Математика и Информатика

2018/2, стр. 113 - 124

A POSSIBILITY TO TEACH AND LEARN MATHEMATICS BY THEATRE TECHNOLOGY

Sava Grozdev
E-mail: sava.grozdev@gmail.com
University of Finance, Business and Entrepreneurship
1, Gusla St.
1618 Sofia, Bulgaria
Veselin Nenkov
E-mail: vnenkov@mail.bg
45, Stoyan Balgarencheto St.
5662 Beli Osam, Bulgaria

Резюме: In the recent years new approaches were created to teach and learn Mathematics. One of them is by using theatre plays with mathematical content. The present paper proposes a scenario of such a play based on linear Diophantine equations.

Ключови думи: linear Diophantine equation; Euclid; Euler; theatre; Little Red Riding Hood; intelligence

Introduction

The main goals of Mathematics education is to prepare students to: communicate and reason mathematically, make connections between Mathematics and its applications, solve problems, become mathematically literate, appreciate and value Mathematics, make informed decisions as contributors to society, etc. Students who have met these goals: gain an understanding and appreciation of the role of Mathematics in society; exhibit a positive attitude toward mathematics; engage in mathematical problem solving; contribute to mathematical discussions; take risks in performing mathematical tasks; exhibit curiosity about Mathematics and situations involving Mathematics. Teachers can assist students in attaining these goals by developing a classroom atmosphere that fosters conceptual understanding through: taking risks, thinking and reflecting independently; sharing and communicating mathematical understanding, solving problems in individual and group projects; pursuing greater understanding of Mathematics, appreciating the value of Mathematics throughout History.

The American Alliance for Theatre education observes in their webpage that: “Drama improves academic performance.” Numerous studies have demonstrated a correlation between drama involvement and academic achievement. The College Entrance Examination Board reported student scores using data from the Student Description Questionnaire indicating student involvement in various activities, including the arts. As compared to their peers with no arts coursework or involvement, students involved in drama performance scored an average of 65.5 points higher on the verbal component and 35.5 points higher in the math component of the SAT. Students who took courses in drama study or appreciation scored on average 55 points higher on verbal and 26 points higher on math than their non-arts classmates. In 2005, students involved in drama performance outscored the national average SAT score by 35 points on the verbal portion and 24 points on the math section.

Linear Diophantine Equations with two unknowns

Definition. Let \(a, b, c \in \mathbb{Z}, a b \neq 0\). The linear equation of the form

\[ a x+b y=c \] whose solutions \((x, y)\) are ordered pairs of integers, is called linear Diophantine equation with two unknowns.

It is important to note that we look for integer solutions of (1) only. More, we look for all integer solutions of the equation. Take the example \(x+y=13\) and let \(y \in \mathbb{Z}\) be arbitrary integer. Then \(x=13-y\) and the equation has infinitely many solutions. In such a case the solutions are expressed in a parametric form: \((x=13-t, t)\), , where \(t \in \mathbb{Z}\) is an arbitrary integer. On the other hand, take \(6 x+15 y=13\). This equation has no solution. Indeed, if \((x, y)\) is a solution, then the left side of the equation is divisible by 3, while the right one is not since 3 does not divide 13.

Theorem 1. The linear Diophantine equation (1) has a solution if and only if \(d\) d divides \(c\), where \(d=(a, b)\) is the greatest c, where d divisor (GCD) of \(a\) and \(b\).

Proof: Let \(d=(a, b)\) and \(\left(x_{0}, y_{0}\right)\) is a solution of (1). Then, \(a x_{0}+b y_{0}=c\) and it is obvious that \(d\) divides \(c\).

Conversely, let \(d=(a, b)\). We will use the well-known Bezout identity (Grozdev, 2007), also known as Bezout lemma. The identity says that there exist integers \(x\) and \(y\) such that \(a x+b y=d\). The proof is the sequel.

Without loss of generality assume that \(d\) is positive. Consider the set \(M=\{x a+y b: x, y \in \mathbb{Z})\) and its subset \(M_{+}=\{z \in M: z \gt 0\}\), which is not empty obviously. Since \(M_{+} \subset \mathbb{N}\), it exists a minimal element \(x_{1} a+y_{1} b \gt 0\) in \(M_{+}\). Denote it by \(m\), i.e. \(m=x_{1} a+y_{1} b\). Let \(p \in M_{+}\). Then \(p=x_{2} a+y_{2} b \gt 0\). We can write \(p=m q+r\), where \(0 \leq r \lt m\). Note that:

\[ x_{2} a+y_{2} b=p=m q+r=\left(x_{1} a+y_{1} b\right) q+r \]

and from here we have \(r=\left(x_{2}-x_{1} q\right) a+\left(y_{2}-y_{1} q\right) b\). Obviously \(r \in M\) and \(r \geq 0\). Since \(r \lt m\) and \(m\) is minimal, it follows that \(r=0\) and consequently \(m\) divides \(p\). We will prove that \(m=d\). If \(p \in M_{+}\), we have proved already that \(m\) divides \(p\). Since we can consider that \(a\) a nd \(b\) are elements of \(M_{+}\), it follows that \(m\) divides \(a\) a nd \(m\) divides \(b\), i.e. \(m\) is a common divisor of \(a\) a and \(b\). On the other hand, if \(m_{1}\) is a common divisor of \(a\) and \(b\), then \(m_{1}\) divides \(x_{1} a+y_{1} b\), i.e. \(m_{1}\) divides \(m\), which means that \(m\) is the GCD of \(a\) a and \(b\). It follows from the Bezout identity that the representation \(x_{1} a+y_{1} b=d\) is the minimal one.

Going back to the proof of Theorem 1 under consideration, assume that \(d\) divides \(c\). Then, it exists \(k \in \mathbb{Z}\) such that \(c=k d\). On the other hand, the Bezout identity says that there exist integers \(x_{1}\) and \(x_{2}\) satisfying \(x_{1} a+y_{1} b=d\). Multiply this equation by \(k\) and obtain \(x_{1} a k+y_{1} b k=d k\), i.e. \(a\left(k x_{1}\right)+b\left(k y_{1}\right)=c\), which means that \(\left(k x_{1}, k y_{1}\right)\) is a solution of (1).

There are two main methods to solve linear Diophantine equations with two unknowns, namely the Euclid algorithm method and the Euler method.

Euclid algorithm method

The method will be presented by examples.

Problem 1. Solve the Diophantine equation \(13 x+32 y=5\).

Solution: Since \(a=13, b=32\) and \((13,32)=1\) it follows from Theorem 1 that equation has solutions. According to Euclid algorithm we have:

\[ \begin{gathered} 32=2.13+6 \\ 13=2.6+1 \\ 6=6.1 \end{gathered} \]

Then, \(1=13-2.6=13-2(32-2.13)=5.13-2.32\), i.e. \(5.13+(-2) .32=1\). Multiply both sides of the least equality by 5. We obtain \(13.25+32 .(-10)=5\), which means that \((x, y)=(25,-10)\) is a solution of the equation under consideration. It is easy to check that \((x, y)=(25+32 t,-10-13 t)\) satisfies the equation for all \(t \in \mathbb{Z}\).

Theorem 2. If \(d=(a, b), d\) divides \(c\) and (\(x_{0}, y_{0}\) ) is a solution of (1), then all solutions are given by \(x=x_{0}+\cfrac{b}{d} t, y=y_{0}-\cfrac{a}{d} t, t=0, \pm 1, \pm 2, \pm 3, \ldots\)

Proof: The direct checking shows that:

\[ a x+b y=a\left(x_{0}+\cfrac{b}{d} t\right)+b\left(y_{0}-\cfrac{a}{d} t\right)=c \] which means that \(x=x_{0}+\cfrac{b}{d} t, \quad y=y_{0}-\cfrac{a}{d} t\) is a solution for all \(t=0, \pm 1, \pm 2, \pm 3, \ldots\) We will prove that each solution can be represented in this form.

Let \((x, y)\) be a solution. We have

\[ a x+b y=a x_{0}+b y_{0} \Leftrightarrow a\left(x-x_{0}\right)=b\left(y_{0}-y\right) \Leftrightarrow \cfrac{a}{d}\left(x-x_{0}\right)=\cfrac{b}{d}\left(y_{0}-y\right) . \] Since \(d=(a, b)\), then \(\left(\cfrac{a}{d}, \cfrac{b}{d}\right)=1\) and it follows from the last equation that \(\cfrac{b}{d}\) divides \(\left(x-x_{0}\right)\) and \(\cfrac{a}{d}\) divides \(\left(y_{0}-y\right)\). Thus, \(x-x_{0}=\cfrac{b}{d} u\) and \(y_{0}-y=\cfrac{a}{d} v\) for some integers \(u\) and \(v\). The equation \(a\left(x-x_{0}\right)=b\left(y_{0}-y\right)\) implies, that \(u=v\) and this ends the proof.

Problem 2. Solve the Diophantine equation \(69 x+111 y=9000\).

Solution: Since \((69,111)=3\), we divide both sides of the equation by 3 and come to its equivalent form \(23 x+37 y=3000\). Applying the Euclid algorithm method, we find that \(23 .(-8)+37.5=1\). Further multiply the last equality by 3000 to obtain \(23 .(-24000)+37.15000=3000\). Thus, \(\left(x_{0}, y_{0}\right)=(-24000,15000)\). Theorem 2 gives that all solutions of the equation are \(x=-24000+37 t\), \(y=15000-23 t, t=0, \pm 1, \pm 2, \pm 3, \ldots\)

Euler method

This method will be presented by examples too.

Problem 3. Solve the Diophantine equation \(738 x+621 y=45\).

Solution: Let \((x, y)\) be a solution. Since \(621 \lt 738\), we express \(y\) by means of \(x\), taking into account that \(738=1.621+117\) and \(45=0.621+45\). It follows that

\[ y=\cfrac{-738 x+45}{621}=-x+\cfrac{-117 x+45}{621} . \]

The conclusion is that the number \(\cfrac{-117 x+45}{621}=t\) is integer and from here \(621 t+117 x=45\), which is a new Diophantine equation but with smaller coefficients. Proceeding in a similar way we express \(x\) by means of \(t\) since \(117 \lt 621\). Taking into account that \(621=5.117+36\) and \(45=0.117+45\), it follows that \[ x=\cfrac{-621 t+45}{117}=-5 t+\cfrac{-36 t+45}{117} . \]

Thus, the number \(\cfrac{-36 t+45}{117}=u\) is integer and \(117 u+36 t=45\) is a new Diophantine equation with smaller coefficients. Further, we express \(t\) by means of \(u\) and taking into account that \(117=3.36+9,45=1.36+9\), it follows that

\[ t=\cfrac{-117 u+45}{36}=-3 u+1+\cfrac{-9 u+9}{36}=-3 u+1+\cfrac{-u+1}{4} . \]

The number \(\cfrac{-u+1}{4}=v\) is integer and \(4 v+u=1\). We have \(u=-4 v+1\) and plugging backwards we obtain:

\[ \begin{gathered} t=-3 u+1+v=-3(-4 v+1)+1+v=13 v-2 \\ y=-x+t=69 v-11+13 v-2=82 v-13 \end{gathered} \]

The last two equations give the parametric representation of all solutions, namely:

\[ x=-69 v+11, y=82 v-13, v=0, \pm 1, \pm 2, \pm 3, \ldots \]

Problem 4. You have two hour-glasses – the first one measuring 11 minutes and the other one measuring 7 minutes. Is it possible to measure 15 minutes with them?

Solution: Denote by \(x\) and \(y\) the number of times you use the first our-glass and the second one respectively. Then we have \(11 x+7 y=15\), which is a linear Diophantine equation with two unknowns. It has solutions because \((11,7)=1\). Solve it by Euler method, for example:

\[ \begin{gathered} y=\cfrac{-11 x+15}{7}=-x+2+\cfrac{-4 x+1}{7}=-x+2+t \\ \cfrac{-4 x+1}{7}=t \Leftrightarrow 7 t+4 x=1 \\ x=\cfrac{-7 t+1}{4}=-t+\cfrac{-3 t+1}{4}=-t+u \\ \cfrac{-3 t+1}{4}=u \Leftrightarrow 4 u+3 t=1 \\ t=\cfrac{-4 u+1}{3}=-u+\cfrac{-u+1}{3}=-u+v \end{gathered} \]

\[ \cfrac{-u+1}{3}=v \Leftrightarrow u=-3 v+1 . \]

Backwards:

\[ \begin{gathered} t=-u+v=3 v-1+v=4 v-1 \\ x=-t+u=-4 v+1-3 v+1=-7 v+2 \\ y=-x+2+t=7 v-2+2+4 v-1=11 v-1 \end{gathered} \]

All solutions of the equation under consideration are \(x=-7 v+2, y=11 v-1\), \(v \in \mathbb{Z}\). Take \(v=0\). Then \(x=2\) and \(y=-1\). This means the following (especially the negative number of uses):

Start both hour-glasses. The second one will measure 7 minutes. From this moment on we can measure exactly \(11-7=4\) minutes, i.e. after 4 minutes the sand in the first hour-glass will flow out. Thus, we can measure 4 minutes. Then you turn upside down the first hour-glass and it will measure 11 minutes more. Here you are, the problem is solved, because \(11+4=15\) minutes.

First part of the scenario

We are ready to start a theatre play:

The Little Red Riding Hood jumped out of bed and ran to the kitchen to her Grandma:

– Grandma, I want a boiled egg!

– O key, my darling, but to prepare it according to your favorite taste for eggs, I have to boil it exactly 15 minutes. Unfortunately, the clock stopped and I cannot measure 15 minutes. We have to wait for your Grandpa, who went to buy a new battery for the clock.

– But Grandma, why don’t you use the hour-glass?

– I can’t, because it measures 7 minutes. I cannot use your Grandpa’s hour-glass either, because it measures 11 minutes.

– О, Grandma, look how we will obtain 15 minutes. Start both hour-glasses….

And the story continues with the solution of Problem 4.

Problem 5. You have two pails – the first one is 14-litre, while the second one is 8-litre. Is is possible to measure 4 litres exactly?

Solution: Denote by \(x\) and \(y\) the number of times you use the first pail and the second one respectively. Then we have \(14 x+8 y=4\), which is a linear Diophantine equation with two unknowns. It has solutions because \((14,8)=2\) and 2 divides 4. Dividing both sides by 2, we obtain an equivalent form of the equation, namely \(7 x+4 y=2\). Solve this equation by Euler method again:

\[ \begin{gathered} y=\cfrac{-7 x+2}{4}=-x+\cfrac{-3 x+2}{4}=-x+t \\ \cfrac{-3 x+2}{4}=t \Leftrightarrow 4 t+3 x=2 \\ x=\cfrac{-4 t+2}{3}=-t+\cfrac{-t+2}{3}=-t+u \\ \cfrac{-t+2}{3}=u \Leftrightarrow t=-3 u+2 . \end{gathered} \]

Backwards:

\[ \begin{gathered} x=-t+u=3 u-2+u=4 u-2 \\ y=-x+t=-4 u+2-3 u+2=-7 u+4 \end{gathered} \]

Thus, all solutions of the equation are \(x=4 u-2, y=-7 u+4, u \in \mathbb{Z}\). Take \(u=0\). Then, \(x=-2\) and \(y=4\). This means the following (especially the negative number of uses):

Fill in the 14-litre pail with water from the tap. Then, fill in the second pail with water from the 14-litre one. Since the second pail is 8-litre, the remaining water in the first one will be \(14-8=6\) litres. Further, flow out the second pail and pour the 6 litres from the first one into it. Again, fill in the 14-litre pail brimfuly with water from the tap. What is the situation: we have 14 litres in the first pail and 6 litres in the second one. Now, you can add exactly \(8-6=2\) litres to the second pail using water from the first one. The result is \(14-2=12\) litres in the first pail and 8 litres in the second one. It remains to pour out the second pail and to fill in brimfuly with water from the first pail. Thus, we have \(12-8=4\) litres in the first pail and here are your 4 litres.

Second part of the scenario

We are ready to continue the story:

The Grandpa entered the kitchen.

– Let me see now what a mathematician you are! – he said and showed the two pails he carried with him. – The first pail is 8-litre , while the second one is 14-litre. I have to measure 4 litres exactly and I don’t know how to proceed.

– О, Grandpa, this task is very easy! Come on, fill in the 14-litre pail with water from the tap.

The Grandpa filled in the pail and turned his face to the Little Red Riding Hood impatiently...

And the story continues with the solution of Problem 5.

The whole scenario

The Little Red Riding Hood and Diophantine Equations of First Order (for students, age 9 – 13)

(The sketch is performed by one student (monologue), namely the Little Red Riding Hood, who wears a red hat. She plays three roles simultaneously: except her, she performs the role of her grandmother and the role of her grandfather. The roles are changing by means of hats. As grandmother, the Little Red Riding Hood wears an old woman’s hat and as grandfather she wears a cap. The performance is in front of a table with two different hour-glasses and two different pails on it.)

The Little Red Riding Hood jumped out of bed and ran to the kitchen to her Grandma:

– Grandma, I want a boiled egg!

– (The Little Red Riding Hood puts on the old woman’s hat) O key, my darling, but to prepare it as you have a taste for eggs, I have to boil it exactly 15 minutes. Unfortunately, the clock stopped and I cannot measure 15 minutes. We have to wait for your Grandpa, who went to buy a new battery for the clock.

– (The Little Red Riding Hood takes off the old woman’s hat) But Grandma, why don’t you use the hour-glass?

– (The Little Red Riding Hood puts on the old woman’s hat) I can’t, because it measures 7 minutes. I cannot use your Grandpa’s hour-glass either, because it measures 11 minutes.

– (The Little Red Riding Hood takes off the old woman’s hat) О, Grandma, look how we will obtain 15 minutes. Start both hour-glasses. When the first one will measure 7 minutes, you will put the egg boiling. Since \(11-7=4\), after exactly 4 minutes the sand in the second hour-glass will flow out. Thus, we can measure 4 minutes. Then you will turn upside down the second hour-glass and it will measure 11 minutes more. Here you are, the problem is solved, because \(11+4=15\) minutes.

Delighted with the mathematical skills of her grandchild, the Grandma took in hand the proposal. Soon the egg was boiled in 15 minutes exactly and the Little Red Riding Hood ate it with satisfaction. She just licked clean, when her Grandpa entered the kitchen.

– (The Little Red Riding Hood puts on the cap) Let me see now what a mathematician you are! – he said and showed the two pails he carried with him. – The first pail is 8-litre, while the second one is 14-litre. I have to measure 4 litres exactly and I don’t know how to proceed.

– (The Little Red Riding Hood takes off the cap) О, Grandpa, this task is very easy! Come on, fill in the 14-litre pail with water from the tap.

The Grandpa filled in the pail and turned his face to the Little Red Riding Hood impatiently.

– Аnd now, Grandpa, fill in the second pail with water from the 14-litre one. Since the second pail is 8-litre, the remaining water in the first one will be \(14-8=6\) litres. Further, flow out the second pail and pour the 6 litres from the first one into it. Again, fill in the 14-litre pail brimfuly with water from the tap. What is the situation: we have 14 litres in the first pail and 6 litres in the second one. Now, you can add exactly \(8-6=2\) litres to the second pail using water from the first one. The result is \(14-2=12\) litres in the first pail and 8 litres in the second one. Grandpa, it remains to pour out the second pail and to fill in brimfuly with water from the first pail. Thus, we have \(12-8=4\) litres in the first pail and here are your 4 litres.

– (The Little Red Riding Hood puts on the cap) Congratulations, my grandchild, where do you know these things from?

– (The Little Red Riding Hood takes off the cap) Grandpa, note, that \(14.2-8.3=28-24=4\).This meansthat we havefilled inthe 14-litre pailtwice, while we have filled in the 8-litre pail three times. We have proceeded in such a way but in a suitable succession. Earlier I have shown to Grandma how to measure 15 minutes by means of the two hour-glasses, the first one measuring 7 minutes andthesecondonemeasuring11minutes.Ihaveusedthat \(2.11-7=22-7=15\). This means that the 11-minute hour glass has been used twice, while the 7-minute one – only once. At first glance the two tasks are different but actually the principal is one and the same. The general problem is to find integers \(x\) and \(y\), verifying \(a x+b y=c\), where \(a, b\) and \(c\) are given integers. This equality is known to be Diophantine equation, which we have studied last week in the mathematical circle. In the case of the pails the Diophantine equation is \(14 x+8 y=4\), while in the case of the hour-glasses the equation is \(11 x+7 y=15\). In both cases the Diophantine equations have solutions. In the first case it is so, because the greatest common divisor of 14 and 8 is 2, and 2 divides 4. In the second case the integers 11 and 7 are co-prime, which means that their greatest common divisor is 1. At the same time 1 divides each integer and it divides 15 in particular. The teacher in the circle told us that the Diophantine equation under consideration has solution if and only if the greatest common divisor of \(a\) a and \(b\) divides \(c\). It follows that the Diophantine equation \(14 x+8 y=3\) has no solution, because the greatest common divisor 2 of 14 and 8 does not divide 3. For this reason, Grandpa, if you had asked me to measure 3 litres using your two pails, I would answer that this was not possible. And this is the truth.

Analysis

Math Topic – Diophantine equations

– Age group 9 – 13

– Knowledge background

– Background Needed – Linear Diophantine equations with two variables, common divisor, prime number, co-prime numbers

– Knowledge acquired – ability of modeling, how to check the existence of a solution of a linear Diophantine equation with two variables

– Skills acquired

– Analytical Thinking – The analysis of the mathematical problem into its constituent parts, finding the common divisors or checking whether two numbers are co-prime provides the necessary evidence for development of analytical thinking skills.

– Mathematical modeling – a real life problem should be translated to a mathematical problem, find the mathematical solution and translate it back to the real life solution.

– Problem solving – starting to solve the problem one should comprehend the conditions and plan the solution.

– Communication – skill of presenting a mathematical idea (Mathematics communication).

In 1983, Howard Gardner, at that time Professor at Harvard University, released his book “Frames of mind” in which he developed his theory of multiple intelligences. He suggests that each person has several types of intelligence, for which he or she naturally display’s more or less competence. There are eight of them:

1. Intrapersonal intelligence (self smart);

2. Interpersonal intelligence (people smart);

3. Musical-Rhythmic intelligence (music smart;)

4. Bodily-Kinesthetic intelligence (body smart);

5. Visual-Spatial intelligence (picture smart);

6. Naturalist intelligence (nature smart);

7. Linguistic intelligence (word smart);

8. Logical-mathematical intelligence (number smart).

Traditional mathematics lessons bring logical-mathematic intelligence into play, such as the ability to reason in the geometrical or numerical area, as well the ability to calculate and handle figures, numbers, and geometrical shapes. The other forms or types of intelligence are often casted aside or are completely forgotten. Pedagogically, mixing theatre and Mathematics allows us to solicit almost all the different types of intelligence:

Logical-mathematics: The mathematical content, worked in the classroom and processed in the play, might be reinforced after the theatrical activities. Moreover, these skills are also required in the elaboration of the script, the play. Spatial: Recognition of the notion of space in the staging of the play. The movement of students themselves during the play and the recognition of their own position in the space, as well as the position of their fellow students. Kinaesthetic: When students are acting, they represent a character or a mathematical symbol. The notion is imprinted in their minds through the movements enacted by their own bodies. Linguistic: The work begins with the writing of a script or with the study of a script. In all cases, the language is a method of communication and therefore must be worked, adapted to the audience and perfected, as it is the basis of the play. Interpersonal: The relationship between the student and the teacher. The discussions between the students during the development of the script, the elaboration of the play, the feedback of the activity and the work in a group in general, improve communication. Musical: Music smarts can be cultivated in a musical, or if there is music or songs in the play. Moreover, during the play, musicality is present in the modulations of the voice, the volume, the rhythm and the speed of speech, which are necessary for the clarity and the pleasantness of the play. Naturalist: The decor can make students imagine they are in meadows, near the sea or in a forest. Everything is in their imagination and theatre allows that. Moreover, even more important ... the pleasure, the game!

Conclusions

So, what qualifications are needed to begin this theatre practice? It is certainly an advantage if the trainer had an experience in theatre, but it is not necessarily a requirement. Most people have seen at least one play or have read a script. It is not so difficult for teachers to become actors or stage directors, as in a sense they emulate the experience when they enter the classroom. They have their public, and they must convince their audience using rhetoric, body language, etc. Just like the way that famous mathematicians, thinkers or philosophers have done for centuries in the past. The role of the teacher is to create a fun atmosphere beneficial to the game, to reassure the learners and to encourage their participation. The teacher needs to install a sense of mutual respect, to establish a non-judgmental atmosphere where humility and collectivism are necessary, as well as allowing imagination to thrive. It is possible to set up a theatrical activity in the mathematics lesson in different ways depending on the objectives, but also depending on the number of sessions the teacher chooses to use for the work.

REFERENCES

Grozdev, S. (2007). For High Achievements in Mathematics.The Bulgarian Experience (Theory and Practice). Sofia: ADE.

Beckett, S. L. (2008). Little Red Riding Hood. In D. Haase, The Greenwood Encyclopedia of Folktales and Fairytales: G-P (pp. 466 – 492). Greenwood Publishing Group.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева