Математика и Информатика

https://doi.org/10.53656/math2022-6-3-mob

2022/6, стр. 574 - 586

MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva
OrcID: 0000-0002-7739-5915
E-mail: gocheva@uni-plovdiv.bg
Department “Computer Science” Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria
Nikolay Kasakliev
OrcID: 0000-0003-4010-144X
E-mail: kasakliev@uni-plovdiv.bg
Department “Computer Science” Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria
Elena Somova
OrcID: 0000-0003-3393-1058
E-mail: eledel@uni-plovdiv.bg
Department “Computer Science” Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria

Резюме: The paper discusses modern learning approaches in which mobile devices are increasingly used. It presents an experiment to apply mobile game-based learning to primary school students. A suitable learning model has been designed using adaptive, micro lesson, behavioural and game-based approaches. Based on the model, a mobile math educational game was developed to complement traditional classroom learning and be used at home. The mobile game was tested in a real learning environment. A survey was conducted also with the students and teachers, participants in the experiment, which investigated the attitude toward using mobile game – based learning in mathematics in the direction of – practical applicability, motivation, design, accessibility, support and feedback.

Ключови думи: game-based learning; adaptive learning; mobile game; game elements; micro lesson; primary school; mathematics

1. Introduction

Modern children of the so-called Generation Z are open to the world and quickly get used to changes in Information and Communication Technology (ICT). They use various modern technological devices with ease. The modern generation of children also has a different approach to learning. Students want fast, quality and effective learning through the latest technology. That is why modern education must change or adapt pedagogical methods and approaches.

Mobile devices have now reached such widespread use that smartphones and tablets are now overtaking traditional desktop computer systems in popularity and application, so their use in learning is only natural.

Games are an important part of every child’s life. The fact is that games have a strong motivating force, regardless of the age group, which causes the player to strive to win, even if he/she has to repeat the game over and over again. In the pedagogic, there are thorough and detailed researches on how important it is the role of games in teaching through which children learn while having fun. Combining both m-learning (mobile learning) and mobile games, it will provide the user with a new experience like no other (Diaha et all. 2010).

The main goal of the paper is to present an experiment to apply mobile gamebased learning to primary school students. A suitable learning model is designed using adaptive, micro lesson, behavioural and game-based approaches. Based on the model, a mobile math educational game is developed to complement traditional classroom learning and be used at home.

Section 2 shows the state of the art in the field of modern innovative learning approaches. Section 3 describes the model of mobile game-based learning. Section 4 describes the developed mobile educational game prototype. Section 5 shows the setup of the experiment, the methodology of the conducted experiment step by step and the results of the surveys conducted with students and teachers. The article ends with a conclusion which focuses on the contributions of the study and the future plans of the authors.

2. Modern educational approaches

Vitanova in (Vitanova 2019), trying to present forecasts for the development of education and its features in the XXI century, concludes that modern education needs a revolutionary change. Modern education follows the trends of ICT development, with innovative forms of education emerging alongside traditional forms. For example (Aleksieva 2021) presents a theoretical study of electronic resources intended for teaching mathematics in primary grades, including online learning, which has become ubiquitous as a result of the COVID-19 pandemic.

Games are integrated into learning in various forms: game-based learning, gamification, simulation games, etc. In game-based learning, games are used as a medium for teaching content as well as for testing and assessment (Terzieva et all. 2017). Authors of (Stoyanova et all. 2016) examine the game approach in the learning process, implemented in an interactive learning environment using the free web-based platform Kahoot! to create and share educational tests (quizzes) in the form of a game (allowing real-time play from around the world, from any device with a web browser and internet connection).

Board and electronic games include a variety of game elements and techniques that motivate players to strive for better results. Examples of using these game elements and techniques in e-learning are discussed in (Gachkova & Somova 2016). (Sharkova et all. 2020) makes a correlation between game elements, game techniques, and player actions.

According to (Kasakliev 2015), mobile learning (m-learning) is a form of e-learning based on portable devices that provides many advantages such as accessibility, availability, personalization, collaboration, etc.

Learning through mobile educational games is one of the fastest growing trends among interactive learning methods. They provide many opportunities for team or individual, formal or informal learning.

M-learning can be very effective in learning mathematics, and there have been many authors working in this area. (Yussop et all. 2019) designs and develops a mobile app called Hi-Math as a game-based learning experience for children in grade 3 aimed at acquiring basic numeracy skills. Shih (Shih et all. 2018) has also developped a game-based mobile app for learning mathematics for primary school learners. According to (Alkhateeb 2019), mobile games reveal learning material in an interesting way – images, sound effects, and movements complement each other in an attractive way, making the student active, effective, and willing to learn.

Adaptive learning is an educational approach that provides learning resources and activities tailored to the specific needs of the individual learner. The aim is to identify the specific needs of a learner and to implement an appropriate pedagogical strategy to improve the learning process. The main characteristics of adaptive learning are: flexibility, motivation, engagement, personalization, adaptation, feedback, accessibility, etc. The literature most commonly refers to three types of e-learning system adaptability (Velsen 2008): user interface-based adaptation, learning process adaptation and learning content-based adaptation.

Micro learning is learning that is implemented on the basis of very short lessons lasting no more than 5 minutes (Janke 2020). Recently, there has been a lot of focus on mobile-based microlearning integrated with traditional learning methods. According to (Coakley et all. 2017), it makes learning more accessible at anytime, anywhere, just-in-time and on-demand, adaptive and learner-centred.

Krasnova (Krasnova 2015) highlights the benefits of blended learning as a method that combines the most effective face-to-face teaching techniques with online interactive collaboration. On the other hand, so-called ubiquitous learning means learning anywhere, anytime, and is therefore directly related to mobile technology. It can be seen as an integration of m-learning and e-learning, which allows customization to the learner‘s actual needs (Zhang 2008).

3. A learning process model

A general cyclical learning model containing the following phases is proposed for m-learning of the target age group through the implementation of modern learning approaches:

– Exercise – learners solve tasks in the form of games;

– Evaluation – automatic evaluation of the solved tasks;

– Rewarding – receiving various rewards from the game;

– Support – learners receive support when they first fail to solve a task;

– Training – trainees receive training through micro-lessons when they repeatedly fail to solve a task;

– Ranking – based on the results obtained.

Detailed learning sub-models implementing the selected approaches: gamebased, adaptive, micro-lesson learning and behaviour monitoring learning are presented.

The designed model of mobile game-based learning depends on the learning objectives, learning resources, and learning activities, which depend on the difficulty level and time to implement the learning with the corresponding element.

A learner model was constructed based on three sub-models: a learning model (achievements during learning), a game model (achievements in the game) and a behavioural model (data during the game reporting on different indicators of the learner‘s behaviour).

To implement game-based learning, research has been done on game elements and techniques that exist in games and can be used in m-learning for this age group (Gocheva 2021). The following elements and techniques have been selected:

game elements: bonus, badge, reward, progress, status, level, time, feedback message, missions;

game techniques: reward system, progress tracking, current status tracking, time limit, game rules, feedback, mission, story.

Adaptive learning is implemented by using different types of tasks located in the game levels, considering the difficulty of the tasks, supporting the success/ failure of the learner, and detecting the time to solve the game tasks. Adaptability is implemented in two directions: adaptability of the learning content and adaptability of the learning process.

Micro learning is implemented through short text hints (on the first failure) and through a video example (micro lesson) on the second failure at the same level of the game. The application of micro lessons helps to achieve the goals of the adaptive methodology; students learn to cope with difficulties, not to lose motivation, and without feeling lost to move forward in the game.

Behaviour monitoring learning is based on the reporting of player behaviour data during game play. Possible data that can be collected automatically are, for example, the following: noise level (in decibels) around the mobile device; the number of sudden movements of the mobile device; the number of switches to other applications; and the presence of a connection to a WiFi network and the Internet. Data can be an indicator of emotions experienced and specific behaviours of the learner during play. The data collected could assist the teacher in forming an assessment or in analysing behaviour. The data may also be useful to researchers in other professional fields who study child behaviour during play.

A functional model was also developed in two directions – user functionality design and data synchronization.

4. Prototype of the mobile educational game

Based on the created model of game-based learning, a mobile game application for mathematics education for students in grade 3 was developed.

The prototype of the mobile educational game consists of 8 levels whose interface is based on different templates with interesting and fun designs. The learning activities are implemented through missions – mathematical problems that are randomly generated. For the missions, three types of difficulty are applied (\(1-\) low, 2 – medium, and 3 – high). The game starts with a medium difficulty level and a target time (60 seconds) for each level.

The game uses an adaptive methodology depending on the correctness of the answer, the difficulty of the mathematical problem, and the time to solve it. Students form an individual learning path that is unique to each due to the adaptive approach.

In the case of wrong answers, students receive support: a hint on how to solve the problem (short text) on the first failure, and on the second failure at the same game level – video example (micro lesson).

For correct answers, students get bonus coins that are different for each difficulty level: 3 coins for high, 2 coins for medium, 1 coin for low, and 0 coins for failure. For every six coins, students win a gold bar as a prize. With correct answers, students save unused time to solve a problem, which they can use later in the next mission (as a combo). The player‘s goal is to collect the maximum number of virtual objects in the minimum amount of time. The game ends with the final leaderboard.

Once the game is completed, each participant‘s data is sent to a web server for synchronization. The sorted data is returned to mobile devices (on demand) and sent to a web application designed for the educator to display as a ranking or other type of report. The reports are used to help tutors decide how to support learners in subsequent learning.

For the construction of the prototype, several logically connected software modules have been implemented, which implement the designed functionality of the system: the “Game Environment” module, the “Synchronization” module, and the “Reports” module.

The “Game Environment” module is an Android application of the game type and contains the following layers:

– Layer “User Interface” – a graphical interface visualizing all the elements of the game, i. e. the contact between the game environment and the participant happens here (Figure 1, Figure 2);

– Layer “Functionality” – contains all the functionality representing the game logic, implemented with programming code;

– Layer “Databases” – contains the game DB where the game learning flow data is stored;

– Layer “Libraries” – implements processes and configures settings that are specific to building and testing Android apps.

The “Synchronization” module implements a process in which data with participant scores and game data is sent to a web server, where it is processed and sent back to the mobile devices in the form of a leaderboard. The module uses a web server (Apache HTTP Server) and a database server (MariaDB).

The “Reports” module contains processed information obtained from the synchronization module in the form of various sorted data lists that are available to the teacher for evaluation and analysis.

Figure 1. Level 2 of the game

Figure 2. Level 3 of the game

5. Experiment

The software prototype has been tested in a real classroom environment with 17 third grade students from Yane Sandanski Primary School, Plovdiv, Bulgaria and 10 primary teachers. A survey with questions (for students and teachers) was conducted to gather opinions, impressions and recommendations. The experiment aims to find out whether:

– mobile game-based learning generates interest in students;

– mobile educational games are useful and support math learning; – the adaptive approach is a good choice in mathematics education; – educators would use mobile game-based learning.

The research methodology is based on surveys designed with Google Forms. The survey questions are organized into several categories. Each of the categories was examined and Cronbach‘s alpha coefficient was calculated. Cronbach’s alpha coefficient is a measure of internal consistency, that is, how closely related a set of items are as a group. It is considered to be a coefficient of reliability (or consistency). Cronbach’s alpha coefficient can be written as a function of the number of survey items and the average inter-correlation among the items:

\[ \alpha=\tfrac{N \bar{c}}{\bar{v}+(N-1) \bar{c}} \] where N is equal to the number of items, \(\bar{c}\) refers to the average of all covariances between items and \(\bar{v}\) refers to the average variance of each item.

There are 15 questions in the survey for students and 4 of them are openended, and 21 questions for teachers, 2 of them open-ended. Each of the multiplechoice questions has several possible answers, and for students, they are: yes; somewhat; and no. The teachers are asked to indicate the extent to which they agree with the statements in the survey on a five-point Likert scale: strongly agree (SA); agree (A); undecided (U); disagree (D); and strongly disagree (SD).

5.1. Results of the survey conducted with students

The“PracticalApplicability”categoryshowsthat \(94.1 \%\) oflearnerswould prefer to use a mobile game in a math class. All (\(100 \%\) ) students respond that they like learning through a mobile game and would play it at home. To the question “Did you learn something new while playing this educational mobile game"\(70.6 \%-\) 12 children answered yes, \(11.8 \%-2\) children answered “somewhat” and \(17.6 \%-\) 3 children answered yes “no”, indicating that for the majority of the group, the game contributed to the acquisition of new knowledge. The Cronbach’s alpha coefficient for this category is \(\alpha=0.92\).

In the category “Motivation” (with Cronbach‘s alpha coefficient \(\alpha=1\) ) all students (\(100 \%\) ) expressed the opinion that they like mobile game-based learning. 94.1% of them shared that receiving awards motivated them, and the remaining \(5.9 \%\)-that it only somewhat intrigued them.

In the category “Design” (with \(\alpha=1\) ) the students strongly agreed (100%) that they liked the game design and that they found the game interesting. The adoption of game-based and visually interesting design is a prerequisite for mathematics learning resources, which are not easy and engaging for most students, to be studied more willingly by learners.

Category “Accessibility” (with \(\alpha=0.88\) ) shows that \(76.5 \%\) of students have already used a mobile math educational game and have experience with such learning. 12 of the children (\(70.6 \%\) ) answered that the game was not difficult for them and it was not complicated to move from one level to another. The remaining 5 children (\(29.4 \%\) ) encountered some problems with the difficulty of the game and when switching between levels. Using the adaptive approach by changing the difficulty on each success/fail has given the learners confidence that the game is not difficult and they can handle it with ease.

In the category “Support and Feedback” 88.2% of the children (15 children) answered that the support they received when they got a wrong answer helped them, which is again a positive assessment of the effectiveness of the adaptive approach.

The “Open-ended Questions” category shows that all children performed above average. The answers to the question „How many gold bars did you end the game with?“ – according to this indicator, most children did very well – 7 children won 4 bars each, 8 children won 3 bars each and 2 children won 2 bars each.

Figure 3. Summary results of surveys conducted with students

5.2. Results of the survey conducted with teachers

According to the category “Practical Applicability” (with \(\alpha=0.86\) ), all teachers believe that gamification is suitable for use in mathematics lessons at the primary stage (\(60 \%\) strongly agree, and \(40 \%\)– agree). Absolutely all teachers believe that the game approach supports the effective achievement of educational goals in mathematics at the primary stage. \(40 \%\) of respondents tend to agree strongly and another \(40 \%\) tend to just agree that they would use gamification in their teaching activities. Teachers think that the learning process supported by the mobile game develops students‘ learning skills (\(60 \%\) of teachers strongly agree and \(40 \%\) agree). The result that all (\(100 \%\) ) teachers think that the complexity of the game is consistent with the age of the 3rd-grade students is very telling. They also support adaptability as a good methodological approach in this age group (\(80 \%\) answered that they agree strongly and \(20 \%\) just agree).

Category “Motivation” (with \(\alpha=0.81\) ) shows that all teachers believe that the learning process supported by the mobile game awakens students \({ }^{\text {c }}\) interest in mathematics (\(80 \%\) strongly agree and \(20 \%\) just agree), which again confirms the thesis that mobile games can be key a supportive tool for both classroom learning and self-study outside the classroom. Here, the teachers again support the statement that adaptability in the game is a flexible approach that motivates every learner – both in success and failure in learning (\(80 \%\) answered that they agree strongly and \(20 \%\)– that they agree).

In the category “Design and Accessibility” (with \(\alpha=0.94) 80 \%\) of educators strongly agree that using game-based design and game techniques makes mobile learning more enjoyable than traditional learning, and the remaining 20% do not have an opinion. All educators surveyed with their scores above average stated that the game elements were sufficiently intuitive and appropriate for this age and the game design was sufficiently intriguing.

In the category “Interactivity, Feedback and Communication” (with \(\alpha=1)\) teachers gave positive opinions to all three statements (\(80 \%\) strongly agree and \(20 \%\) agree). They also support the claim that feedback and support in the mobile game encourage learners to address learning gaps, which is one of the most important features of the developed game.

An overall conclusion can be made that teachers approve of the proposed game prototype, the adaptive methodology applied the timely personalized support of the learner with appropriate tools and the game design. Teachers give some recommendations for expanding the game.

All of Cronbach’s alpha coefficients that we calculated from the results of the surveys for both students and teachers in all categories are over 0.70, which is a frequently cited acceptable range of Cronbach’s alpha coefficients. Values closer to 1.0 indicate a greater internal consistency of the variables in the scale. Also, higher Cronbach’s alpha values show greater scale reliability.

Conclusion

The paper has presented a model of mobile game-based learning, using adaptive, micro lesson and game-based approaches, which is suitable for students in primary school. Based on the proposed model, a software prototype of a math educational game was created. The game has experimented with grade 3 students from primary school in a real learning environment.

A survey was conducted with the students and teachers participating in the experiment to explore attitudes towards the use of mobile game-based learning in mathematics. Respondents were strongly positive about the proposed mobile game.

Using the technical capabilities of mobile devices, a range of data on learner behaviour can be collected. The analysis of this data can support the tutor‘s decision making about how to support learners. And their systematization will eventually lead to the creation of game patterns of players (learners).

Figure 4. Summary results of the surveys conducted with the teachers

REFERENCES

ALEXIEVAL., 2021. Electronic resources for online learning in mathematics in elementary grades – nature, types, quality. Journal Mathematics and Informatics, vol. 64 (1). [In Bulgarian].

ALKHATEEB M. A., 2019. Effect of Mobile Gaming on Mathematical Achievement among 4th Graders. International Journal of Emerging Technologies in Learning (iJET), 14(07), 4 – 17.

COAKLEY D., GARVEY R., O’NEILL Í., 2017. Micro-learning – Adopting Digital Pedagogies to Facilitate Technology – Enhanced Teaching and Learning for CPD. In book: Empowering 21st Century Learners Through Holistic and Enterprising Learning.

DIAHA N., EHSAN K., ISMAILC M., 2010. Discover Mathematics on Mobile Devices using Gaming Approach. International Conference on Mathematics Education Research 2010, Procedia Social and behavioural Sciences, 8, 670 – 677.

GACHKOVAM., SOMOVAE., 2016. Game – based approach in e-learning. IX National Conference “Education and researches in information society”. ISSN 1314-0752, 26 – 27.05.2016, Plovdiv, 143 – 152.

GOCHEVA M., SOMOVA E., KASAKLIEV N., 2021. Game – based Approach in Mobile Learning for Primary School, 10th International Scientific Conference “TechSys 2021”, 27 – 29 May, Plovdiv, AIPCP22-AR-TechSys2021-00092, e-ISSN: 1551-7616.

JANKE I., 2020. Unpacking the Inherent Design Principles of Mobile Microlearning. Technology, Knowledge and Learning, 25, 585 – 619.

KASAKLIEV N., 2015. Prospects for mobile learning in Bulgaria. Computer Science and Communications Journal, Burgas, 4(1) [In Bulgarian].

KRASNOVA T. A., 2015. Paradigm Shift: Blended Learning Integration in Russian Higher Education. Procedia – Social and behavioural Sciences, 166, 399 – 403.

SHARKOVA D., SOMOVA E., GACHKOVA M., 2020. Gamification in cloud-based collaborative learning. Journal Mathematics and Informatics, 63(5), 471 – 483.

SHIH S., LAI A.F., HONG C.R., 2018. Developing a mobile-based digital math game for learning number and calculation in elementary school. ACM International Conference Proceeding Series, 9 – 12.

STOYANOVA M., DUREVA-TUPAROVA D., SAMARDZHIEV K., 2016. Computers games in mathematics education – challenges and opportunities. Journal Mathematics and Informatics, 59 (4). [In Bulgarian].

TERZIEVA T., GOLEV A., STAVREV S., 2017. Serious games – an innovative learning tool. Scientific conference “Innovative software tools and technologies with applications in scientific research in mathematics, informatics and teaching pedagogy”, Pamporovo, November 23 – 24 [In Bulgarian].

VELSEN, L., 2008. User-centered evaluation of adaptive and adaptable systems: a literature review. The Knowledge Engineering Review Journal, Cambridge University Press, 23(3), 261 – 281.

VITANOVA N., 2019. Education of the future. Journal Pedagogika, 91 (8). [In Bulgarian].

YUSSOPY.M., ANNAMALAI S., SALAM S.A., 2019. Hi-math mobile app: Effectiveness in improving arithmetic skills of primary school students. International Journal of Recent Technology and Engineering,7(6), 67 – 71.

ZHANG J., 2008. Hybrid Learning and Ubiquitous Learning. In: Fong J., Kwan R., Wang F.L. (eds) Hybrid Learning and Education. ICHL 2008. Lecture Notes in Computer Science, 5169. Springer, Berlin, Heidelberg.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева