Математика и Информатика

https://doi.org/10.53656/math2023-3-6-gra

2023/3, стр. 281 - 297

GRAPHIC CULTURE OF CONSTRUCTIVE MODELING OF FIGURES IN METRIC STEREOMETRY

Ivan Lenchuk
OrcID: 0000-0003-1923-9540
E-mail: lench456@gmail.com
Department of Algebra and Geometry
Zhytomyr Ivan Franko State University
40 Velyka Berdychivska St. room 121
10001 Zhytomyr Ukraine
Alla Prus
OrcID: 0000-0002-8869-2544
E-mail: pruswork@gmail.com
Department of Algebra and Geometry
Zhytomyr Ivan Franko State University
40 Velyka Berdychivska St. room 121
10001 Zhytomyr Ukraine

Резюме: Two approaches for drawing of stereometric objects by a constructive method are presented using algorithms designed to help solve problems in the construction of correct, visual and easy-to-draw drawings. The first approach is based on operations borrowed from engineer drawing, where standardized axonometric projections guarantee the quality of drawings. The second one is based on the experience of many generations of teachers and practitioners. A list of methodological advice has been proposed. The analytical method of reasoning in computational problems is promoted, the method of combining with the image plane is established, which visualizes the way to the result, adds empiricism to the discipline. The presented statistical survey among mathematics teachers demonstrates their attitude to the constructive solution of stereometric problems. The advantages and disadvantages of teaching constructivism methods are highlighted. It has been established that the skills of qualitative drawings contribute to the formation of life competencies of pupils.

Ключови думи: methodology of geometry; constructivism of geometrical problem; graphic culture; modeling; alignment technique; visualization and visual representation

1. Introduction

Working with first-year university students, it is easy to see that mathematics teachers do not teach pupils of \(10^{\text {th }}-11^{\text {th }}\) grades to create drawings of stereometric objects correctly. This can be easily explained by the following: the content of the educational program of the school mathematics course does not include lessons dedicated to the culture of drawings; pupils don’t solve the problems using constructive methods; they do not know the theory for transformations of figures in space and have insufficient practice in supplementing of the drawings and their transformations.

This situation leads to the fact that the school graduate is not aware of the methods of modeling stereometric situations, and, therefore, is not table to solve problems of at least an average complexity degree. Students’ logical thinking, spatial representations and imagination are not developed enough. Applied nature of the subject “Geometry” is lost. The young person, entering adulthood witгout the ability to think eye-minded in spatial categories and to implement his own thoughts (projects) with high-quality images, will not be able to adequately perceive the world around him, which reduces the opportunity to proper self-express in the society.

When teaching geometry, the teacher must emphasize three features of the decisions that should be observed: to be correct, visual and simple. And this is valid especially for the modeling of the tasks by their visualization on the image plane, which could be a board, a notebook or a computer screen.

Since the image on the drawing plane is a result of parallel projection of an imaginary spatial object, the student must to know the properties of this operation and follow them, which will guarantee the correct result. Visuality means that anyone, having entered the room and looked at the drawing, understands what kind of a figure is depicted on it. Simplicity in construction is when a teacher or student, modeling some stereometric object in compliance with the first two requirements, works quickly, but always with high quality.

It is important to carry out a preliminary analysis of the statement of the task, planning the creation of a qualitative drawing. Working with a drawing, its transformations, which contribute to the algorithmizing of the solution, considerably depend on the thoroughness of the analysis of the condition and the chosen angle on an imaginary object in the parallel projection, rational, successful figure positioning between the observer’s eye and the projection plane.

At the end of the \(19{ }^{\text {th }}\) century, the great German geometer D. Hilbert (1862 – 1943) noted: “In Mathematics, as in scientific researches, there are two trends: the tendency to abstraction – it tries to develop a logical point of view based on various material and bring all this material into a systematic connection, and another tendency, the tendency towards visualization, which, in contrast, strives forward a living understanding of objects and their internal relations” (Gilbert 1981).

The role of visualization in teaching was described by the well-known geometer Aleksandrov O.D., the mentor of the outstanding Ukrainian geometer Pogorelov O.V.: “The geometric method does consist in the fact that the logical proof itself or the solution of the task is guided by a visual representation; it is the best when the proof or solution can be seen from a drawing. (In ancient Indian writings, it happened that the proof was reduced to a drawing signed with one word “Look!”). The student should be accustomed to the same approach - to start with a drawing, a sketch, a visual description - does not matter whether he is examined in the front of the blackboard, whether he learns something at home, whether he solves a task. Along with the drawing there should be a spatial representation, an accurate understanding, etc. Concepts coming from visual Geometry are, in general, extremely important in modern science, so one should not think that visual is lower, and not Higher Mathematics. From the simple and visual there is a way to the higher - the way of Geometry” (Aleksandrov 1980).

The issues of creativity and the peculiarities of the use of visual literacy, the use of spatial representations and imagination for simulated images in studying and life, the culture of drawing and the expression of opinions with high-quality drawings are the subject of research of many leading teachers (Boden & Stenliden 2019); (Kremen & Iljin 2020); (Koval & Besklinskaya 2020).

Well-known Ukrainian scientists and teachers (Astriab et al. 1956); (Slepkan 1983); (Mikhailenko & Teslenko 1965) paid considerable attention to creating drawings and the visualization in Stereometry.

A significant assistant in the modeling of geometric figures is modern computer with reliable software and the pedagogical tools, which should be meaningfully used in educational institutions (Botana et al. 2014); (Anishchenko et al. 2021); (Bykov et al. 2020); (Lenchuk & Shchekhorskyi 2021), because “The use of a computer should be pedagogically balanced and appropriate” (Zheldak 2011).

Our textbook for students and teachers contains the basics of teaching Stereometry by constructive method (Lenchuk 2010). The methodology of a systematic approach to the formation of competencies for performing drawings of spatial objects, solving positional and metric problems by construction methods are considered.

The constructive method in Geometry is the trend according to which each geometric object or statement about it should be the result of a mental activity that uses transformations and visual images in accordance with simple and easily checked rules, i.e. algorithms. With their help, through a finite number of steps and operations the expected construction is obtained for a certain time.

2. Guidelines

Many years of experience in teaching Geometry shows us that in the process of teaching a high-quality drawing of three-dimensional figures and their combinations, it is useful to adhere to the following rules:

1. Perform graphic operations on the drawing field with solid thin lines initially (figure 1), and then redraw them with standard lines: the visible outlines - with a solid base line; the invisible – with dashed; the central, axial and symmetry lines - with a thin chain-dotted line.

2. For achieving the necessary effect in the redrawing use pencils of different hardness: \(2 \mathrm{~B}, \mathrm{~B}, \mathrm{HB}, \mathrm{F}, \mathrm{H}, 2 \mathrm{H}\). Working “by hand”, it is enough to have pencils of hardness 2B and F, neatly sharpened.

2 … 81 … 2S(0,6-1,5)5 … 303 … 5

Figure 1. Standard “lines”

3. Drawing a straight from point to point, focus your look on the end point. Let one of the fingers holding the tool slide along the image plane. The technique is useful when the drawing is done on a blackboard with a piece of chalk.

4. Start drawing a prism (cylinder) from the upper base, because the additional constructions will relate to the lower base of the figure. Choose the vertex of the pyramid carefully so that the visible side edges do not obscure the invisible vertical height.

5. Position the object relative to the drawing plane so that the largest number of faces is visible.

6. When drawing a combination of two figures do three steps: 1) create a drawing of the surface of one of the figures; 2) find the common elements of both surfaces (contact points, lines) on it; 3) create the drawing of the other figure so that the elements found in 2) belong to its surface.

7. When working on drawings of combinations of two figures, keep in mind that the surface of the described figure must be transparent with respect to the inscribed one, and each of the surfaces is opaque with respect to itself.

8. Creating drawings with the constructive method, use detail drawings so as not to clutter up the image.

9. To make the drawing more clear and the visual perception of the dependencies between the parts of the figures better use the following elements: distorted and original right angles; if necessary, indicate the degree measure of the angle; to stress the nuances of the statement of the task and see better the connections between the elements, designate the equal segments with the same number of strokes; to better represent the shape of the figure use colored pencils.

10. Remove extra lines of drawings with a soft eraser.

11. The key to solving a particular type of Stereometry problem lies “on the surface” if you know how to operate with the complex drawings by G. Monge.

12. It is useful to understand the essence and acquire practical skills in performing drawings using the method of axonometric directions and conditional relationships. This approach will allow you to create computer programs independently and use software pedagogical teaching aids effectively.

Following the above guidelines guarantees the correctness and clarity of the drawings. These drawings will be simple in construction if the subject of teaching receives practical modelling skills. Aesthetically attractive, accurate projection drawings will contribute to the visualization of reasoning, rational and clear algorithm presentation of problem solving, interest in constructive operations and self-confidence.

3. Examples

Let’s solve several problems of a constructive-calculation nature.

Problem 1. In a regular triangular pyramid \(S A B C\), the height is equal to the side a of the base. Construct a section of the pyramid by a plane passing through the base edge \(A B\), perpendicular to the edge \(S C\). Calculate the area of the section figure and the ratio of the volumes of the parts into which the section divides the pyramid.

BCОA30LF

Figure 2. Regular triangle

In a triangle, it is easy to introduce conditional (approximate) ratios. Every student knows how to inscribe a regular triangle \(A B C\) in a circle centered at the point \(O\) (figure 2). Here it is convenient to take the circle radius R equal to 6 units.

The algorithm for modeling a pyramid with a triangle \(A B C\) as a base is the following (figures 3a, 8b, 8d):

1) draw a straight line at an angle of \(7^{\circ} 10^{\prime}\) to the horizon and select point \(O\), as a center of the triangle, on it;

2) from the point \(O\) lay down three one unit segments, denoting the end point of third with \(L\) (length of \(O L=3\) ) and draw a straight line through the point \(L\), inclined to the horizon at an angle of \(41^{\circ} 25^{\prime}\);

3) in both directions of the drawn straight line, set aside 2.5 units segments, defining in such a way the two vertices \(B\) and \(C\) of the triangle;

4) from the point \(O\) upwards, lay off the segment \(O A\), twice as long as the segment \(O L(O A=6)\), defining the third vertex of the triangle \(A\);

5) the height of the pyramid is placed in \(O\) vertically, depicted with a chaindotted thin line.

Р′В′KА′b)SВАCС′KK′РQLOР0a)S0

Figures 3a, 3b. Construction of plane section of a pyramid

Algorithm explanation. Triangle \(B L O\) is right-angled ( \(\angle B L O=90^{\circ}\) ), radius \(B O\) of the described circle with center \(O\) bisects angle \(C B A: \angle L B O=30^{\circ}\); \(\operatorname{tg} 30^{\circ}=\tfrac{O L}{L B}\) \(\approx 0,5774 \approx 0,6=\tfrac{3}{5}\left(\tfrac{3}{5}\right.\) is the defining relation in the right triangle for its visual construction).

Problem analysis. The edges \(S C\) and \(A B\) are mutually perpendicular by the Three perpendiculars theorem. Therefore, it is enough to draw a perpendicular KP from the point \(K\), such that \(A K=K B\), to the side edge \(S C\), which will determine the section plane \(\Sigma(K P \times A B) \perp S C\).

Moving the pyramid \(S A B C\) in space, combine it with the picture plane by the median \(C K \equiv C^{\prime} K^{\prime}\) and select the segment \(C^{\prime} K^{\prime}=\tfrac{a \sqrt{3}}{2}\) as original. By rotation around the line \(C^{\prime} K^{\prime}\) of the zero level, “put” the triangle \(S K C\) onto the image plane. To find the location of the point \(S^{\prime}\), the image of the point \(S\), modeling the true length of the height of the pyramid \(S^{\prime} O^{\prime}=a\) by performing the following operations.

СXLMKNc)Fa= 2ba/2=b3un.m..a/2S′aQ′C′Р′K′O′d)

Figures 3c, 3d. The process of section construction

First, build a segment \(b\) such that \(C^{\prime} K^{\prime}=b \sqrt{3}\), where \(b=\tfrac{a}{2}\), and secondly, take two segments \(b\) (figure 3c). In the right triangle \(M F N\), the geometric mean is a leg \(M F\) with hypotenuse \(M N=3\) units, and \(K S=K^{\prime} S^{\prime}\) is marked on the ray \(M F\). Obviously, the triangles \(M C X\) and \(M F L\) are similar, whence: \(\tfrac{M X}{M L}=\tfrac{M C}{M F}\). But \(M L=1\) and \(M F=\sqrt{3}\). Thus, \(M X=\tfrac{K C}{\sqrt{3}}==b=\tfrac{a}{2}\). Using the segment \(a\), combine the triangle \(S^{\prime} C^{\prime} K^{\prime}\) with the image plane (figure \(3 d\) ) and drop the perpendicular \(K^{\prime} P^{\prime}\) from the point \(K^{\prime}\) to the side \(S^{\prime} C^{\prime}\). Dividing the edge of the pyramid \(S C\) with the point \(P\) in the ratio in which the point \(P^{\prime}\) divides the segment \(S^{\prime} C^{\prime}\) and connecting the points \(A-P-B\) (figure \(3 a\) ), obtain a section of the pyramid by a plane. The true shape and size of the cross-section is modeled as triangle \(A^{\prime} P^{\prime} B^{\prime}\) with base \(A^{\prime} B^{\prime}=a\) a and height \(K^{\prime} P^{\prime}\) (figure 3b).

Calculations (\(S=\tfrac{3}{8} a^{2}\)– the area of basis of a pyramid, \(V_{1}: V_{2}=5: 3\) ) and an assessment of the accuracy of the constructions are proposed to be carried out independently.

Problem 2. In a rectangular parallelepiped \(A B C D A_{1} B_{1} C_{1} D_{1}\), with the given ratio of edges \(A B: A D: A A_{1}=1: 2: 1\), a plane is drawn through vertices \(B, C_{1}\) and D. Draw the perpendicular from point \(P\) on the edge \(A_{1} D_{1}\), such that \(A_{1} P: P D_{1}=\) 1 : 2 to the plane \(B C_{1} D\).

For high-quality modeling of a rectangular parallelepiped by a drawing, we will depict it with a rectangle at its base. According to the properties of parallel projection, a rectangle, or its varieties, is depicted in the figure by an arbitrary parallelogram. Therefore, the rectangle \(A B C D\) is depicted as follows (fig. 4a):

1) with an inclination of \(10-15^{\circ}\) to the horizon, draw a straight line and mark the side \(B C\) on it;

2) draw a ray from point \(B\) approximately at an angle of \(120^{\circ}\) to \(B C\) and mark a segment \(\mathrm{BA} \gg 1 / 2 \mathrm{BC}\) on it;

3) complete the triangle \(A B C\) to parallelogram;

4) since the parallelepiped is rectangular, transfer the parallelogram \(A B C D\) trough the vector \(\overrightarrow{A A_{1}}\) vertically down to parallelogram \(A_{1} B_{1} C_{1} D_{1}\).

Analyzing the statement of the task and the figure, it is noticed that the planes \(\Delta\left(A_{1} B C D_{1}\right)\) and \(\Sigma\left(B C_{1} D\right)\) are perpendicular (a criterion of perpendicularity of two planes), and the diagonal \(D C_{1}\), belonging to the plane \(\Sigma\) and the face \(D C C_{1} D_{1}\), is perpendicular to the two straight lines of the plane \(\Delta: D C_{1} \perp A_{1} D_{1}, D C_{1} \perp C D_{1}\). The planes intersect along the straight line BQ (where Q is a point of intersection of diagonals of square in the right face of parallelepiped).

а)b)A1В1С1D1ABCDQPOA1D1B′C′O′P′Q′12

Figure 4. Distance from the Point to the Plane

By rotating around the straight line of the zero level, “put” on the drawing (figure \(4 b\) ) the rectangle \(A_{1} B C D_{1}\), where choose the original segment \(A_{1} D_{1}=A_{1}{ }^{\prime} D_{1}{ }^{\prime}=2\) units. Note that the blue triangle in figure 4b shows the division of the segment A1D1 in the ratio 1: 2 and therefore does not require designations. Simple operations build the true distance from the point \(P^{\prime}\) to the line \(B^{\prime} Q^{\prime}\left(\mathrm{P}^{\prime}-\right.\) the image of the point P in the combination transformation, and where \(\mathrm{Q}^{\prime}\) is the image of the point Q in the matching transformation; other pairs of points – similarly).

\(B Q\) is divided in the ratio \(B O: O Q=B^{\prime} O^{\prime}: O^{\prime} Q^{\prime}\) (figure 4a).

Problem 3. A prism is based on a regular triangle \(A B C\). The two side faces of the prism are rhombus with a common edge \(A A_{1}\) and an acute angle of \(60^{\circ}\). Drop a perpendicular from point \(P\) (AP: \(\left.P A_{1}=1: 1\right)\) of edge \(A A_{1}\) to diagonal \(B C_{1}\) of face \(B B_{1} C_{1} C\).

ВСАА1В1С1РQKL60О

Figure 5. Distance from the Point to the Line

A high-quality drawing is the main tool in the process of analyzing the conditions of the problem and creating an algorithm for solving it, the angle for placing the prism in space should be successfully chosen. The acute angles of two rhombus with a common edge \(A A_{1}\) are equal to \(60^{\circ}\), and their diagonals, opposite to these angles, divide the rhombus into two regular triangles and all the edges of the prism are equal. The side faces \(A A_{1} C_{1} C\) and \(A A_{1} B_{1} B\) are equal and inclined at equal angles to the plane of the base \(A_{1} B_{1} C_{1}(A B C)\), and the third face of the \(B B_{1} C_{1} C\) prism is a square. The heights of triangles \(A B B_{1}\) and \(A C C_{1}\) divide their bases \(B B_{1}\) and \(C C_{1}\) in half, triangle \(A C B_{1}\) is right-angled and isosceles, and vertex \(A\) is projected into the center \(O\) of the square. Place the side face \(B B_{1} C_{1} C\) of the prism at the base (figure 5) and depict it a little differently: place the side \(C C_{1}\) horizontally, the side \(C B\) adjacent to it - approximately at an angle of \(120^{\circ}\) to \(C C_{1}\) and half as much (this is the construction algorithm in Axonometry (rectangular dimetry).

Plane \(\left(A C B_{1}\right)^{\wedge} B C_{1}\). Through the point \(P\) of the edge \(A A_{1}\) draw the plane \(\mathbf{S}(P K L)\) parallel to \(\left(A C B_{1}\right)\). Parallel planes, crossed by a third plane, cut out parallel straight lines and simply draw the point \(Q\)-the base of the required perpendicular \(P Q\).

The segment \(P Q\) in its original size should be built using a remote drawing, aligning the triangle \(P K L\) with the image plane, where \(P^{\prime} K^{\prime}=P^{\prime} L^{\prime}=1\), a \(K L=C B_{1}\) \(=K^{\prime} L^{\prime}=\sqrt{2}\).

Problem 4. A plane is drawn through the side of the base of a regular quadrangular pyramid, cutting off a triangle with an area of \(4 \mathrm{~cm}^{2}\) from the opposite face. Find the lateral surface of the pyramid, cut off by a drawn plane, if the lateral surface of this pyramid is \(25 \mathrm{~cm}^{2}\).

Modeling the drawing-picture of a square in a slightly different way – according to the rules of a rectangular dimetry (figure 6):

1) draw a straight line at an angle of \(7^{\circ} 10^{\prime}\) to the horizon and select point \(O\) on it – its center;

2) from the point \(O\) to the left and to the right mark equal segments(\(O A=O C\) );

3 ) at point \(O\) draw a straight line inclined to the horizon at an angle of \(41^{\circ} 25^{\prime}\);

4) mark the segments \(O B=O D=\tfrac{O A(O C)}{2}\) on this straight line from the point \(O\). Thinking analytically further.

SQKLBMCOANDFE

Figure 6. Model of a calculation problem

Calculate the area of the lateral surface of the pyramid \(S K L D C\), containing four triangles: \(S K L\) (the area is known), \(S D C\left(S_{\text {DSAB }}=S_{\text {DSDC }}\right), S L D\) and \(S K C\) (the triangles are equal, which is obvious). Let’s complete the drawing in triangles SАD and LАD: \(S E=S M\) and \(L F=Q M\). Calculate the area of the triangle \(S D C\), remembering that the side faces of the pyramid \(S A B C D\) are equal, and there are four faces: \(S_{\mathrm{DSAB}}=\) \(S_{\text {DSDC }}=25: 4=6,25\left(\mathrm{~cm}^{2}\right)\). The areas of similar figures are related as the squares of their linear elements. This allows to calculate the height of the side face, which precedes the calculation of the areas of triangles \(S L D\) and \(S K C\). Thus: \(S_{\text {DSLK }}: S_{\text {DSAB }}=\) \(S Q^{2}: S M^{2}=4: \tfrac{25}{4}==\tfrac{16}{25}\), and \(\tfrac{S Q}{S M}=\tfrac{4}{5}\).

It is shown that \(S_{\text {DSLD }}=S_{\text {DSKC }}=S_{\text {DSAD }}-S_{\text {DLAD }}=\tfrac{1}{2} A D \cdot S E-\tfrac{1}{2} A D \cdot L F=\tfrac{1}{2} A D \cdot\) \((S E-L F)=\tfrac{11}{22} A B \cdot(S M-Q M)=\tfrac{1}{2} A B \cdot S Q=\tfrac{11}{22} A B \cdot \tfrac{4}{5} S M\), and \(S_{\mathrm{DSLD}}=\tfrac{4}{5} S_{\mathrm{DSAB}}=\tfrac{4}{5}\). \(6,25=5\left(\mathrm{~cm}^{2}\right)\). In total \(S_{\text {SKLDC }}=20,25 \mathrm{~cm}^{2}\).

Concluding the presentation of the text, the following should be noted separately. The problems were not solved with figures that could be based on a regular pentagon. There are fewer of them, but they are in the books.

CBAFKOLDBAF54º72ºLNKО

Figure 7. Right pentagon

C

D

Assured the quality of the drawing, conditional ratios in a pentagon inscribed in a circle (figure 7), calculating them as the lengths of the legs of right-angled triangles \(O A K\) and \(O L F\), where the hypotenuse is 5 units, and acute angles are \(72^{\circ}\) and \(54^{\circ}\) respectively were introduced. For example, \(O K=A O \cdot \cos 72^{\circ} \approx 5 \cdot 0,3090 \approx 1,5\) units.

yzzO8O533xyxb)a)c)d)xzy120°ORRzyAOCBR1R2R341°25'7°10'120°x

Figure 8. Axonometric Axis

Drawing construction algorithm (in isometric):

1) draw two straight lines at an angle of \(120^{\circ}\) to one another and equally inclined to the horizon (figure \(8 a\), figure 8a, figure 8c);

2) draw the most distant vertex of the pentagon \(B\) (\(O B=5\) units), located up and to the left of the point \(O\) on one of the lines drawn;

3) draw a straight line parallel to another straight line parallel to another straight line through the point \(K\) on the straight line \(O B\) (\(O K=1,5\) units), mark \(K A=K C=4,75\) units on it;

4) from the point \(O\) to the right-down mark the segment \(O L=4\) units and through the point \(L\) draw a straight line parallel to another straight line, mark the segments \(L F=L D=3\) units on it.

There is a piece of advice to the teacher, a student, a pupil: take into account that the described technique for a high quality drawing of a regular pentagon is the simplest.

4. Description and results of the statistical experiments

The program of the advanced training courses for teachers from Zhytomyr State University named after Ivan Franko stipulate the topics, which relate to the issues of solving multilevel stereometric tasks by constructivecomputational methods. To find out the attitude of participants to this type of problem and to clear up the ways to solve them using constructive methods at school a questionnaire was worked out. Here are the questions of the questionnaire with the conclusive results and comments.

1. In your opinion, what is the role of drawing in Stereometry problems for calculation?

а) a correct and visual drawing is the main tool in finding a result;

b) drawing is important, but not the main thing in solving the task;

c) the quality of the drawing is not important.

Comment: Out of 127 respondents only \(5(3,93 \%)\) chose the answer c), \(34(26.77 \%)\)– the answer b) , the rest (\(69.3 \%\) )– answered a) . Most of the teachers understand that a drawing is the primary tool of finding the solution of the task. Some mistakenly think that the drawing is irrelevant, but a poorquality drawing can lead to false conclusions.

2. Do you accept the requirements for the quality of the drawings?

а) yes, I do;

b) I inform students that requirements exist, but I do not demand compliance with them;

c) I rely on the students’ skills and experience;

d) do not accept them and do not comply in the learning process.

Comment: Point d) was not chosen by any course participant. 43 of them (\(33.86 \%\) ) rely upon previously acquired skills and experience of participants; the majority of 68 participants (\(53.54 \%\) ) chose answer b), and only \(16(12.6 \%)\) teachers justify the requirements for the quality of the drawings. A significant percentage of teachers hope that students from previous experience can build quality drawings. However, students should first be taught constructivism, and then be required to comply with the requirements for drawings.

3. Which method do you use in binary modeling of figures drawings and their combinations in Stereometry?

а) axonometric directions and conditional ratios;

b) experience of teachers and scientists;

c) you have your own experience for high-quality constructions.

Comment: Significant majority of teachers – 80 (\(63 \%\) )– prefer their own experience; 32 participants (\(25.2 \%\) ) use the experience of past generations of teachers and scientists, and only 15 (\(11.8 \%\) ) master the method of axonometric directions and conditional ratios. Teachers are recommended to remember that it is possible to use a computer and software in teaching geometry effectively only if they master the method of axonometric directions and conditional relationships.

4. What constructive problems do you solve with students?

а) clearly demonstrating the conditions of tasks with high-quality drawings;

b) solving positional problems by construction methods;

c) modeling metric problems using constructivism methods: build involute surfaces of figures, find the areas of figures, distances from a point to a straight line (plane), measurement of angles, etc.

Comment: Point c) was chosen by 9 (\(7.09 \%\) ) respondents, the vast majority of teachers \(118(92.91 \%)\) combined points \(a\) ) and \(b\) ) explaining that in computational problems it is necessary to build drawings of separate figures, their combinations and sections of figures by a cutting plane. Not all teachers understand that, to a greater extent, practical (applied) geometry deals with metrics – measurements.

5. Do you want to improve students’ competence in Stereometry by solving tasks using constructive methods?

а) yes, I would love to see that happen – \(41(32,3 \%)\);

b) yes, but I do not have enough time for these tasks – 64 (\(50,4 \%\) );

c) yes, if it was intended by the program \(-7(5,5 \%)\);

d) no, that’s not the goal now – 9 (\(7,1 \%\) );

e) I don’t think I need it – \(6(4,7 \%)\).

Comment: The problem of time and programs in teaching pupils really exists. However, the teacher has to find opportunity to deepen their competence in constructive Stereometry in special or electives courses.

6. How the tasks requiring constructive approach promote students in their development?

a) contribute to improve the spatial representations and imagination;

b) contribute to improve the logic of reasoning;

c) contribute to the improvement of the analytical way of thinking;

d) demonstrate the applied nature of the discipline “Geometry”;

e) they set students up for a more subtle understanding of the essence of things in the world.

Comment: It is not surprising that the teachers (having listened to lectures on these topics) were unanimous, fully agreeing that constructive tasks are really those that promote.

7. What disadvantages of tasks that require a constructive approach would you mentioned? (a free answer question)

The most noticeable shortcomings that respondents mention was:

а) students’ ignorance of the transformations of figures in space;

b) lack of experience in solving tasks by construction method;

c) students hardly understanding the process of graphic modeling the task; d) lack of accuracy in the drawing performing;

e) significant duration of the process of solving such tasks;

f) inhibition of initiative and creative thinking in the step-by-step implementation of operations;

g) there is not enough methodological literature on the use of constructive methods in solving tasks of Stereometry.

The questionnaires of teachers regarding constructive-computational methods for solving problems in schools are carried out regularly, the results are correlated.

As a separate matter. The program for applicants of the first educational level (Bachelor degree) for future teachers of Mathematics contains the educational component “Selected questions of Geometry”. The course consists of teaching students to use a constructive method for solving stereometric problems. The core content of the discipline has been formed over decades. The results of the final papers of participants testify to the effectiveness of the developed teaching methodology. The basic provisions of the research are systematized in our textbook (Lenchuk 2010).

5. Conclusions.

The outstanding French architect and architectural theorist Le Corbusier (1887 – 1965) wrote: “I think that we have never lived in such a geometric period. It is worth thinking about the past, remembering what was before, and we will be stunned to see that the world around us is a world of Geometry, pure, real, flawless in our eyes. Everything around is Geometry” (Le Corbusier 1970).

The results of the survey at the advanced training courses for teachers demonstrate that the school pays little attention to the culture of high-quality modeling of Stereometry objects, does not promote constructive methods for solving positional and metric problems. Teachers are poorly prepared to solve such tasks, they do not perfectly master the rules and techniques for transforming drawings, do not demonstrate the empiricism of a discipline, and do not contribute to the development of ideas, visual-figurative and logical thinking. All this impoverishes Geometry in the eyes of students.

In this paper, with a thorough analysis of the visualization aspects of projection drawings for the tasks of the first of the sciences, visualizing, proving by drawings, a constructive approach and an analytical method of reasoning on the way to a result, making out each of the problems with highquality drawings, we offered to the student (pupil) the innovative methods of activity verified by practice in the course “Stereometry.”

It is not difficult to explain the need to introduce elements of constructivism at school, because drawing is considered the main tools of teaching Geometry, and graphic and graph-analytical techniques for operations with various kinds of figures form the basis of the Applied Geometry discipline. Without it would be impossible to design and manufacture a modern aircraft, the machinebuilding and chemical industries, construction and architecture, light industry, etc. would not function without it. The main goal is to motivate the student and to prepare him for a full-fledged creative life. Geometry enriched with constructive methods will promote this goal.

REFERENCES

ALEXANDROV, A.D., 1980.O geometrii[On Geometry]. Mathematics at school. vol. 6, no. 3, pp. 56 – 62. Available from: https://mat. univie.ac.at/~neretin/misc/reform/Alexandrov1.pdf [in Russian].

ANISHCHENKO, O.V. et al., eds. by Kremen,V. G., 2021. Natsionalʹna dopovidʹ pro stan i perspektyvy rozvytku osvity v Ukrayini [National Report on the Status and Prospects of Education in Ukraine]: Monograph. National Academy of Pedagogical Sciences of Ukraine, Kyiv, Ukraine: KONVI PRINT. Available from: https://lib.iitta.gov. ua/726223/ [in Ukrainian].

ASTRYAB, A.M. and others, eds. by ASTRYABA, A.M. and DUBINCHUK, A.S., 1956. Metodyka navchannya heometriyi prostoru [Methods of Teaching Space Geometry]. Kiev: Radianska Shkola [in Ukrainian].

BODEN, U., STENLIDEN, L., 2019. Emerging Visual Literacy through Enactments by Visual Analytics and Students. Designs for Learning, vol. 11, no. 1, pp. 40 – 50. Available from: http://www. designsforlearning.nu/article/10.16993/dfl.108/.

BOTANA,F., ABANADES, M., and ESCRIBANO, J., 2014. Using a Free Open Source Software to Teach Mathematics. Computer Applications in Engineering Education, vol. 22, no. 4, pp. 728 – 735. Available from: https://doi.org/10.1002/cae.21565.

BYKOV, V.Yu., SPIRIN, O.M., PINCHUK, O.P., 2020. Suchasni vyklyky tsyfrovoyi transformatsiyi osvity. [Modern challenges of digital transformation of education]. Bulletin of the UNESCO Chair “Continuing Professional Education of the XXI century”. Issue / Issue 1(1). pp. 27 – 36. Available from: https://doi.org/10.35387/ ucj.1(1).2020.27-36 [in Ukrainian].

GILBERT, D., KOHN-FOSSEN, S., 1981. Illyustrativnaya geometriya [Illustrative geometry]. Moscow: Nauka[in Russian].

KREMEN, V.G., ILYIN, V.V., 2020. Predstavlennya vizualʹnoyi hramotnosti v navchalʹnomu protsesi ta yiyi vykorystannya v kulʹturi myslennya. [Presentation of visual literacy in the educational process and its exploitation in the culture of thinking]. Information technologies and learning tools, 75(1), 1 – Available from:https:// doi.org/10.33407/itlt.v75i1.3660 [in Ukrainian].

KOVAL, T.I., BESKLINSKA, O.P., 2020. Vykorystannya zasobiv vizualizatsiyi dlya stvorennya elektronnykh osvitnikh resursiv u protsesi vykladannya matematychnykh dystsyplin u vyshchykh navchalʹnykh zakladakh. [The use of visualization tools for creating electronic educational resources in the process of teaching mathematical disciplines in higher education institutions]. Information Technologies and Learning Tools, vol. 77, no. 3, pp. 145 – 161. Available from: https://doi.org/10.33407/itlt.v77i3.3411 [in Ukrainian].

LE CORBUSIER., 1970. Arkhitektura XX veka [Architecture of the XX Century]. Moscow: Progress [in Russian].

LENCHUK, I.G., 2010. Konstruktyvna heometriya prostoru v zadachakh [Constructive Space Geometry in problems]. Zhytomyr: publishing house of Zhytomyr Ivan Franko State University [in Ukrainian].

LENCHUK, I.G., SCHEHORSKY,A.Y., 2021. Metodolohiya komp’yuternoho modelyuvannya pererizu piramidy uprohramnykh seredovysh-chakh. [Methodology of computer modeling of the pyramid section in software environments]. Information Technologies and Learning Tools, 86(6), pp. 170–186. Available from: https://doi. org/10.33407/itlt.v86i6.4565 [in Ukrainian].

MIKHAILENKO, V.E., TESLENKO, I.F., 1965. Zvyazky v navchanni heometriyi ta kreslennya [Connections in teaching geometry and drawing]. Kyiv: Radianska Shkola [in Ukrainian].

SLEPKAN, Z.I., 1983. Psykholoho-pedahohichni osnovy navchannya matematyky [Psycho-pedagogical bases of teaching mathematics]. Kiev: Radianska Shkola [in Ukrainian].

ZHALDAK, M.I.,2011. Vykorystannya komp’yutera v navchal’nomu protsesi maye buty pedahohichno vyvazhenym i dotsilʹnym. [Computer use in the educational process should be pedagogically balanced and appropriate]. Computer in school and family. V.3. 31pp. 3 – 12. Available from: https://towardsdatascience.com/9-data-visualization-tools-that-you-cannot-miss-in-2019-3ff23222a927 [in Ukrainian].

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева