Математика и Информатика

https://doi.org/10.53656/math2021-5-4-exs

2021/5, стр. 490 - 502

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj
SCOPUS: 56070160400
E-mail: vehbiramaj@yahoo.coom
Business Faculty
University of “Haxhi Zeka” – Peja
Peja Kosovo
Sead Rešić
E-mail: sresic@hotmail.com
Department of mathematics
Faculty of Science
University of Tuzla
4, Univerzitetska St.
Tuzla, Bosnia and Herzegovina
Anes Z. Hadžiomerović
E-mail: aneshagi@gmail.com
Second Gymnasium Mostar
USRC “Midhad Hujdur Hujka” bb
Mostar Bosnia and Herzegovina
Samira Aganović
E-mail: samira.aganovic@rtvfbih.ba
Faculty of Economics
University of Tuzla
Tuzla Bosnia and Herzegovina

Резюме: For Excel’s calculation of basic (fixed) assets amortisation values, the investigated economic and mathematical foundation with required values and their relations were used. The investigated and introduced theory is adapted to Excel calculations of fixed assets amortisation based on today’s needs. All values for Excel’s calculations are sorted into input and output values, and input to main and nested calculations. Two methods for calculating fixed assets amortisation were introduced using Excel. The first method is based on a linear decreasing function, \(G(t)=G_{0}(1-p t)\), which presents the simple interest calculation of the reduced equities for equal periodic amortisation values. The second method is based on the exponential degrading function, \(G(t)=G_{0} q t\), which presents a complex interest calculation of the reduced equities for periodic amortisation amounts in a descending sequence. The continuity of the introduced functions results from the continuity of: the life of the fixed asset, periodic amortisation, accumulated amortisation and non-amortized amount (residual value) of the fixed asset. It is particularly important to introduce dates with the exact time, for the beginning and the end of each amortisation period of the fixed asset. The theory for Excel’s calculation of the fixed asset output values for an arbitrary (planned or unplanned) term has also been explored and introduced. Such calculations relate mainly to terms of alienation, permanent damage, permanent loss of the process function of a fixed asset and periodic accounting reporting.

Ключови думи: asset; values; amortisation

Introductions

The aim of this paper is to introduce the researched economic, mathematical and Excel basis for calculating the amortization of fixed assets of a work process in accordance with International Accounting Standards (IAS). In the general theoretical part of the paper there are definitions of the basic concepts.

A fixed asset is tangible or intangible assets of work process that are not intended for the market. Examples of tangible assets are: buildings, ships with a carrying capacity of over 1000 GRT \({ }^{1)}\), motor vehicles, various equipment and machinery, etc. Intangible assets include: investments in research and development, patents, licenses, copyrights, work promotions, goodwill, etc. The book value of a fixed asset is the purchase value increased by costs until the date of its introduction into the work process.

Depreciation of a fixed asset is the gradual loss of its use value in the predicted time interval due to its wear, stagnation or obsolescence. Thus, the amortization of a fixed asset depends on: the intensity of its consumption, the passage of time and technological progress. International Accounting Standards prescribe annual amortization rates by fixed asset category.

For some fixed assets, the annual amortization rates for 2018 have the prescribed amounts:

(1) Buildings and vessels with a carrying capacity exceeding 1 000 GRT, \(5 \%=0.05\)

(2) Basic and passenger cars, \(20 \%=0.2\)

(3) Intangible assets, vehicles, mechanization equipment, etc., \(25 \%=0.25\)

(4) Computers and computer equipment, software and computer networks, \(50 \%=0.5\)

They are prescribed; annual, semi-annual, quarterly, monthly, weekly and daily time intervals, i.e. periods expressed in days, hours, minutes and seconds, depending on the type of fixed asset and its shelf life. The known regular relations between the stated time intervals are: 1 year \(=365\) days, 1 half-year \(=182.5\) days \(=182\) days and 12 hours, 1 quarter \(=91.25\) days \(=91\) days and 6 hours, 1 month \(=30.41\) ( 6) days \(=30\) days and 10 hours. Some term (T) of the time interval has a date and time expressed in hours minutes and seconds, or in Excel form, \(\mathrm{T}=\mathrm{dd} . \mathrm{mm} . \mathrm{yyyy}\) \(\mathrm{hh}: \mathrm{mm}: \mathrm{ss}\). The length of the fixed asset’s useful life is determined by the number of amortization periods from the date of introduction into the work process. The number of amortization periods of a fixed asset depends on the periodic amortization rate. Among other things, IASs prescribe 1 year as the shortest useful life and the lowest carrying amount of a fixed asset expressed in US dollars. Based on IAS, the amortization rate of a fixed asset is inversely proportional to its useful life. To extend the useful life of a fixed asset, it is allowed to reduce its amortization rate. To shorten the useful life of a fixed asset, it is allowed to increase its amortization rate to twice its amount.

1. Old methods of calculating the amount of depreciation of fixed assets

There are mainly two methods of calculating the amortization of fixed assets, known as: (1) Linear method and (2) Functional method.

According to the Linear Method, the calculation of amortization is mostly annual, with equal annual amounts of amortization over the life of the fixed asset. In this case, the basis for calculating amortization is the carrying amount of the fixed asset for all amortization periods. For some fixed assets, periodic residual values of the fixed asset are used as the basis for calculating amortization.

According to the Functional Method for some fixed assets, the basis for calculating amortization is: number of products, volume of production, degree of capacity utilization, number of kilometres travelled, volume of transport performed, number of working hours, etc. For the calculations, mainly a calculator and a simple interest account with annual amortization periods were used. The date of introduction of the fixed asset into the work process is the first day of the month of the current year in relation to the regular term from the previous month. The term of accounting reporting on the amounts of amortization of fixed assets is December 31 of the current year. These methods, based on today’s needs, do not have an appropriate economic and mathematical basis for calculating the amount of quantities related to the amortization of fixed assets. The authors of the paper investigated and introduced two new methods with a new economic and mathematical basis, using Excel to calculate the amount of amortization of fixed assets.

2. Economic and mathematical basis for Еxcel’s calculation of the amount of depreciation of fixed assets

The authors of the paper investigated and introduced a new economic and mathematical basis, and Excel-based model, for calculating the amortization of fixed assets.

The introduced values of the economic base are: book value of fixed assets, annual amortization rate, number of amortization periods shorter than 1 year, length of one amortization period, periodic amortization rate, periodic unamortized amount of fixed assets, periodic amortization amount, accumulated amortization amount, start dates and the end of each amortization period of the fixed asset.

Figure 2.1. Function graphs G(t) = G0(1-pt) and G(t) = G0qt

The mathematical basis for equal amounts of amortization of fixed assets is presented by a linear decreasing (descending) function and a simple interest calculation in the form \(G(t)=G_{0}(1-p t)\) for \(t \in\left[0, t_{1}\right]\) (Figure 2.1.). The function \(G(t)\) represents the non-amortized value of the fixed asset, \(G_{0}\)– the book value, \(p\)– the periodic amortization rate and \(t\)-t the number of the amortization period of the fixed asset.

The mathematical basis for the decreasing series of amortization of fixed assets is presented by an exponential, decreasing function and a complex interest calculus in the form \(G(t)=G_{0} q^{t}\) for \(t \gt 0\) and \(0 \lt q \lt 1\) (Figure 2.1.) The function \(G(t)\) represents the non-amortized value of the fixed asset, \(G_{0}\)– the book value, \(q\)– the periodic amortization factor and \(t\)– the number of the amortization period of the fixed asset.

Adequate calculations in MS Excel are derived from the economic and mathematical basis for the amortization of fixed assets; equal periodic amounts of amortization and amounts that are in descending order. During the calculation, it is not allowed to change the amortization rate of the fixed asset. Depreciation of all fixed assets is an intangible cost of each registered activity and affects the balance sheet and income statement.

This is followed by the introduction of the first new method for Excel calculation of the amount of quantities for equal amounts of amortization of fixed assets.

3. Excel calculation of the amount of outputs for equal amounts of depreciation of fixed assets

In the calculations, as a data processor, MS Excel will be used. The main parameters and formulas in the spreadsheets are: default values of input data, introduced formulas of nested values and introduced formulas for output values of amortization of fixed assets.

Default input data:

(1) Carrying amount of the fixed asset, \(G_{0}\)

(2) Annual amortization rate, \(p_{1}\)

(3) Lengths of equal amortization periods in days, \(D\)

(4) Amortization start date of the fixed asset, \(T_{0}\) in format dd.mm.yyyy hh: mm: ss

(5) Coefficient of correction of the lifetime of total amortization of fixed assets, \(0 \lt k \leq 1\)

The correction coefficient \(k\) for the duration of the total amortization of the fixed asset is determined by the percentage rate \(P(0 \% \leq P \lt 100 \%)\), where \(k=1-P\).

The required derivative values are:

(1) Number of amortization periods in the year, \(m=\tfrac{365}{D}\)

(2) Periodic, relative amortization rate, \(p=\tfrac{p_{1}}{m}\)

(3) Useful life of the fixed asset of its total amortization, \(t_{1}=\tfrac{1}{p}\) as a consequence of \(G(t)=\mathrm{G}_{0}(1-p t)=0\) and \(t=t_{1}\) (Figure 2.1.)

(4) Planned amortization life of fixed assets, \(t_{2}=t_{1} k\) for \(t_{2} \leq t_{1}\)

(5) Term of completion of the planned duration of amortization, \(T_{t_{2}}=T_{0}+D . t_{2}\) (6) Term of end of total amortization duration, \(T_{t_{1}}=T_{0}+D \cdot t_{1}\)

Required output values are:

(1) Terms of amortization calculation, \(T_{i}=T_{0}+D . i\) for \(k=1\)

\(i \in\left\{0^{+}, 1,2, \ldots, t_{1}\right\}\); for \(0 \lt k \lt 1 i \in\left\{0^{+}, 1,2, \ldots, t_{2}\right\}\)

(2) Unamortized amount (residual value) of the fixed \(G_{i}=G_{0}(1-p i)\)

(3) Amount of amortization at the end of the current \(a_{i}=G_{i-1}-G_{i}\)

(4) Amount of accumulated amortization until the end of the current period, \(A_{i}=i \cdot a_{i}\)

Fixed asset amortization periods have ordinal numbers, \(i \in\left\{0^{+}, 1,2, . ., t_{2}, \ldots t_{1}\right\}\), where \(t_{2}\) and \(t_{1}\) are real numbers in decimal notation, and \(0^{+}\)is the right neighbourhood of 0. Thus, a linear, decreasing function, \(G_{t}=G_{0}(1-p t)\) is continuous, for \(t \in\left[0^{+}, t_{1}\right]\) and \(G(t) \in\left[G_{0}, 0\right]\). For automatic expression of ordinal numbers, \(i \in\left\{0^{+}, 1, \ldots, t_{1}, \ldots, t_{2}\right\}\), the period of amortization of the fixed asset, in the creation of the example it is used Excel function \(I F\) with introduced conditional transitions.

During the amortization in the term \(T_{\mathrm{z}}\) the fixed asset can be alienated or for some reason permanently damaged, with the need to calculate the output values for the term \(T_{\mathrm{z}}\). Thus, the term \(T_{\mathrm{z}}\) can be any arbitrary, unplanned or planned financial reporting term for calculating the amortization output of a fixed asset.

The authors of the paper investigated and introduced the economic and, mathematical basis, and MS Excel model, for calculating the amount of output amortization of fixed assets for the term \(T_{z}\).

For the term \(T_{z}\) represented in format dd.mm.yyyy hh:mm:ss from , it follows:

(1) Number of fixed asset amortization period, \(z=\tfrac{T_{z}-T_{0}}{D}\) (2) Integer number of amortization periods, \(Z=\operatorname{int}(z)\),

(3) Unamortized value of fixed asset, for \(t=Z, G_{Z}=G_{0}(1-p Z)\)

(4) Unamortized value of fixed asset, for \(t=z, G_{z}=G_{0}(1-p z)\)

(5) Accumulated amortization amount, for \(t=z, A_{z}=G_{0} p z\)

(6) Amount of amortization for the current period, \(a_{z}=G_{z}-G_{z}\)

Example 1

The book value of one fixed asset is \(11,500 \mathrm{KM}^{2)}\), and the beginning of its working process is 04/17/2018 09:28:15. The annual amortization rate is \(15.2 \%\) linearly on the carrying amount of the fixed asset. The length of the amortization period is 1 year. The correction coefficient is 0.825 in relation to the useful life of the total amortization of the fixed asset. Using MS Excel, calculate the periodic amounts of output values of amortization of fixed assets and especially for the planned period of financial reporting, 31.12.2020 23:59:59.

Default input sizes:

\(G_{0}=11,500 \mathrm{KM}\) (book value of fixed assets),

\(p_{1}=15,2 \%=0,152\) (annual amortization rate of fixed assets),

\(T_{0}=17.04 .2018\) 09:28:15 (date of the beginning of the working process of the fixed asset),

\(D=1\) year = 365 days (lengths of equal amortization periods),

\(k=0.825\) (total amortization life adjustment coefficient)

\(T_{\mathrm{z}}=31.12 .2020\) 23:59:59 (planned term of accounting reporting).

Figure 1. The Excel spreadsheets view

The introduced economic and mathematical basis was used for Excel calculations of output values of amortization of fixed assets (Figure 1. and Figure 2.). Figure 1. presents spreadsheets 1, 2 and 3 from the used Excel workbook. Figure 2. shows the spreadsheet 4 and histogram overview of the output values of amortization of fixed assets. The cells, containing the input values are highlighted in yellow, and cells, containing the output data amounts are in green. Users of the spreadsheet can change the only the input data (yellow cells).

Figure 2. Spreadsheet 4 and histogram of the Excel workbook

This is followed by the introduction of another new method of Excel calculation of the amount of output quantities with the amounts of amortization of fixed assets in descending order.

4. Excel calculation of the output data with the amounts of depreciation of fixed assets in decrease

The mathematical basis for Excel’s calculation of the amount of amortization in descending order is a descending exponential function, \(G(t)=G_{0} q^{t}\) for \(\mathrm{t} \gt 0\) and \(0 \lt q \lt 1\) which presents a complex interest account for reduced principal.

Applied to the continuous and periodic amortization of fixed assets, the names and designations of quantities are derived from \(G(t)=G_{0} q^{t}\) :

(1) Amount of book value of fixed asset, \(G_{0}\)

(2) Amount of unamortized cost of fixed asset, \(G(t)\)

(3) Periodic amortization factor of the fixed asset, \(a\)

(4) Elapsed amortization time for periods \(i \in\left\{0^{+}, 1, \ldots\right\}, t\)

The previous quantities are the basis for the introduction of other required quantities and their relations. To calculate the required output values, in Excel, main and intermediate calculations will be used.

Major data:

(1) Carrying amount of the fixed asset, \(\mathrm{G}_{0}\)

(2) Start time of the asset depreciation, \(T_{0}\) in format dd.mm.yyyy hh:mm:ss,

(3) Annual depreciation rate of fixed assets, \(p_{1}\)

(4) Duration of the depreciation period expressed in days, \(D\)

(5) Correction coefficient of the asset life, \(k\).

The correction factor \(k\) for the life of the fixed asset depends on the percentage rate \(P(0 \% \leq P \lt 100 \%)\). The correction factor \(k\) may have the following values:

(1) \(k=1\) (for the optimal life of the fixed asset),

(2) \(k=1-P\) (to shorten the optimal life of the fixed asset), and

(3) \(k=1+\mathrm{P}\) (to extend the optimal life of the fixed asset).

To extend the optimal life of the fixed asset, the percentage rate \(P\) may have the value \(P \gt 100 \%\), if the fixed asset is in the planned process function.

Intermediate calculations:

(1) Number of fixed asset amortization periods in a year, \(m=\tfrac{365}{D}\)

(2) Annual amortization factor of fixed assets, \(q_{1}=1-p_{1}\)

(3) Periodic amortization factor of fixed asset, \(q=q_{1}^{\tfrac{1}{m}}\)

(4) Periodic amortization rate of fixed assets, \(p=1-q\)

(5) Optimal service life of fixed assets, for \(k=1, t_{1}=\tfrac{1}{p}\)

(6) Planned life of the fixed asset, for \(0 \lt k \lt 1 \Leftrightarrow t_{2} \lt t_{1}\), for \(k=1 \Leftrightarrow t_{2}=t_{1}\) and for \(k \gt 1 \Leftrightarrow t_{2} \gt t_{1}, t_{2}=t_{1} \cdot k t_{2}=t_{1} \cdot k\)

(7) Term of optimal end of life of fixed assets, \(T_{t_{1}}=T_{0}+t_{1}\)

(8) Term of the planned end of the life of the fixed asset, \(T_{t_{2}}=T_{0}+t_{2}\)

The main data is used for intermediate Excel calculations and, based on the introduced formulas, the output data calculations is performed.

Required output data with introduced formulas:

(1) Terms of fixed asset amortization period, \(T_{i}=T_{0}+i . D\) for \(i \in\left\{0^{+}, 1, \ldots, t_{2}\right\}\)

(2) Amounts of unamortized part of fixed assets, \(G_{i}=G_{0} \cdot q^{i}\)

(3) Amounts of accumulated amortization of fixed assets, \(A_{i}=G_{0}\left(1-q^{i}\right)\)

(4) Amounts of amortization of fixed assets in the current period,

\(a_{1}=G_{i-1}-G_{i}\) For any term \(T_{\mathrm{z}}\) from the interval \(T_{0} \leq T_{z} \leq T_{t_{2}}\) the following values were investigated and introduced:

(1) Any term as input quantity, \(T_{\mathrm{z}}\) presented in dd.mm.yyyy hh:mm:ss

(2) Interval length \(T_{\mathrm{z}}-T_{0}\) in days as decimal number, \(z=\tfrac{T_{2}-T_{0}}{D}\)

(3) Integer units of number(4) Unamortized value of fixed asset, for \(z, Z=\operatorname{int}(z)\) \(i=Z, G_{Z}=G_{0} \cdot q^{Z}\)

(5) Unamortized value of fixed asset, for \(i=z, G_{z}=G_{0} \cdot q^{z}\)

(6) Amount of accumulated amortization of fixed assets, for \(i=z\),

\(A_{z}=G_{0}\left(1-q^{z}\right)\) (7) Amount of amortization of fixed assets for the current period,

\(a_{z}=G_{z}-G_{z} a_{z}=G_{z}-G_{z}\) The values of input data from Example 1 will be used for Excel calculations, with the aim of comparing the output values for the two introduced calculation methods.

Example 2

The book value of one fixed asset is \(11,500 \mathrm{KM}\), and the beginning of its working process is 04/17/2018 09:28:15. The annual amortization rate is \(15.2 \%\) exponentially in relation to the book value of the fixed asset. The length of the amortization period is 1 year. The correction factor is 0.825 in relation to the life of the optimal amortization of the fixed asset. Using Excel, calculate the periodic amounts of output values of amortization of fixed assets and especially for the planned period of financial reporting, 12.31.2020 23:59:59.

Default input values:

\(G_{0}=11,500 \mathrm{KM}\) (book value of fixed assets),

\(p_{1}=15.2 \%=0.152\) (annual amortization rate of fixed assets),

\(T_{0}=04.17 .2018\) 09:28:15 (date of the beginning of the working process of the fixed asset),

\(D=1\) year = 365 days (lengths of equal amortization periods),

\(k=0.825\) (optimal amortization life correction coefficient), and

\(T_{\mathrm{z}}=12.31 .2020\) 23:59:59 (planned term of financial reporting).

The introduced economic and mathematical basis was used for Excel calculations of the output values of amortization of fixed assets. The Excel spreadsheets and a histogram overview of the amount of output values of amortization of fixed assets are shown of Figure 3 and Figure 4.

The cells, containing the input values are highlighted in yellow, and cells, containing the output data amounts are in green. Users of the spreadsheet can change the only the input data (yellow cells).

11.500,00017.04.2018 09:28:150,152 000 0000,848 000 000365,000 000 0001,000 000 0000,848 000 0000,152 000 0006,578 947 3680,825 000 0005,427 631 57919.09.2023 11:31:2412.11.2024 17:02:5917.04.2019 09:28:159.752,0001.748,0001.748,00031.12.2020 23:59:592,711 247 59028.269,6967.354,6374.145,363915,059Amount of accumulated amortization of fixed assets, for t=z, Az=G0*(1-q^z)=Amortization amount for the current period, az=GZ-Gz=Table1:Amounts of input quantitiesTable2:Amounts of output values ofthe1st row of amortization Table4Table3:Amounts of values for any fixed asset amortization periodAmount of unamortized part of fixed assets, for t=1, G1=G0*q^1=Periodic amortization factor, q=q1^(1/m)=Annual amortization factor, q1=1-p1=Adjusted fixedasset life, t2=t1*k=Theterm ofoptimal amortization offixed assets, Tt1=T0+D*t1=Amortization period required (T0TzTt2), Tz=dd.mm.yyyy hh:mm:ss=Number of amortization periods from the term (T0)do (Tz), z=(Tz-T0)/D=Integer units of number (z), Z=INT(z)=Amount ofunamortized part of fixed assets,for t=Z, GZ=G0*q^Z=Amount of unamortized part of fixed assets, for t=z, Gz=G0*q^z=Periodic amortization rate,p=1-q=The life of thefixedassetof optimal amortization,t1=1/p=Thedate of completion oftheplanned amortization of fixed assets, Tt2=T0+D*t2=Fixedlifeexpectancycorrectionfactor,0<k<1,k=1 ik>1, k=Amount of accumulated amortization of fixed assets, for t=1,A1=G0*(1-q^1)=Amortization amount for the current period, a1=G0-G1=Termthefirst periodofamortization,T1=T0+1*D=Amortization calculation for thelifeofa fixed asset, using a complexinterest account,withconvexly decreasing amortization amounts,Example4.1.Thecarrying amount of a fixed asset, G0=Annual amortization rate, p1=Length of the amortization period in days, D=Number of amortization periods in one year,m=365/D=Thecarrying amount of a fixed asset, T0=dd.mm.yyyy hh:mm:ss

Figure 3. Spreadsheets 1, 2 and 3 of the Excel workbook

Ordinalnumber of theamortizationperiod (i)Amortizationcalculationterms(Ti)Unamortized costof fixed assetsAmountofaccumulatedamortization (Ai)Amortizationamount in thecurrent period (ai)017.04.2018 09:28:1511.500,000117.04.2019 09:28:159.752,0001.748,0001.748,000216.04.2020 09:28:158.269,6963.230,3041.482,304316.04.2021 09:28:157.012,7024.487,2981.256,994416.04.2022 09:28:155.946,7715.553,2291.065,931516.04.2023 09:28:155.042,8626.457,138903,9095,42763157919.09.2023 11:31:244.699,5576.800,443343,305615.04.2024 09:28:154.276,3477.223,653423,2106,57894736812.11.2024 17:02:593.887,0307.612,970389,317Table4: Overview of theamount of output valuesby periods ofamortization offixed assets0,0002.000,0004.000,0006.000,0008.000,00010.000,00012.000,00017.04.2018 09:28:1517.04.2019 09:28:1516.04.2020 09:28:1516.04.2021 09:28:1516.04.2022 09:28:1516.04.2023 09:28:1519.09.2023 11:31:2415.04.2024 09:28:1512.11.2024 17:02:590123455,42763157966,578947368Histogram overview of theamountofprimary amortization offixedassetsUnamortized cost offixedassetsAmountofaccumulatedamortization (Ai)Amortizationamountinthecurrentperiod(ai)

Figure 4. Spreadsheet 4 and the histogram of the Excel workbook

Conclusion

The choice of method for calculating the output values of amortization of fixed assets is made by the legal entity as their owner. The authors of the paper recommend the application of the first method of Excel calculations for the amortization of buildings, furniture, white goods, intangible fixed assets and the like. By applying this method, the useful life of the fixed asset, in addition to the amortization rate \(p\) is affected by the correction coefficient \(k\) of the amortization life \(t_{2}\) and the unamortized amount \(G\left(t_{2}\right) \geq 0\) of the fixed asset. \(k=1\) relates to the useful life of total amortization \(t_{2}=t_{1}\) and the unamortized amount of fixed assets \(G\left(t_{2}\right)=G\left(t_{1}\right)=0\). The values of \(k\) between 0 and \(1(0 \lt k \lt 1)\) mean that the planned amortization period is \(t_{2}\) and the unamortized amount of fixed assets \(G_{t_{2}} \gt 0\) ). In this case, the amounts of periodic amortization are equal for equal periods.

By applying the second method, the periodic amounts of residual values and the periodic amounts of amortization of the fixed asset decrease exponentially. The amortization life \(t_{2}\) of a fixed asset depends on its correction coefficient \(k \gt 0\) in relation to the optimal amortization life \(t_{1}\), for \(k=1\) and \(t_{2}=t_{1}\). By applying this method, the unamortized amount of a fixed asset always has a value greater than zero \(G_{t_{2}} \gt 0\). If the fixed asset does not have a planned use function, then a special commission writes off its unamortized amount. If the fixed asset has a planned use function, then the commission determines the new amount of its book value. This method is useful for Excel calculations of amortization output values of all fixed asset categories.

In particular, it is important that the researched and introduced economic and mathematical basis for Excel’s calculation of the output values of amortization of fixed assets provides results for any planned or unplanned term \(T_{\mathrm{z}}\) from the life of the fixed asset.

The introduced Excel calculation could be used also:

(1) After the alienation of the fixed asset;

(2) After permanent damage;

(3) After an unplanned loss of use function;

(4) For periodic financial reporting; and

(5) For unplanned reporting of fixed asset amortization amounts.

Thus, the introduced two new methods of Excel calculations of the amount of output values of amortization of fixed assets, can mainly meet today’s needs of users.

NOTES

1. Gross register tonnage.

2. Bosnia and Herzegovina convertible marks.

REFERENCES

Alastair Day, 2010. Mastering Financial Mathematics in Microsoft Excel: A Practical Guide for Business Calculations. UK: Pearson Intl. \(2{ }^{\text {nd }}\) edition [July 17, 2010].

Kothari, J. & Barone, E., 2012. Finansijsko računovodstvo – Međunarodni pristup, Data Status. Srbija.

Kapić, J., 2010. Računovodstvo. Sarajevo: Ekonomski fakultet.

Jahić, M., 2003. Finansijsko računovodstvo, Sarajevo: Zavod za računovodstvo i reviziju Federacije Bosne i Hercegovine.

Rešić, S. & Mešanović, S., 2017. Uvod u finansijsku matematiku. Tuzla.

Benninga, S., 2010. Principles of Finance with Excel. UK: Oxford University Press, \(2^{\text {nd }}\) edition [September 24, 2010].

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева