на качествено педагогическо изследване протича диалектика между наличната и текущо получаваната информация“ (Hristov, 2016). Споменатата концепция представлява авторски подход за приложение на качествени изследователски методи. Тя е усъвършенстване и адаптиране на Обоснована теория (Glaser & Strauss, 1999), предназначена за изследване в обучението по софтуерни науки. Според някои изследователи при прилагането на Обоснована теория изследователят е способен да премине отвъд хипотезите, като разкрие какво действително се случва в основата на изследваното явление (Lowe, 1998). Такъв е случаят с изследването на конферентното онлайн обучение. При това изследване използваният апарат е разделен на три компонента: теоретични данни, процедури за събиране на данни и документиране и отчитане на резултатите.

2.2. Параметри на експеримента

Основните параметри на качествения диагностичен експеримент, проведен във ФМИ със специалност „Софтуерни технологии и дизайн“, по дисциплината „Уеб дизайн“, са следните.

Обект на изследване: конферентно онлайн обучение.

Предмет на изследване: формата на обучение, методите на преподаване и образователните резултати.

Цел: изследване на подходи, техники, практики приложени при конферентно онлайн обучение.

Задачи: провеждане на обучение чрез конферентна платформа; обособяване на „индикатори“ за наблюдение; подбор и разработка на учебни материали; разработка на анкетна карта и провеждане на анкетно диагностично проучване; анализ и систематизация на данни от участващото наблюдение, анкетно проучване и избирателно събеседване; сравнителен анализ между присъственото обучение и конферентното обучение и др.

Обхват: 100 студенти.

Методи: участващо наблюдение, анкетиране, събеседване, сравнителен анализ.

Резултати: теоретичен анализ, изводи, твърдения и перспективи.

3. Събиране на емпирични данни

Качествените изследвания се характеризират със силно изразена индивидуалност на изследвания обект и тясно изразена специфичност на изследвания предмет. Поради тази причина те често имат еднократен характер и се създават специално за определено изследване. В нашия случай участващото наблюдение е проведено в 8 занятия по 3 часа – общо 24 учебни часа. В отделните упражнения наблюдаващият преподавател води записки с мнения, разбирания, схващани и пр. В края на занятието се прави кратко събеседване между двамата преподаватели – водещия упражнението и наблюдаващия, като се извършва т.нар. качествено кодиране на събраните данни. Същият подход на участващо наблюдение е приложен и при представянето и защитата на курсов проект. Отделен източник на данни е анкетирането на студенти непосредствено след приключването на защитата на курсовия проект. Анкетната карта съдържаше два типа въпроси – избор на отговор и писмена аргументация. Избирателно, по преценка на наблюдаващия преподавател, след защитата на курсовите проекти се проведоха кратки събеседвания с 20 студенти от общо 90 защитили, при общо 102 обучаващи се. Четвъртият метод при експеримента е сравнителният анализ между образователните резултати от предходната и настоящата учебна година.

Критиката към качествените методи най-често е свързана с приложението на изследователския метод и истинността на научния резултат. Докато при количествените изследвания съществуват мерки за обективност, надеждност и валидност за проверка на изследването и резултатите от него, при качествените изследвания в научната литература няма единно мнение относно критериите и показателите. В настоящото изследване сме се придържали както към някои по-популярни критерии, като описателна интерпретация (обоснованост), аргументирана интерпретация, организационна ефективност, комуникативна валидизация и др. (Lee, 1999; Corbin & Strauss, 2014), а също така и към някои по-стриктни обосновки от концепцията „Критерии, показатели и параметри за достоверност на приложен метод и истинност на получен резултат“ (Hristov, 2016), адаптирани за конкретно направеното изследване.

4. Интерпретация на записки от участващо наблюдение, анкетни карти, събеседвания и електронна учебна документация

При конферентното онлайн обучение задълбочено са изследвани формата на обучение, методите на преподаване и образователните резултати. Вследствие от изпълнението и разрешаването на задачите на експеримента е направена интерпретация на по-значимите тенденции и перспективи.

4.1. Образователна перспектива

Съществен резултат на проучването е породен от разискването за разликата между дистанционната форма на обучение и конферентното онлайн обучение. Дистанционната форма на обучение не е обект на изследването. За конферентното онлайн обучение обаче могат да се изброят редица аргументи, въз основа на които да се твърди, че като образователен подход, метод и средство, в определен контекст и условия, то е приложимо в редовната форма на обучение. В научната литература съществуват различни класификации на методи на обучение – според логическите операции, дидактическата цел, източника на знанията, действащото лице и др. (Dureva-Tuparova, 2003). Конферентното онлайн обучение, поради своята специфика, представлява интеграционен образователен инструмент, чрез който може да се приложат редица методи на обучение. Например спрямо източника на знание е приложим като лекция, обяснение и семинар, като нагледност за наблюдение, демонстрация и симулация, като практика за упражнение, лабораторна работа, практически знания, практикум, инструктаж и др. Повечето от тези методи успешно и ефективно се приложиха в конферентните занятия по „Уеб дизайн“. Нещо повече, в резултат на проучванията твърдим, че конферентното онлайн обучение е приложимо в редовната форма и може да бъде регламентирано като сегмент от учебната програма на дисциплините. Например при провеждане на: семинарни и специализирани упражнения; консултации по задания за самостоятелна работа; прилагане на екипен принцип на работа и др. От тази гледна точка, конферентното онлайн обучение разкрива нова перспектива пред редовната форма на обучение.

Образователна перспектива: потребно е да се преразгледа нормативната уредба, така че след като се разграничат понятията дистанционна форма на обучение и конферентно онлайн обучение, да се установят, включително и нормативно, ролята, функцията и мястото на този вид обучение в редовната форма.

4.2. Качествена интерпретация

Впечатление правят образователните резултати при сравнителния анализ и интерпретация на електронната учебна документация между студентите от специалност „Софтуерни технологии и дизайн“, преминали присъствено курса на обучение по „Уеб дизайн“ през учебната 2018/2019 година, и тези от същата специалност за учебната 2019/2020 година, изучавали „Уеб дизайн“ посредством конферентното онлайн обучение. При интерпретиране на теоретични данни и сравнителното им анализиране е необходимо да се отбележи, че под понятието образователен резултат се има предвид негов по-общ смисъл, по-конкретно: познанията, софтуерен продукт и образователната оценка на студента. Девалвацията на образователната оценка е накарала преподавателите в учебната дисциплина и автори на проучването да водят курса на обучение в тясно и интензивно взаимодействие със студентите, като изискват от тях изготвянето на седмични домашни работи. Също така, при обучението в учебната дисциплина се провеждат контролна работа и разработка на курсов проект, който се представя и защитава. Изпитът по дисциплината представлява защита на курсов проект, при което се включва и събеседване между преподавателя и студента. Такъв е алгоритъмът за всеки един студент, който успешно преминава курса на обучение. В така изложения контекст интересно е да се отбележи, че при обучението в двете последователни учебни години както познанията на студентите, така и качеството на техните софтуерни разработки, придобити при присъственото обучение и конферентното онлайн обучение, не се различават съществено. Разбира се, такова едно твърдение притежава степен на субективност, каквато е научната природа на методиката на качественото сравнение поради липсата на обективни количествени измервания, които да бъдат съпоставени. Това заключение за обучените 97 студенти през учебната 2018/2019 година и 102 през учебната 2019/2020 година наложи изискване да се приложи с особена осторожност т.нар. „дисциплинарна субективност“ при допълнителното избирателно индивидуално събеседване с 20 студенти от курса, проведен чрез конферентно онлайн обучение, за да се постигне валидност на резултатите и да се намали степента на субективност. Според някои автори, придържайки се към „дисциплинарна субективност“, може да се очаква, че различни „дисциплинирани изследователи“ ще получат едни и същи резултати (Wilson, 1977).

Акцентът при провеждането на 20-те събеседвания бе поставен върху поведението на студента при справяне с поставени задачи по време на обучението, за които обучаемият е необходимо да прави избор и да взема самостоятелно решение. Такива въпроси, уточняващи поведението на студента, са типови и поставени в контекста на индивидуално разработения и защитен курсов проект, т.е. те са релевантни на самостоятелно приложените студентски познания. Такива въпроси например са: „Какво Ви мотивира да намерите самостоятелно софтуерно решение, което не е изучено в учебното занятие?“, „Как се насочихте към софтуерна практика, различна от разгледаната на упражнения?“, „С какво лекторът и асистентът Ви стимулираха да търсите задълбочено решение на поставената задача?“ и др.

Въз основа на участващото наблюдение по време на занятия, отговорите от анкетните карти, индивидуалното събеседване и задълбочения сравнителен анализ и интерпретация между електронната учебна документация от предходната и настоящата учебна година, т.е. между нивото на изготвените домашни работи, направената контролната работа и представените курсови работи при присъственото обучение и конферентното онлайн обучение, правим следните изводи.

– Може да се твърди убедително, че придобитите знания, умения и компетенции, ведно с качеството на направените софтуерни разработки при присъственото и конферентното онлайн обучение, не се различават съществено. Този извод може да бъде подкрепен от средноаритметичните оценки на домашните работи, контролната работа и оценения курсов проект. Количествено изследване на числовите данни, което не е предмет на изследването, би дало точна и ясна картина за някои детайлни разлики. От гледна точка на качественото изследване обаче, съществен е изводът, че: чрез частична промяна или цялостна смяна на определени подходи и практики на преподаване при проектиране и стилизиране на уеб страници по дисциплината „Уеб дизайн“ може да се постигне идентичен образователен резултат при присъственото и при конферентното онлайн обучение. Такива адаптивни подходи и практики на преподаване например са: брейнсторминг практика за структура и свойство на уеб компонента при присъственото обучение, заменима с демонстрация чрез видеозапис при конферентното онлайн обучение; групова дискусия при присъствено упражнение, заменима с групова самостоятелна задача; вербално задаване на въпрос при присъствена лекция, заменимо с текстово съобщение по време на конферентна видео-звукова комуникация и др.

– Недостатък на конферентното онлайн обучение е нарушената обрат-на връзка на комуникацията. Конферентното провеждане на занятие лишава преподавателя от прилагането на педагогически опит въз основа на пряка комуникация със студента. Поради това по-рядко се променя темпът на лекционното занятие, не се забелязва интересът на студентите при разглеждането на определен проблем, мотивирането и събуждането на внимание у обучаемите чрез технологични примери, условно отклонение от учебната тема, демонстрации и т.н. са по-трудно приложими. При конферентното онлайн обучение особено впечатление прави поведението на малка група студенти, които априори имат силен интерес към учебната дисциплина. При тях се забелязва, че значително е завишен интензитетът на комуникация чрез текстови съобщения, писма, включително търсене на контакти през социални мрежи.

4.3. Особености при конферентно онлайн обучение

Съществен резултат от експеримента е анализът на разликите при приложните практики между конферентното онлайн обучение и „традиционното“ присъствено обучение. При обединяването на образователни ресурси и услуги, като специализирани уеб източници, облачни услуги, конферентна онлайн платформа и т.н., в интегрирана система за провеждане на конферентното онлайн обучение се приложиха редица методически иновации. Такива са онлайн излъчвания (live-streaming), конферентни дискусии, споделена работа на общ екран (share screen), верификация за присъствие на студента и др. При обучението с дигитални платформи тези практики са ежедневие и не може да се твърди, че са новост за образованието. Новост обаче е тяхното хармонизиране и приложение съгласно учебния план на специалността, учебната програма на дисциплината и академичния календар на учебното заведение. Такъв вид обучение се характеризира със силна индивидуализация при усвояването на знания, умения и компетенции от студента. При него е практика създаването на хранилища за разпространение на дигиталните ресурси, споделянето на електронни материали в облачна среда, видео и аудио записване на занятията и пр. техники на организация, които налагат пряко индивидуално участие на студента. Така например студентът може повторно да разучи практика или да гледа цяло упражнение чрез видео, аудио, анимация, текст и др. електронни източници; да извърши самоподготовка в удобно за него време; да се съобрази със собствения си темп на усвояване на знания и т.н. Конферентният онлайн процес на обучение и традиционният процес на обучение притежават някои сходни колективни и индивидуални характеристики. Съществена разлика обаче е, че конферентното онлайн обучение притежава силно изразени индивидуални характеристики при усвояването на знания, умения и компетенции.

Вследствие на синтеза при интерпретацията на събраните данни от експеримента изброяваме някои организационни практики, благоприятстващи провеждането на конферентното онлайн обучение, сред които: създаване на дигитални ресурси, достъпни от облачна среда, чрез които се систематизира видео, аудио, анимация, специализирани примери с изходен код и др.; съхраняване на студентски разработки в общо дигитално хранилище с цел мониторинг на домашни, контролни, курсови и други самостоятелни работи; унифициране на студентски профили в обща платформа, чрез която се повишава качеството на дистанционна комуникация, и др. Трябва да се отбележи, че тези организационни практики успешно се прилагат и при традиционното присъствено обучение. При конферентното онлайн обучение обаче те трябва да бъдат обединени в обща система на преподаване.

4.4. Методът „импровизирана демонстрация“

Измежду приложените подходи и методи на обучение при конферентното онлайн обучение по уеб дизайн особено внимание заслужава методът на т.нар. „импровизирана демонстрация“. Този метод е специфичен за обучението при проектиране и стилизиране на уеб страници и е обусловен от технологиите, които се изучават в такива курсове. В повечето подобни курсове се изучават технологиите HTML, CSS, JavaScript, jQuery, Bootstrap и редица производни от тях библиотеки и работни рамки. Разработването на уеб потребителски интерфейс чрез тях може свободно да бъде изследвано и изучавано посредством т. нар. „инспектор на уеб браузър“. Същността на метода „импровизирана демонстрация“ се състои в избор, изследване и методическо декомпозиране на произволна уеб потребителска компонента от произволен уеб сайт. При приложение на метода обикновено преподавателят предоставя възможност на обучаемите да подберат по време на занятието такава уеб потребителска компонента, с която водещият занятието предварително не е запознат. В голяма част от случаите опитният уеб дизайнер може да направи демонстрация и анализ в порядъка на десет-двадесет минути, а опитният преподавател по уеб дизайн да сведе структурата и свойствата на изследваната компонента до ниво, подходящо за изучаване в учебна зала. Обичайно изследваната от преподавателя компонента се декомпозира в реално време нагледно за студентите през проектор като отделен пример. В определен момент от декомпозицията се прави задание на няколко последователни етапа или покана към студентите да работят заедно с преподавателя. Разбира се, в някои случаи „импровизираната демонстрация“ претърпява неуспех при изследването и съставянето на пример за уеб потребителска компонента поради технологичната комплицираност, т.е. поради недоб-ре подбран пример. В тези случаи преподавателят има възможност да обясни какви допълнителни познания са необходими, при какви условия и предпоставки студентът да започне изучаването на срещнатата технология, на какъв етап от обучението си и т.н., т.е. преподавателят разкрива дългосрочна перспектива на обучение. Методът „импровизирана демонстрация“ се прилага с голям успех както при присъственото обучение, така и при конферентното онлайн обучение. Във втория случай обаче трябва да се отбележи, че чрез него се постигна неочакван ефект. Въз основа на отговорите от анкетните карти и събеседванията студентите твърдят, че този метод им е бил от особена полза. В много случаи обучаемите споделят, че често не са могли да се справят със заданията по време на упражненията при прилагане на импровизирана демонстрация. Същевременно обаче посочват, че методът ги е стимулирал да започнат сами да изследват непознати за тях уеб компоненти. Вследствие на такова неформално обучение придобитите знания и умения при по-инициативните студенти надвиши многостепенно предвиденото по учебна програма тематично съдържание.

5. Заключение

Интерпретацията на данните от участващото наблюдение, анкетните карти, събеседванията и качествения сравнителен анализ потвърждава, че придобитите знания, умения и компетенции при присъственото обучение и конферентното онлайн обучение не се различават съществено. Разкри се, че конферентното онлайн обучение в зависимост от контекста може да се разглежда като образователен подход, метод и средство. Представиха се същността и основните белези на авторския метод „импровизирана демонстрация“, прилаган с особен успех и различен ефект при присъственото и конферентното онлайн обучение. Също така, посочи се, че конферентното онлайн обучение е приложимо в редовната форма и може да бъде регламентирано като сегмент от учебната програма. От тази гледна точка, конферентното онлайн обучение разкрива нова образователна перспектива.

БЕЛЕЖКИ

1. Официален сайт на МОН, Закон за висшето образование (акт. 25.02.2020 г.), https://www.mon.bg/bg/57, посетен на 14.09.2020 г.

2. Официален сайт на МОН, Наредба за държавните изисквания за организиране на дистанционна форма на обучение във висшите училища, https:// www.mon.bg/bg/59, посетен на 16.09.2020 г.

3. Официален сайт на ПУ „Паисий Хилендарски“, Заповед P33-1328 от 13.03.2020г., Временно прекратяване на учебните занятия до 29.03.2020 г., https://uni-plovdiv.bg/news/news/792, посетен на 19.11.2020 г.

4. Официален сайт на ПУ „Паисий Хилендарски“, Заповед P33-1402 от 24.03.2020г., Временно прекратяване на учебните занятия до 13.04.2020 г., https://uni-plovdiv.bg/news/news/798, посетен на 19.11.2020 г.

5. Официален сайт на ПУ „Паисий Хилендарски“, Заповед P33-1441 от 10.04.2020г. Удължаване на временното прекратяване на учебните занятия до 13.05.2020 г., https://uni-plovdiv.bg/news/news/805, посетен на 19.11.2020 г.

6. Официален сайт на ПУ „Паисий Хилендарски“, Заповед P33-1503 от 08.05.2020г. Заповед във връзка с организацията на учебния процес, https:// uni-plovdiv.bg/news/news/805, посетен на 19.11.2020 г

7. Специализиран сайт на ФМИ при ПУ, Основни характеристики на учебния план за направление 4.6. – Информатика и компютърни науки, http://fmiplovdiv.org/index.jsp?id=2752&ln=1 , посетен на 16.09.2020 г.

8. Учебните материали са преместени от адрес hristov.uni-plovdiv.bg на hristov. fmi-plovdiv.org.

9. McLaughlin, M. & Brame, D. (2020, May 28). The Best Video Conferencing Software for 2020. PCMag. Retrieved 2020, August 19, from https://www. pcmag.com/picks/the-best-video-conferencing-software.

ЛИТЕРАТУРА

Бижков, Г. & Краевски, В. (2007). Методология и методи на педагогическите изследвания. София: Св. Климент Охридски.

Дурева-Тупарова, Д. (2003). Проблеми на методиката на обучение по информатика и ИТ. Благоевград: Югозападен университет „Неофит Рилски“.

Иванов, И. (2006). Педагогическа диагностика. Шумен: Еп. Константин Преславски.

Стоицов, Г. & Стоицова, Г. (2017). Виртуален инструмент за подпомагане на обучението в началното училище. Образование и наука за личностно и обществено развитие. Националната научна конференция, 75 – 84.

Хамза, И. & Нури, Х. (2013). Дистанционното обучение с интернет. „Известия на Съюза на учените Сливен“, т. 24, 381 – 383.

Христов, Хр. (2016). Методика на преподаване на съвременни технологии за създаване на софтуер. Дисертационен труд за присъждане на образователна и научна степен „доктор“. Пловдив: Паисий Хилендарски.

REFERENCES

Bizhkov, G. & Kraevski, V. (2007). Methodology and Methods of Pedagogical Research. Sofia: University Publishing House “Sv. Kliment Ohridski”.

Dureva-Tuparova, D. (2003), Problems of the Methodology of Training in Informatics and IT. Blagoevgrad: University Publishing House SouthWest University “Neofit Rilski”.

Ivanov, I. (2006). Pedagogical Diagnostics. Shumen: University Publishing House Konstantin Preslavsky University of Shumen.

Hamza, I. & Nuri, H. (2013), Distantsionno obuchenie s internet. „Izvеstia na Sauza na uchenite – Sliven“ – „Announcements of the Union of Scientists – Sliven“, vol.24, 381 – 383.

Hristov, Hr. (2016). Teaching Methods of Modern Technology to Create Software. Dissertation for the Award of Educational and Scientific Degree „Doctor“, Plovdiv: University Publishing House PU “Paisiy Hilendarski”.

Corbin, J., Strauss, A. (2015). Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, 4th ed., Thousand Oaks, CA: SAGE Publications.

Glaser, B. G. & Strauss, A. L. (1999). The Discovery of Grounded Theory: Strategies for Qualitative Research. New Brunswick, N.J.: Aldine Transaction.

Lee, T. W. (1999). Using Qualitative Methods in Organizational Research. Thousand Oaks, CA: SAGE Publications.

Lofland, J., Snow, D. A., Anderson, L. & Lofland, L. H. (2005). Analyzing Social Settings: А Guide to Qualitative Observation and Analysis, 4th ed. Belmont, CA: Wadsworth.

Lowe, A. (1998). Managing the Post-merger Aftermath by Default Remodelling. Management Decision, 36 (2), 102 – 110.

Wilson, S. (1977). The Use of Ethnographic Techniques in Educational Research. Review of Educational Research, 47(1), 245 – 265.

Mollov, M. A. (2019). Google Classroom – an Innovative Approach to a More Efficient Organization of Learning. Mathematics and Informatics, 62(5), 509 – 516.

Stoitsov, G. & Stoitsova, G. (2017). Virtual Instrument for Supporting the Education in Primary School. Obrazovanie i nauka za lichnostno i obshtestveno razvitie Education and science - for personal and social development. National Scientific Conference, 75 – 84.

Stoitsov, G. & Stoitsova, G. (2019). Increasing the Motivation of Primary School Pupils through the Use of ICT in the Educational Process. International Journal of Research GRANTHAALAYAH, 7(2), 207 – 213.

Educational Issues
Въпроси на преподаването
Ivaylo Kortezov
Bulgarian Academy of Sciences

Problem. Let n be a positive integer. In a group of n people, each one has a different Easter egg. We say that a pair of people performs a swap if they exchange the eggs they currently have. Find the least possible number E(n) of swaps such that each pair of people has performed at least one swap and at the end each person has the egg he/she had at the start.

Before we solve the above problem, let us discuss what happens with E(n) for small n. Denote the people by A, B, C, D, ... and their initial Easter eggs by the corresponding small letters. A swap is denoted by the names of the persons involved. Clearly E(1)=0 and E(2)=2. Let us find E(3). Assume that the persons A, B, C have chosen the eggs a, b, c respectively; we indicate this initial state by Aa, Bb, Cc. One can assume that the first swap is between persons A and B, leading to the state Ab, Ba, Cc. The second swap is either by the same pair of people (which will easily seen to be not optimal) or by a different one; we will assume without loss of generality that it is between A and C, thus leading to the state Ac, Ba, Cb. At least one swap is needed also between B and C, but such a swap leads to the state Ac, Bb, Ca, so we need

2025 година
Книжка 4

Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов,

THE IMPACT OF TEACHERS’ GENDER, EDUCATION, AND EXPERIENCE ON FOSTERING MATHEMATICAL CREATIVITY: A QUANTITATIVE STUDY

kombinatorni zadachi. Mathematics and Informatics, 2, 193 – 202. (In Bulgarian). Valkov, M. (2022). Sinhronno distantsionno obuchenie v obrazovatelnata igra “StruniMa”. Pedagogicheski forum, 1, DOI: 10.15547/PF.2022.005, ISSN:1314-7986. (In Bulgarian).

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev1)

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev,Nadezhda Borisova,Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски1),Марияна Николова2)

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev , Tsvetelin Zaevski Anton Iliev , Vesselin Kyurkchiev , Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova , Aharon Goldreich , Nadezhda Borisova

ФОРМИРАНЕ НА КОМПЕТЕНТНОСТИ ЧРЕЗ ПРОБЛЕМНО БАЗИРАНО ОБУЧЕНИЕ

2. Компетентностен подход Компетентностният подход се базира на използването на инте- рактивни методи и нови технологии за обучение, които спомагат за

Книжка 1
ПРЕДИЗВИКАТЕЛСТВА ПРИ ОБХОЖДАНЕТО НА ИНТЕРНЕТ С ЦЕЛ ИЗВЛИЧАНЕ НА ДАННИ

Гл. ас. д-р Георги Чолаков , доц. д-р Емил Дойчев , проф. д-р Светла Коева

AN APPROACH AND A TOOL FOR EUCLIDEAN GEOMETRY

Dr. Boyko Bantchev, Assoc. Prof.

STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva , Rositsa Doneva , Sadiq Hussain Ashis Talukder , Gunadeep Chetia , Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Assist. Prof. Stefan Stavrev, Assist. Prof. Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
MIRROR (LEFT-RECURSIVE) GRAY CODE

Dr. Valentin Bakoev, Assoc. Prof.

THE CONSTRUCTION OF VALID AND RELIABLE TEST FOR THE DIVISIBILITY AREA

Dr. Daniela Zubović, Dr. Dina Kamber Hamzić

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov , Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD- ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Prof. Dr. Jasmin Bektešević, Prof. Dr. Vahidin Hadžiabdić, Prof. Dr. Midhat Mehuljić, Prof. Dr. Sadjit Metović, Prof. Dr. Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Гл. ас. д-р Георги Чолаков , доц. д-р Емил Дойчев , проф. д-р Светла Коева

EVALUATIОN OF CHILDREN’S BEHAVIOUR IN THE CONTEXT OF AN EDUCATIONAL MOBILE GAME

Dr. Margarita Gocheva, Chief Assist. Prof. Dr. Nikolay Kasakliev, Assoc. Prof. Prof. Dr. Elena Somova

Книжка 4
TRIPLES OF DISJOINT PATHS BETWEEN POINTS ON A CIRCLE

Dr. Ivaylo Kortezov, Assoc. Prof.

MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić , Hajnalka Peics , Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Dr. Pohoriliak Oleksandr, Assoc. Prof. Dr. Olga Syniavska, Assoc. Prof. Dr. Anna Slyvka-Tylyshchak, Assoc. Prof. Dr. Antonina Tegza, Assoc. Prof. Prof. Dr. Alexander Tylyshchak

РЕЗУЛТАТИ ОТ ИЗПОЛЗВАНЕТО НА ВИДЕОИГРИ В ОБРАЗОВАНИЕТО: ПРЕГЛЕД НА НЯКОИ ОСНОВНИ ИЗСЛЕДВАНИЯ ОТ ПОСЛЕДНИТЕ ДЕСЕТ ГОДИНИ

Калин Димитров , проф. д-р Евгения Ковачева „Интелигентният педагогически подход насърчава с инер- гията между технологиите и педагогиката и използва дигиталните игри в учебния процес“. Л. Даниела (Daniela 2020)

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Проф. д.п.н. Йордан Табов, проф. д-р Веселин Ненков, гл. ас. д-р Асен Велчев, гл. ас. д-р Станислав Стефанов

УПРАВЛЕНИЕ НА ЗНАНИЯТА ПО СТРУКТУРИ ОТ ДАННИ ЧРЕЗ СМЕСЕНО ОБУЧЕНИЕ

Гл. ас. д-р Валентина Дянкова, д-р Милко Янков

USING SENSORS TO DETECT AND ANALYZE STUDENTS’ ATTENTION DURING ROAD SAFETY TRAINING IN PRIMARY SCHOOL

Assist. Prof. Dr. Stefan Stavrev Assist. Prof. Dr. Ivelina Velcheva

Книжка 2
ALGORITHMS FOR CONSTRUCTION, CLASSIFICATION AND ENUMERATION OF CLOSED KNIGHT’S PATHS

Prof. DSc. Stoyan Kapralov , Assoc. Prof. Dr.Valentin Bakoev , Kaloyan Kapralov

DUAL FORM OF OBTAINING EDUCATION IN THE MATHEMATICS TEACHERS TRAINING SYSTEM: EMPLOYERS’ POSITION

Dr. Hab. Roman Vernydub, Assist. Prof. Dr. Oxana Trebenko, Prof. DSc. Oleksandr Shkolnyi

Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

THE POWER OF A POINT — A VECTOR PERSPECTIVE

Assoc. Prof. Dr. Boyko Bantchev

ФОРМУЛИ ЗА ЛИЦАТА НА НЯКОИ ВИДОВЕ МНОГОЪГЪЛНИЦИ И ПРИЛОЖЕНИЕТО ИМ ЗА ДОКАЗВАНЕ НА ЗАВИСИМОСТИ В ТЯХ

Проф. д.п.н. Йордан Табов , гл. ас. д-р Асен Велчев , гл. ас. д-р Станислав Стефанов , маг. мат. Хаим Хаимов

ТЕСТОВИТЕ ЗАДАЧИ ОТ ДЪРЖАВНИЯ ЗРЕЛОСТЕН ИЗПИТ ЗА ПРОФИЛИРАЩ УЧЕБЕН ПРЕДМЕТ „ИНФОРМАТИКА“ ПРЕЗ УЧЕБНАТА 2021/2022 ГОДИНА

Доц. д-р Димитър Атанасов , д-р Красимир Манев , доц. д-р Весела Стоименова , държавен експерт Ралица Войнова

2022 година
Книжка 6
BEST E-LEARNING PLATFORMS FOR BLENDED LEARNING IN HIGHER EDUCATION

Kalin Dimitrov, PhD student, Dr. Eugenia Kovatcheva, Assoc. Prof. “When I wanted to learn something outside of school as a kid, cracking open my World Book encyclopedia was the best I could do. Today, all you have to do is go online.” – Bill Gates

MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Dr. Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Dr. Elena Somova, Prof.

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Dr. Lilyana Petkova, Dr. Vasilisa Pavlova, Assist. Prof.

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Dr. Silvia Gaftandzhieva, Assoc. Prof. , Prof. Dr. Rositsa Doneva , Milen Bliznakov, PhD

READINESS OF UKRAINIAN MATHEMATICS TEACHERS TO USE COMPUTER GAMES IN THE EDUCATIONAL PROCESS

Dr. Alina Voievoda, Assoc. Prof. , Dr. Svitlana Pudova, Assoc. Prof. , Dr. Oleh Konoshevskyi, Assoc. Prof.

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Prof. Dr. Nataliya Hristova Pavlova, Michaela Toncheva

Книжка 4
A COMPARATIVE ANALYSIS OF ASSESSMENT RESULTS FROM FACE-TO-FACE AND ONLINE EXAMS

Dr. Emiliya Koleva, Assist. Prof., Dr. Neli Baeva, Assist. Prof

ДВАДЕСЕТ И ШЕСТА МЛАДЕЖКА БАЛКАНСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Доц. д-р Ивайло Кортезов, Мирослав Маринов

PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Dr. Evgeniya Nikolova, Assoc. Prof., Dr. Mariya Monova-Zheleva, Assoc. Prof., Dr. Yanislav Zhelev, Assoc. Prof.

Книжка 3

CONVERTING NUMERAL TEXT IN BULGARIAN INTO DIGIT NUMBER USING GATE

Dr. Nadezhda Borisova, Assist. Prof., Dr. Elena Karashtranova, Assoc. Prof.

RECOGNITION OF PROBLEMATIC EDUCATIONAL SITUATIONS IN COMPUTER MODELING TRAINING

Dr. Hristo Hristov, Assist. Prof. , Radka Cherneva

EFFECTS OF SHORT-TERM STEM INTERVENTION ON THE ACHIEVEMENT OF 9

Amra Duraković , Senior Teaching Assistant, Dr. Dina Kamber Hamzić , Assist. Prof.

Книжка 2
VOCABULARY ENRICHMENT IN COMPUTER SCIENCE FOR INTERNATIONAL STUDENTS AT THE PREPARATORY DEPARTMENT OF THE UNIVERSITY

Dr. Svetlana Mikhaelis, Assoc. Prof., Dr. Vladimir Mikhaelis, Assoc. Prof., Mr. Dmitrii Mikhaelis

STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Dr. Emiliya Koleva, Assist. Prof., Dr. Evgeni Andreev, Assist. Prof., Dr. Mariya Nikolova, Assoc. Prof.

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

DEVELOPING PROBLEM SOLVING COMPETENCY USING FUNCTIONAL PROGRAMMING STYLE

Muharem Mollov, PhD student , Petar Petrov, PhD student

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, PhD student, Dr. Alexandre Ivanov Chikalanov, Assoc. Prof.

КРИПТОГРАФИЯ И КРИПТОАНАЛИЗ С MS EXCEL

Гл. ас. д-р Деян Михайлов

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Dr. Ivaylo Staribratov, Assoc. Prof., Nikol Manolova

КОНТЕКСТУАЛНО ПРЕКОДИРАНЕ

Доц. д-р Юлия Нинова

ДВУПАРАМЕТРИЧНА ЗАДАЧА ЗА ОПТИМАЛНО РАЗПРЕДЕЛЕНИЕ НА РЕСУРСИ

Проф. д-р Росен Николаев, доц. д-р Танка Милкова

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
КРИВОРАЗБРАНИТЕ ВЕРОЯТНОСТИ ПРИ ТЕСТОВЕ ЗА НАЛИЧИЕ НА ЗАРАЗА

Доц. д-р Маргарита Ламбова, гл. ас. д-р Ваня Стоянова

E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Assist.Prof., Dr. Nikolay Kasakliev, Assoc. Prof., Prof. Dr. Elena Somova

PRESCHOOL TEACHERS’ KNOWLEDGE, PERSPECTIVES AND PRACTICES IN STEM EDUCATION: AN INTERVIEW STUDY

Dr. Lyubka Aleksieva, Assoc. Prof., Prof. Dr. Iliana Mirtschewa, Snezhana Radeva, PhD Student

КОНКУРСНИ ЗАДАЧИ БРОЙ 6/2021 Г.

Краен срок за изпращане на решения: 20 януари 2022 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg. Скъпи прияте

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ

Задача 1. Число, което е точен квадрат на естествено число, се записва с няколко единици и една двойка. Докажете, че това число се дели на 11. Решение. Нека е такова число. Можем да го запишем като

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Доц. Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj , Prof. Dr. Sead Rešić , Anes Z. Hadžiomerović , Samira Aganović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Prof. Olha Matiash, Dr. Liubov Mykhailenko, Prof.Vasyl Shvets, Prof. Oleksandr Shkolnyi

КОНКУРСНИ ЗАДАЧИ БРОЙ 5/2021 Г.

Краен срок за изпращане на решения: 20 ноември 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в електр

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 4, 2021 Г.

Задача 1. Намерете всички взаимно прости естествени числа a и b, за кои- то .

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Assoc. Prof. Silvia Gaftandzhieva, Prof. Rositsa Doneva, Assist. Prof. George Pashev, Mariya Docheva

КОНКУРСНИ ЗАДАЧИ БРОЙ 4/2021 Г.

Краен срок за изпращане на решения: 10 октомври 2021 г. В края на 2021 г. ще бъдат определени читателите с най-интересни реше- ния на конкурсните задачи, а така също най-активните композитори на нови задачи, както и авторите на най-интересните статии. Първенците ще получат безплатни годишни абонаменти за 2022 г. Решенията трябва да бъдат представени ясно, като е задължително всяка задача да е на отделен лист. Моля, изпращайте решенията на адреса на редак- цията mathinfo@azbuki.bg или в елект

РЕШЕНИЯ НА КОНКУРСНИТЕ ЗАДАЧИ БРОЙ 3, 2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели . Решение. От тъждеството

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Assoc. Prof. Larisa Zelenina, Assoc. Prof. Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Assoc. Prof. Inga Zashikhina

MIDLINES OF QUADRILATERAL

Prof. Dr. Sead Rešić, Prof. Dr. Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Д-р Севдалина Георгиева

КОНКУРСНИ ЗАДАЧИ БРОЙ 3/2021 Г.

Задача 1. Да се намерят всички естествени числа x и y, за които дели 2xy и дели .

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 2, 2021 Г.

Задача 1. В равнината са дадени точка A и окръжност k с център O. Наме- рете геометричното място на центровете на описаните окръжности на три- ъгълници ABC, където BC е диаметър на k. Решение. Ако точката A лежи на окръжността k, то всички триъгълници ABC имат център на описаната окръжност точка O. В този случай търсеното множество е точката O. Нека A е външна за окръжността. Да разгледаме диаметър на k, който е перпендикулярен на AO. Центърът на описаната окръжност за е точ- ка S върху

В ПАМЕТ НА ПРОФ. ДОРУ СТЕФАНЕСКУ

С чувство за голяма загуба съобщаваме на нашите читатели, че на 09.05.2021 година на 69-годишна възраст напусна този свят членът на редакционния съ- вет на списание „Математика и информатика“ проф. д.м.н. Дору Стефанеску. Отиде си един уважаван румънски учен математик, старши заместник-пред- седател на Румънското математическо общество и изпълнителен редактор на Бюлетина на това общество, трикратен президент на Математическото обще- ство на Югоизточна Европа. Математическите способности на

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Задача 1. Да се реши в естествени числа уравнението:

Задача 3. Положителните числа x, y, z, α , β и γ удовлетворяват равен- ствата:

+ += и 2 cos cos cosx y z xy yz zx ++= + + Да се докаже, че от отсечки с дължини x, y и z може да се построи триъгъл- ник с ъгли , и . Решение. От равенството 0 2 cos cos cos sin sin cos cosx y z xy yz zx y z y z x =++− + + = − + + −

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

КОНКУРСНИ ЗАДАЧИ БРОЙ 1/2021

Задача 1. Да се реши в естествени числа уравнението: 5 10 2 nn−+= Задача 2. За положителните числа a, b, c и d е изпълнено равенството 1abcd+++ = . Да се докаже, неравенството: 1 18abcd abcd +++ + ≥

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

В ПАМЕТ НА НИКОЛАЙ ХРИСТОВИЧ РОЗОВ 20.02.1938 – 02.11.2020

С голямо прискърбие посрещнахме вестта, че известният математик, високо еру- дираният образователен деятел и член на редколегията на българското списание „Ма- тематика и информатика“ проф. Николай Христович Розов вече не е сред нас. Неочак- ваната смърт го застигна на поста декан на

КОНКУРСНИ ЗАДАЧИ БРОЙ 6

Задача 1. В турнир участвали 799 отбора, като всеки два отбора изиграли по една среща помежду си (всяка среща завършва с победа на единия то двата отбора). Да се докаже, че има 14 отбора, така че всеки от първите 7 отбора е победил всеки от последните 7.

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Вписаната в ∆ABC окръжност се допира до страните AB, BC и CA съответно в точки P, Q и R. Ъглополовящата на ъгъла при върха C пресича PQ в точка S. Да се докаже, че правите AS и RQ са успоредни. Задача 2. Естественото число n се нарича хубаво, ако множества {1, 2, 3,..., п} може да се разбие на k непресичащи се множества така, че всяко от множест- вото да съдържа средното аритметично на елементите си. Намерете всички хубави числа за k = 2 и k = 3. Задача 3. Намерете всички функци

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека . Да се намери сумата на всички ес- тествени числа от интервала , за които се дели на . Росен Николаев и Танка Милкова, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2019

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа , които са решения на уравнението Милен Найденов, Варна Решение: eдно множество от решения на разглежданото уравнение се описва със следните формули: , , където Задача 2. Средите на диагоналите и на изпъкналия четириъгъл- ник са съответно и , а пресечната им точка е . Ако втората пресечна точка на описаните около триъгълниците и окръжнос- ти е и , да се докаже, че правата с

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Равнобедреният трапец има основи с дължини и , като е такъв, че средите на страните му са върхове на квадрат. Ако дължината на бедрото на е , а разстоянието от пресечната точка на диагоналите му до бедрата е , да се докаже, че . Милен Найденов, Варна

( ) ( ) ( ) 2sin 2019 2 cos 2019 2 2 3 10, 25x x xx + = −+

Решение: тъй като , т.е. когато

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. По пътя между два града има три тунела с обща дължина 2 ки- лометра и 900 метра. Разликата в дължините на втория и третия е 20 пъти по-малка от дължината на първия тунел. Общата дължина на втория и третия е с 500 метра по-голяма от дължината на първия. Да се намерят дължините на трите тунела, ако третият тунел има най-малка дължина. Сава Гроздев, София и Веселин Ненков, Бели Осъм Задача 2. Да се докаже, че във вписан в окръжност четириъгълник е изпълнено неравенството . Хаим Хаи

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2019

Задача 1. Да се намерят всички тройки естествени числа, които са дължи- ни в сантиметри на ръбовете на правоъгълен паралелепипед с телесен диаго- нал . Христо Лесов, Казанлък Решение. Нека са дължините в сантиметри на ръбовете на правоъгълен паралелепипед с диагонал . Изпълнено е равен- ството . Оттук имаме . Следо- вателно . Затова , т.е. . От друга страна, , което означава, че . Затова , т.е. . По този начин получихме, че . Като направим необходимите проверки при

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадени са системите линейни уравнения

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4

THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3

RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina,Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

2019 cm

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Mихаил Aлфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казваме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са проти- воположни върхове на правоъгълник , да се намери броят на пътищата, свързващи и , по които мухата може да мине, когато: а) и n = 6; б) и ; в) m и са произволни естествени числа.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2018

Задача 1. Да се докаже, че: а) се дели на ; б) се дели на . Христо Лесов, Казанлък Решение на Златка Петрова от Ямбол: а) От дефиницията за факториел имаме . Оттук очевидно следва, че разглежданото число се дели на . б) Лесно се проверява, че е просто число. Затова от теоремата на Уилсън следва, че . Сега, като вземем предвид, че , получаваме което доказва твърдение б).

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2017

Задача 1. Да се реши в естествени числа уравнението , ако: а) ; б) . Тодор Митев, Русе Решение: а) . Първо да отбележим следните две твърдения: 1) най-големият общ делител на и е или за всяко цяло . Това твърдение следва непосредствено от равенството ; 2) ако е просто число и дели , то дели . Това твърдение се доказва по следния начин. От условието

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички тройки естествени числа , за кои- то е изпълнено равенството: а) ; в) Христо Лесов, Казанлък

Решение: а) 11 1 1 1 1 nx x x x kx x x x ′ ′ − + − +−  −  = = = =   − −   .

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2017 Г.

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между местата на пър- вата и втората среща е . Ако автомобилът се движи с по-бавно, то той ще срещне първия мотоциклет след тръгването си, а разстоянието между местата на двете срещи ще бъде . Определете разстоянието , ако скоро

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2017

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големи- на кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най- много 300 ореха. Иван събрал в кошницата си известно количество оре- хи и ги преброил по три начина: когато ги вземал по два, накрая оставал един, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три. Тъй като на Иван му харесало числото с тез

Книжка 1
„Децата не разбират това, което четат, и

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ε

2015! 2016! 2017++

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2.

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДАЧУ

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH MODIFIED DICE

Aldiyar Zhumashov

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши в естествени числа уравнението x )!63(1  , ако: а) ; б) . Тодор Митев – Русе

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2017

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което приема най-малка стойност. Христо Лесов – Казанлък Решение: съгласно малката теорема на Ферма за всяко естествено чис- ло и просто число , числото се дели на , т.е. дава оста- тък при деление на . Тъй като е просто число, от тази теорема следва, че дава остатък при деление на и дава остатък

Книжка 5
SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Слави Харалампиев и Румяна Несторова, Враца

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2016

Задача 1. Върху правата е взета произволна точка . Точките

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. От две селища и , разстоянието между които е , ед- новременно тръгнали един срещу друг съответно автомобил и мотоциклет. В момента на срещата им от за тръгнал втори мотоциклет. При срещата на втория мотоциклет с автомобила се оказало, че разстоянието между места- та на първата и втората среща е . Ако автомобилът се движи с

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2016

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едновременно . Може ли да се приложи това действие краен брой пъти, така че всички числа в таблицата да станат различни, а сумите по всич- ки редове и всички стълбове да са равни? Може ли сумите на числата по диа- гоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Решение: прилагаме действието към единия диагонал

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Иван, Петър и Мариян събирали орехи с различни по големина кошници. В кошницата на Иван могат да се съберат най-много 70 ореха, в кошницата на Петър – най-много 170 ореха, а в тази на Мариян – най-мно- го 300 ореха. Иван събрал в кошницата си известно количество орехи и ги преброил по три начина: когато ги вземал по два, накрая оставал един орех, когато ги вземал по три, накрая оставали два, а когато ги вземал по четири, накрая оставали три ореха. Тъй като на Иван му харесало бро

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2016 Г.

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния Решение. Нека е дискриминанта- та на квадратното спрямо уравнение . Сле- дователно . Оттук получаваме равенството . Предполагаме, че

Книжка 2
NDM-PHILOSOPHY OF EDUCATION IN THE 21

Marga Georgieva, Sava Grozdev

ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се определи дали съществуват естествени числа n и k, при които стойността на израза 2017 + 3 + 4 e: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2016

Задача 1. Редицата на Фибоначи се дефинира с равенствата и . Да се докаже, че всяка от редиците и съдържа безброй много двойки съседни членове, които се де- лят на . Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: в началото ще докажем следната Лема. За всяко числата на Фибоначи притежават свойствата: а) последната цифра на числата и е ; б) последната цифра на числата , , и е ; в) последната цифра на числата , , и е .

Книжка 1
ЗАНИМАТЕЛНИТЕ ЗАДАЧИ НА ПОАСОН И МЕТОДЪТ НА ПЕРЕЛМАН ЗА ТЯХНОТО РЕШАВАНЕ И ИЗСЛЕДВАНЕ

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров

ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека , , , , са различни прости числа, по-малки от , за които числото . Да се намери най-малкото естествено число , при което най-малка стойност. Христо Лесов, Казанлък

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2016

Задача 1. За всяко естествено число да се намери растяща редица от естествени числа , , , , , за които е изпълнено равенството Христо Лесов, Казанлък Решение: от условието имаме Затова , , , , и , , .

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Върху правата е взета произволна точка . Точките и лежат в една полуравнина спрямо и са такива, че и са равностранни. Ако е петата на перпендикуляра, спуснат от към , да се намери геометричното място на точката , когато описва . Ксения Горская, Дарья Коптева, Даниил Микуров – Архангелск, Русия

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1/2016

Задача 1. Целочислените редици и са дефинирани чрез равенствата , , , , при . а) Да се докаже, че за всяко цяло число точно едно от числата , и б) Да се определят целите числа , за които и са взаимно прости числа за всяко естествено число . Христо Лесов – Казанлък Решение: дадените рекурентни равенства представяме по следния на- чин: вателно

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Във всяка от клетките на квадрат е записано числото . Към всеки три клетки, лежащи в различни редове и различни стълбове, се прибавя едно- временно . Може ли да се приложи това действие краен брой пъти така, че всички числа в таблицата да станат различни, а сумите по всички редове и всички стълбове да са равни? Може ли сумите на числата по диагоналите да са огледални числа? Сава Гроздев, София, и Веселин Ненков, Бели Осъм Задача 2. В окръжност с център е вписан разност

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2015

Задача 1. Дадена е функцията , където m, n, ∈ℕ. Ако и са корените на уравнението и е изпълнено

Книжка 4
ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че съществуват безброй много двойки естествени числа и , при които числата са квадрати на естествени числа. Лучиан Туцеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2015

Задача 1. Да се намери сборът от корените на уравненията и . Милен Найденов, Варна Решение. Разделяме двете страни на първото уравнение на и полу- чаваме . Полагаме и уравнението добива вида . Тъй като функцията е растяща (лявата графика на чертежа), то уравнението ално решение . С непосредствена проверка се вижда, че това решение е . Оттук намираме, че е единственото решение на първо- то уравнение. След това разделяме двете страни на второто уравнение на

Книжка 3
{}

Сава Гроздев – София, и Веселин Ненков – Бели Осъм

()

След заместване на намерените две неравенства в дясната страна на . Равенство се достига тогава и само тогава,

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. За всяко естествено число n да се намери растяща редица

()

Задача 2. Нека P е произволна точка от описаната окръжност на на . Ако докаже, че точките лежат на една права. Хаим Хаимов, Варна, и Веселин Ненков, Бели Осъм Решение. Ще докажем, че правите ра на описаната около окръжност . Оттук непосредствено следва

Книжка 1
()

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

{}

2n ≥

()()

.

2015 година
Книжка 6
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Дадена е функцията , където ,mn∈ . Ако x и x са корените на уравнението f (x) = 0 и е изпълнено (2) (3)ff t xx xx −− ==∈ +  , да се намерят m и n. Росен Николаев, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2015

Задача 1. Параметрите a и b в уравнението 5x + 2x + 4ax  x + 2bx + 4b  a = 0 са такива, че то има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София и Веселин Ненков, Бели Осъм Решение: Тъй като 1 и 2 са корени на даденото уравнение, то след заместване в уравнението се получават съответно равенствата: 5a+2b = 4 и 31a+8b = 188. След решаване на получената система от две уравнения с две неизвестни се полу- чава: a = 4 и b = 8. Заместваме на

МАТЕМАТИКА И ИНФОРМАТИКА MATHEMATICS AND INFORMATICS

BULGARIAN EDUCATIONAL JOURNAL ANNUAL CONTENTS / ГОДИШНО СЪДЪРЖАНИЕ

Книжка 5
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери сборът от корените на уравненията 3.2 8.3 159000 += и 32.11 56697728 x += . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2014

Задача 1. Да се намерят всички рационални стойности на параметъра k, за които уравнението ( ) ( ) , 10k ≠ притежава цело- числени корени. Милен Найденов, Варна Решение: Ако x и x са корените на уравнението, то 2 21 1 2 10 10 k xx kk - + = =- -- е цяло число. Затова 1 10 p k = - е цяло. Оттук получаваме 10 1p k p + = . За дискри- минантата D на уравнението намираме 6 24p D p -- = . Тъй като D трябва да е точен квадрат, то 6 24pn- -= за някое цяло число n. Последното равен

Книжка 4
Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова СОУ „Панайот Волов“ – Шумен ОУ „Никола Йонков Вапцаров“ – Асеновград

МОДИФИКАЦИЯ МЕТОДА ПРОЕКЦИЙ ВЬIЧИСЛЕНИЯ РАССТОЯНИЯ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЬIМИ

Владимир Жук Республиканская специализированная физико-математическая средняя школа-интернат имени О. Жаутыкова

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2014

Задача 1. Намерете всички естествени четирицифрени числа uxyv , за които са изпълнени равенствата и . Милен Найденов, Варна Решение: Събираме почленно равенствата и получаваме . Оттук следва равенството ( ) ( )( ) 1 1 1 12xy uv− −+ − −= . Последното равенство е изпълнено при ( ) 1 11 xy − −= и ( )( ) 1 11uv− −= ; ( ) 1 12xy− −= и ( )( ) 1 10uv− −= ; ( ) 1 10xy− −= и ( )( ) 1 12uv− −= . Оттук лесно се вижда, че търсените числа са: 2222, 5231, 1235, 3152, 3512, 5321, 1325,

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

Contest Problems Конкурсни задачи Рубриката се води от доц. д-р Веселин Ненков КОНКУРСНИ ЗАДАЧИ НА БРОЯ Задача 1. Параметрите a и b са такива, че уравнението 5x

Задача 1. Параметрите a и b са такива, че уравнението 5x + 2x + 4ax - x + 2bx + 4b  a = 0 има за корени числата 1 и 2. Да се намерят останалите корени на уравнението. Сава Гроздев, София Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2014

Задача 1. Ако a  3 е нечетно число и k 2 е естествено число, да се намери остатъкът от делението на a с . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: Означаваме с r търсения остатък. При k = 2 е изпълнено равенството . Тъй като , то . Сега от равенството се получава , къ- дето M е цяло число. Ако k = 2l, l k = 2l + 1, l . В този случай получаваме, че . Разглеждаме случая, при който k = 3. От рела- циите и

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички рационални стойности на параметъра , за които уравнението притежава це- лочислени корени. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2014

Задача 1. Да се докаже, че за произволен триъгълник със страни a , и c е изпълне- но неравенството Йонуц Иванеску, Крайова, Румъния Решение: Ако , R и са съответно лицето, радиусът на описа- ната окръжност и полупериметърът на триъгълника, то са изпълнени следните релации: и . От двете равенства лесно се вижда, че разглежданото неравенство е еквивалентно с , което съвпада със споменатото неравенство.

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев СОУ „П. Волов“ – Шумен

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални стойности на a, b и c, при които коре- ните на уравнението 10x a b c x ab bc ca++++ +++= са цели числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2013

Задача 1. Да се намерят всички реални функции : 1, 1,fx +∞ → +∞ , за които при и 0y > е изпълнено равенството fx fx= . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния Решение: Нека 1 log ln ye x == . Тогава fx fx fe== . Полагаме 1fe a => . От условието получаваме a fe fx== , откъдето fx a = . Освен това . Затова, като положим α , получаваме, че търсените функции са fx x = за всички α .

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

УРОК ЗА ИЗПОЛЗВАНЕ НА ФУНКЦИИ В ЗАДАЧИ ПО ИКОНОМИКА

Петя Сярова СОУ „Васил Левски“ – Ямбол

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете цифрите , , и в десетична бройна система, ако е изпълнено равенството . Йон Патралику, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2013

Задача 1. Да се намерят всички наредени тройки от реални числа , за които са изпълнени неравенствата: 2 2 2 28, 6, 3 8.

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова Образцова математическа гимназия „Акад. Кирил Попов” „Колкото човек е по-близо, толкова по-малко вижда“ Зрителна измама, филм на Луи Летерие

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Намерете всички естествени четирицифрени числа , за които са изпълнени равенствата и . Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2013

Задача 1. а) Покажете, че ако , то 9 3 15xx x+ +≥ . б) Намерете реалните стойности на , при които за всички , , 1,abc∈ − +∞ , е изпълнено неравенството 31a b c a b c kabc + + + + + +≥ ++ . Лучиан Туцеску, Крайова, Димитру Савулеску, Букурещ, Румъния Решение: а) Разглежданото неравенство е еквивалентно с 13 1 0 xx + −≥ , което е очевидно при . б) От а) следват неравенствата 9 3 15aa a+ +≥ , 9 3 15bb b+ +≥ и 9 3 15cc c+ +≥ . След почленно събиране получаваме 5 31 3 a b c a

Книжка 2
ФРАКТАЛЬНЫЕ МЕТОДЫ В ФИЗИКЕ

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

ANALYSIS OF PROBLEM SOLVING IN INFORMATICS FOR 12 – 13 YEAR OLD STUDENTS IN BULGARIA

Ivaylo Staribratov, BistraTaneva High School of Mathematics „Akad. Kiril Popov“

МОДЕЛ ЗА РЕШАВАНЕ НА ЕДИН КЛАС ЗАДАЧИ ЗА ПОСТРОЕНИЕ С ДИНАМИЧЕН СОФТУЕР

Ваня Бизова-Лалева Национална търговска гимназия

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Ако a ³ 3 е нечетно число и k ³ 2 е естествено число, да се намери остатъкът от делението на a с .

Contest Problems Конкурсни задачи РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2013

24 24 2 2 .2 8. 2 8.1024 8. 1000 1 8.10 . 1 23. 1000 1000     == = = + > + =         557 500 3 8.10 . 1 8.10 . 1 8.10 . 12.10 10.10 10 1000 1000 2  = +> += = > =  

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев СОУ „Панайот Волов“

ЕДНО ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ПИТАГОР В ИЗВЪНКЛАСНАТА РАБОТА ПО МАТЕМАТИКА

Румяна Несторова Регионален инспекторат по образованието - Враца

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

ЕДИНАДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

Иван Держански Българска академя на науките

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че за произволен триъгълник със страни a, b и c е из- пълнено неравенството (a+b+c) (2b c + 2c a + 2a b - a - b - c ) £ 27a b c . Йонуц Иванеску, Крайова, Румъния Задача 2. Ако M е множеството на всички равнобедрени триъгълници, стра- ните и лицето на които са естествени числа, да се намерят три триъгълника от M, различните страни на които са последователни естествени числа. Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2013

Задача 1. Реалните числа , , , и са такива, че:

2013 година
Книжка 6

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички реални функции f (x) : (1, + ) (1, + ), за които при x > 1 и y > 0 е изпълнено равенството f (x ) = (f (x)) . Йон Неделку, Плоещ и Лучиан Тутеску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2013

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата 3 cos cos cos 3 1 216 abc abc abc abc ⎡⎤ ++ ++ −≤++< − ⎢⎥ ⎢⎥ ⎣⎦ .

MATHEMATICS AND INFORMATICS

ГОДИНА LVI / VOLUME 56, 2013 ГОДИШНО СЪДЪРЖАНИЕ / ANNUAL CONTENT СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 96 КНИЖКА 2 / NUMBER 2: 97 – 200 КНИЖКА 3 / NUMBER 3: 201 – 296 КНИЖКА 4 / NUMBER 4: 297 – 400 КНИЖКА 5 / NUMBER 5: 401 – 496 КНИЖКА 6 / NUMBER 6: 497 - 608

Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички наредени тройки от реални числа (x, y, z), за които са изпълнени неравенствата:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2012

Задача 1. За всяко реално число x означаваме с [x] най-голямото цяло число, което е по-малко или равно на x. Да се намерят всички прости числа p, за които числото е просто.

GUIDE FOR AUTHORS

Mathematics and Informatics Journal publishes scientifi c, scientifi c-popular, review and information materials. Papers of scientifi c character should report original research and ideas inspected through expert evaluation by two anonymous and independent referees. It is recommended that the manuscripts are sent as attachment fi les to the following addresses mathinfo@azbuki.bg and sava.grozdev@gmail.com. Disks or other electronic devices are admissible too and in such a case the postal a

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. а) Покажете, че ако , то 9315xx x++≥ .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2012

Задача 1. Да се намерят всички положителни числа x, y и z, за които е изпълнено равенството . Сава Гроздев, София, Веселин Ненков, Бели Осъм Решение: Тъй като 13 = 2197, 2.11 = 2662 и 3.9 . 2187, то x 12, y 10 и z 8. Освен това x и z имат различна четност. Така с непосредствена проверка се вижда, че когато z = 1,3,5,7 при x = 2,4,6,8,10,12 и z = 2,4,6,8 при x = 1,3,5,7,9,11, само x = 2, y = 10, z = 1 е решение на даденото уравнение.

Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се сравнят числата Йонуц Иванеску, Крайова, Румъния Задача 2. Точките E и F са среди съответно на диагоналите AC и BD на чети- риъгълника ABCD. Ако BAE ADE= и , да се докаже, че симе- дианите на триъгълниците ABC, BCD, CDA и DAB съответно през върховете B, C, D и A се пресичат в една точка. Хаим Хаимов, Варна Задача 3. Вписаната в окръжност се допира до , и AB съот-

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2012

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния Решение: Изпълнени са равенствата ! 1! 1 1! 1 !! np Sp C p np + =− +=− +=

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Реалните числа , , , и са, такива че:

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2012

Задача 1. Да се намерят всички естествени числа aa a bb b  , за които е изпълнено равенството aa a bb b aa a bb b=   . Николай Белухов, Стара Загора Решение: Нека A aa a=  и B bb b=  . От условието следва равенството .10 . A B AB+= , откъдето .10 1 . A AB =− . Тъй като , 11AA −= , то 1|10 A − , откъдето 1 1 2 .5 AA− += . Ако числата 1A − и 1A + са едновременно нечетни, то , а 1A − и 1A + са степени на петицата с разлика две, което е невъзможно. Остава само възмо

Книжка 1
70-ГОДИШЕН ЮБИЛЕЙ

Навършиха се 70 години от рождението на изтъкнатия български математик проф. дмн Генчо Скордев. Юбилярът е член-кореспондент на БАН и дългогодишен главен редактор на сп. „Математика и информатика“. По този повод е следващият материал, в който авторът разказва свои спомени с исторически характер, свързани с активното му участие в образователните процеси в България по математика и информатика.

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се докаже, че при обичайните означения за всеки триъгълник са изпълнени неравенствата .

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2012

Задача 1. В множеството на реалните числа е дефинирана бинарна опера- ция :⊗ ×→  , където : \0=  , която условно ще наричаме умножение и такава, че за всеки три реални числа , и , където , е в сила ра- венството .ac a bc b ⊗⊗= . Ако е известно, че , да се пресметне 2011 2012 2011 2012⊗⊗⊗ . Живко Желев, Стара Загора Решение: Първи начин (авторско решение). Нека . Тогава .1 11 1 a ata a⊗= ⊗ ⊗ = = . Оттук получаваме 2012. 1 2012 2012 2012 2012 2012 t tt=⊗=⊗ ⊗= =

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2012

Христо Лесов, Казанлък

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

доц. д–р Иван А. Держански (ИМИ–БАН) Десетата Международна олимпиада по лингвистика (МОЛ) се проведе в Любляна (Словения) от 30 юли до 3 август 2012 г. В нея взеха участие 131 ученици, съставящи 34 отбора от 26 страни. За първи път свои състезатели изпратиха Гърция, Китай, Израел, Унгария и Япония. Бяха представени също Австралия, Бразилия, България, Великобритания, Германия, Естония, Индия, Ирландия, Канада, Латвия, Нидерландия, Полша, Румъния, Русия, САЩ, Сингапур, Словения, Сърбия, Чехи

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПР ОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички положителни числа , и , за които е из- пълнено равенството Сава Гроздев, София, Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2011

Задача 1. Да се докаже, че за всяко цяло положително число уравнението има безброй много решения в цели положителни числа

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Нека p е просто число и n е естествено число, по-малко от p . Да се докаже, че числото Йонуц Иваненску, Крайова, Румъния

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2011

Задача 1. Едно цяло положително число n ще наричаме “интересно”, ако може да бъде записано във вида , където са цели поло- жителни числа и , а дели c . Да се докаже, че само краен брой цели положителни числа не са “интересни” и да се намери сумата им. Решение: 1) Нека , то тересно”. Остава да отбележим, че , и не са “интересни”. 2) Нека

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2011

Задача 1. На страните AB и на успоредника външно за

Книжка 3
НАЦИОНАЛЕН КОНКУРС „МЛАДИ ТАЛАНТИ” 2012

Георги Дянков През месец май 2012 се проведе финалният кръг на Националния конкурс „Млади таланти”. Състезанието се организира от МОМН и приема разработки на научни проекти от ученици в гимназиален етап и студенти първи курс. Участниците предста- виха свои авторски проекти в различни научни области – естествени науки, социални науки и комуникационни и информационни технологии (ИКТ). Състезанието тази година се отличи с много добри проекти и журито имаше нелеката задача да избере най-добри

СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички естествени числа aa abb b , за които е изпълнено равенството

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2011

Задача 1. Да се определят стойностите на параметъра a, за които уравнението log sin 2011 cos 2011tg x cotg x a x x += + има решение и да се реши уравнението за най-малката от намерените стойности на параметъра. Христо Лесов, Казанлък Решение (Христо Лесов): Изпълнени са следните релации: π αα α за всяко и 2 2 sin 2 tg cotg += ≥ за

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2011

Задача 1. Ако , е цяло положително число, да се докаже, че съществуват безброй много цели положителни числа нено равенството . Веселин Ненков, Бели Осъм Решение (Светлозар Дойчев): Като използваме, че за произволно цяло число

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МЕЖДУНАРОДНИ КОНКУРСИ ЗА РАЗРАБОТВАНЕ НА ПРОЕКТИ

І.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕза ученици, ІІ.МеждународенконкурсМАТЕМАТИКА И ПРОЕКТИРАНЕ за учители

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева

КОНКУРСНИ ЗАДАЧИ

Рубриката се води от Светлозар Дойчев, и Веселин Ненков