Математика и Информатика

2015/4, стр. 426 - 436

COMPUTER-DISCOVERED MATHEMATICS: CEVIAN CORNER PRODUCTS

Sava Grozdev
E-mail: sava.grozdev@gmail.com
University of Finance, Business and Entrepreneurship
1, Gusla Str.
161 Sofia, Bulgaria
Deko Dekov
E-mail: ddekov@ddekov.eu
81, Zahari Knjazheski Str.
6000 Stara Zagora, Bulgaria

Резюме: By using the computer program “Discoverer”, we give theorems about cevian corner products.

Ключови думи: cevian corner product, triangle geometry, remarkable point, computerdiscovered mathematics, еuclidean geometry, eiscoverer.

1. Introduction

The computer program “Discoverer”, created by the authors, is the first computer program, able easily to discover new theorems in mathematics, and possibly, the first computer program, able easily to discover new knowledge in science. See (Grozdev & Dekov, 2014a,b, 2015a,b). In this paper, by using the “Discoverer”, we investigate the cevian corner products. The paper contains more than 1000 theorems about cevian corner products. We expect that the majority of these theorems are new theorems, discovered by a computer.

Given triangle \(A B C\),the side lengths are denoted by \(a=B C, b=C A\) a and \(c=B A\). The labeling of triangle centers follows (Kimberling). Hence, \(\mathrm{X}(1)\) denotes the Incenter,\(\mathrm{X}(2)\) denotes the Centroid, \(\mathrm{X}(37)\) is the Grinberg Point, etc. We refer the reader to (Kimberling, Glossary) for the definition of a triangle center.

In 2003 Eric Danneels has published the following result (See also (Castellsaguer, Point X(81), result 602), (Kimberling, X(81))):

Theorem 1 {Danneels, result 3}. Let PaPbPc be the incentral triangle of triangle \(A B C\),and \(K a, K b, K c\) be the symmedian points of triangles \(A P c P b, B P a P c\) and \(C P b P a\), respectively. Then the lines \(A K a, B K b\) and \(C K c\) concur in the Isogonal Conjugate of the Grinberg Point.

Figure 1 illustrates theorem 1. In Fig.1, \(I\) is the Incenter,\(P a P b P c\) is the incentral triangle, \(K a, K b\) and \(K c\) are the symmedian points of triangles \(A P c P b, B P a P c\) and \(C P b P a\), respectively. The lines \(A K a, B K b\) and \(C K c\) concur in point \(Q\),the isogonal conjugate of the Grinberg point.

Let \(P\) and \(Q\) be finite triangle centers. Let \(P a P b P c\) be the cevian triangle of \(P\). We say that \(\triangle A P c P b, \triangle B P a P c\) and \(\triangle C P b P a\) are the cevian corner triangles of \(P\). Denote by \(K a\) the \(Q\)-triangle center of \(\triangle A P c P b\),by \(K b\) the \(Q\)-triangle center of \(\triangle B P a P c\),and by \(K c\) is the \(Q\)-triangle center of \(\triangle C P b P a\). If the lines \(A K a, B K b\) and \(C K c\) concur in a point, we say that the cevian corner product of \(P\) and \(Q\) exists, and we call the point of concurrence of the lines the cevian corner product of \(P\) and \(Q\). Hence, we can reformulate theorem 1 as follows:

Theorem 1a. The Cevian Corner Product of the Incenter and the Symmedian Point exists, and it is the Isogonal Conjugate of the Grinberg Point.

Fig.1.

The computer program “Discoverer” has generalized theorem 1a as follows:

Theorem 2. The Cevian Corner Product of a finite triangle center \(P\) and the Symmedian Point exists, and it is the Isogonal Conjugate of the Complement of the Isotomic Conjugate of P.

Theorem 2a. The Cevian Corner Product of a finite triangle center \(P\) and the Symmedian Point exists, and it is the Quotient of the Isogonal Conjugate of the Complement of point \(P\) divided by the point \(P\).

In 2003 Darij Grinber has published related result:

Theorem 3 (Grinberg, theorem 1). The Cevian Corner Product of a finite triangle center \(P\) and the Centroid exists, and it is the Complement of the Isotomic Conjugate of \(P\).

Let \(n\) be an integer. We call \(n\)-point a point with barycentric coordinates (\(a^{n}, b^{n}, c^{n}\) ). We invite the reader to prove that the following hypothesis is true or false:

Hypothesis. For any integer \(n\),the Cevian Corner Product of a finite triangle center and the \(n\)-point exists.

In this paper we give a proof of theorem 2 by using barycentric coordinates. Also, we give examples of cevian corner products, discovered by the “Discoverer”.

2. Preliminaries

In this section we review some basic facts about barycentric coordinates. We refer the reader to (Grozdev and Nenkov, 2012a,b), (Paskalev & Tchobanov, 1985), (Yiu, 2001, edition of 2013), (Douillet, 2012).

We use barycentric coordinates. The reference triangle \(A B C\) has vertices \(A=(1,0,0)\), \(B=(0,1,0)\) and \(C=(0,0,1)\).A point is an element of \(\mathbb{R}^{3}\),defined up to a proportionality factor, that is, for \(\forall k \in \mathbb{R} \backslash\{0\}: P=(u, v, w)\) means that \(P \simeq(u, v, w) \simeq(k u, k v, k w)\).

A point \(P=(u, v, w)\) is finite if \(u+v+w \neq 0\).A finite point \(P=(u, v, w)\) is normalized if \(u+v+w=1\). Given two normalized points \(P=\left(u_{1}, v_{1}, w_{1}\right)\) and \(Q=\left(u_{2}, v_{2}, w_{2}\right)\),then (Paskalev & Tchobanov, 1985, § 15, Proposition 1):

(1)\[ |P Q|^{2}=-a^{2} v w-b^{2} w u-c^{2} u v, \]

where \(u=u_{1}-u_{2}, v=v_{1}-v_{2}\) and \(w=w_{1}-w_{2}\).

For an arbitrary point \(P=(u, v, w)\),the vertices of the cevian triangle of \(P\) have barycentric coordinates \(P a=(0, v, w), P b=(u, 0, w)\) and \(P c=(u, v, 0)\). If \(P\) is a normalized triangle center, the side lengths of \(\triangle P a P b P c\) are as follows (Paskalev \& Tchobanov, 1985, § 15, Proposition 3):

(2)
(3)
(4)
\[ \begin{aligned} & |P b P c|^{2}=\cfrac{a^{2} v w}{(u+v)(u+w)}+\cfrac{b^{2} u w(w-v)}{(u+v)(u+w)^{2}}+\cfrac{c^{2} u v(v-w)}{(u+v)^{2}(u+w)} \\ & |P c P a|^{2}=\cfrac{a^{2} v w(w-u)}{(u+v)(v+w)^{2}}+\cfrac{b^{2} u w}{(u+v)(v+w)}+\cfrac{c^{2} u v(u-w)}{(u+v)^{2}(v+w)} \\ & |P a P b|^{2}=\cfrac{a^{2} v w(v-u)}{(u+w)(v+w)^{2}}+\cfrac{b^{2} u w(u-v)}{(u+w)^{2}(v+w)}+\cfrac{c^{2} u v}{(u+w)(v+w)} \end{aligned} \]

Let \(D E F\) be a triangle whose vertices have normalized barycentric coordinates wrt \(\triangle A B C\) as follows: \(D=\left(p_{1}, q_{1}, r_{1}\right), E=\left(p_{2}, q_{2}, r_{2}\right)\) and \(F=\left(p_{3}, q_{3}, r_{3}\right)\). Let \(P\) be a point with normalized barycentric coordinates \(P=(p, q, r)\) wrt \(\triangle D E F\). Then the barycentric coordinates of \(P=(u, v, w)\) wrt \(\triangle A B C\) are as follows (Paskalev \& Tchobanov, 1985, § 30):

(5)\[ \begin{aligned} & u=p_{1} p+p_{2} q+p_{3} r \\ & v=q_{1} p+q_{2} q+q_{3} r \\ & w=r_{1} p+r_{2} q+r_{3} r \end{aligned} \]

The equation of the line joining two points with coordinates \(\left(u_{1}, v_{1}, w_{1}\right)\) and \(\left(u_{2}, v_{2}, w_{2}\right)\) is

(6)\[ \left|\begin{array}{ccc} u_{1} & v_{1} & w_{1} \\ u_{2} & v_{2} & w_{2} \\ x & y & z \end{array}\right|=0 \]

Three lines \(p_{i} x+q_{i} y+r_{i} z=0, i=1,2,3\) are concurrent if and only if

(7)\[ \left|\begin{array}{lll} p_{1} & q_{1} & r_{1} \\ p_{2} & q_{2} & r_{2} \\ p_{3} & q_{3} & r_{3} \end{array}\right|=0 \]

The intersection of two lines \(L_{1}: p_{1} x+q_{1} y+r_{1} z=0\) and \(L_{2}: p_{2} x+q_{2} y+r_{2} z=0\) is the point

(8)\[ \left(q_{1} r_{2}-q_{2} r_{1}, r_{1} p_{2}-r_{2} p_{1}, p_{1} q_{2}-p_{2} q_{1}\right) \]

Given a point \(P=(u, v, w)\),the complement of \(P\) is the point \((v+w, w+u, u+v)\),the isotomic conjugate of \(P\) is the point (\(v w, w u, u v\) ) and the isogonal conjugate of \(P\) is the point (\(\left.a^{2} v w, b^{2} w u, c^{2} u v\right)\).

3. Proof of Theorem 2

Proof. Given \(\triangle A B C\).Let \(P=(u, v, w)\) be a finite triangle center of \(\triangle A B C\) and let \(\triangle P a P b P c\) be the cevian triangle of \(P\). By using (1), we calculate the side lengths \(a_{1}, b_{1}\) and \(c_{1}\) of \(\triangle A P c P b\) as follows (see (2) for \(a_{1}^{2}\) ):

\[ a_{1}^{2}=|P b P c|^{2}, \quad b_{1}=|A P b|=\cfrac{b w}{u+w}, \quad c_{1}=|A P c|=\cfrac{c v}{u+v} \]

The barycentric coordinates of the symmedian point \(K a\) of \(\triangle A P c P b\) wrt \(\triangle A P c P b\) are \(K a=\left(a_{1}^{2}, b_{1}^{2}, c_{1}^{2}\right)\).By using(5), we find the barycentric coordinates of \(K a=(u K a, v K a, w K a)\) wrt \(\triangle A B C\) as follows:

\[ u K a=a^{2} v w u^{2}+a^{2} v w^{2} u+a^{2} v^{2} w u+a^{2} v^{2} w^{2}+2 b^{2} w^{2} u^{2}+2 b^{2} w^{2} u v \]

\[ \begin{gathered} -b^{2} w u^{2} v-b^{2} w u v^{2}-c^{2} u^{2} v w-c^{2} u v w^{2}+2 c^{2} u^{2} v^{2}+2 c^{2} u v^{2} w, \\ v K a=b^{2} v w^{2}(u+v), \quad w K a=c^{2} v^{2} w(u+w) . \end{gathered} \]

The side lengths of \(\triangle B P a P c\) are as follows (see (3) for \(a_{2}^{2}\) ):

\[ a_{2}^{2}=|P c P a|^{2}, \quad b_{2}=|B P c|=\cfrac{c u}{u+v}, \quad c_{2}=|B P a|=\cfrac{a w}{v+w} . \]

The barycentric coordinates of the symmedian point \(K b\) of \(\triangle B P a P c\) wrt \(\triangle B P a P c\) are \(K b=\left(a_{2}^{2}, b_{2}^{2}, c_{2}^{2}\right)\). By using (5), we find the coordinates of \(K b=(u K b, v K b, w K b)\) wrt \(\triangle A B C\) as follows:

\[ \begin{gathered} u K b=a^{2} u w^{2}(u+v), \\ v K b=-a^{2} v w u^{2}-a^{2} v^{2} w u+2 a^{2} v w^{2} u+2 a^{2} v^{2} w^{2}+b^{2} w u^{2} v+b^{2} w u v^{2} \\ +b^{2} w^{2} u^{2}+b^{2} w^{2} u v+2 c^{2} u^{2} v^{2}+2 c^{2} u^{2} v w-c^{2} u v^{2} w-c^{2} u v w^{2}, \\ w K b=c^{2} u^{2} w(v+w) \end{gathered} \]

The side lengths of \(\triangle C P b P a\) are as follows (see (4) for \(a_{3}^{2}\) ):

\[ a_{3}^{2}=|P a P b|^{2}, \quad b_{3}=|C P a|=\cfrac{a v}{v+w}, \quad c_{3}=|C P b|=\cfrac{b u}{u+w} . \]

The barycentric coordinates of the symmedian point \(K c\) of \({ }_{\triangle} C P b P a\) wrt \(\triangle C P b P a\) are \(K c=\left(a_{3}^{2}, b_{3}^{2}, c_{3}^{2}\right)\). By using (5), we find the coordinates of \(K c=(u K c, v K c, w K c)\) wrt \(\triangle A B C\) as follows:

\[ \begin{gathered} u K c=a^{2} u v^{2}(u+w), \quad v K c=b^{2} u^{2} v(v+w), \\ w K c=2 a^{2} v^{2} w u+2 a^{2} v^{2} w^{2}-a^{2} v w u^{2}-a^{2} v w^{2} u-b^{2} w u v^{2}-b^{2} w^{2} u v \\ +2 b^{2} w u^{2} v+2 b^{2} w^{2} u^{2}+c^{2} u^{2} v^{2}+c^{2} u v^{2} w+c^{2} u^{2} v w+c^{2} u v w^{2} \end{gathered} \]

By using (6), now we find the barycentric equations of the lines \(A K a, B K b\) and \(C K c\) as follows:

\[ \begin{array}{ll} A K a: & c^{2} v(u+w) y-b^{2} w(u+v) z=0, \\ B K b: & c^{2} u(v+w) x-a^{2} w(u+v) z=0, \\ C K c: & b^{2} u(v+w) x-a^{2} v(u+w) y=0 . \end{array} \]

By using (7), we prove that these lines concur in a point. Then, by using (8), we find the point of intersection of the lines \(A K a, B K b\) and \(C K c\) as the point of intersection \(Q=(u Q, v Q, w Q)\) of the lines \(A K a\) and \(B K b\) :

\[ u Q=a^{2} v w(u+v)(u+w), v Q=b^{2} w u(v+w)(v+u), w Q=c^{2} u v(w+u)(w+v) \]

Point \(Q\) is the cevian corner product of point \(P\) and the symmedian point.

We calculate the isogonal conjugate of the complement of the isotomic conjugate of the point \(P\), and we see that this point coincides with point \(Q\). This completes the proof.

4. New properties of notable points of the triangle

The computer program “Discoverer” has produced 1218 examples of cevian corner products. Of these 121 are points which are available in (Kimberling) and the rest of 1097 points are not available in (Kimberling). Clearly, the number of examples could be easily extended by the “Discoverer”.

We may use the enclosed List K (or equivalently, the enclosed tables Table P-X, or Table X-P) in order to add new theorems to the corresponding articles in the encyclopedias.

Below we give an example. Consider the row 30 of Table X-P. We can rewrite the row to the following theorem:

Theorem 4. The Euler Reflection Point is the Cevian Corner Product of the Steiner Point and the Symmedian Point.

Figure 2 illustrates theorem 4. In Fig. 2, \(S\) is the Steiner point, \(P a P b P c\) is the cevian triangle of \(S, K a, K b\) and \(K c\) are the symmedian points of triangles \(A P c P b, B P a P c\) and \(C P b P a\), respectively. Lines \(A K a, B K b\) and \(C K c\) concur in the Euler reflection point \(E\).

5. New notable points of the triangle

We may use the results in the enclosed List D in order to define new remarkable points of the triangle. We may expect that the cevian corner products available in the List D are new remarkable points, because they are not included in the (Kimberling).

As examples, consider row 32 in List D. The row rewrites to the following theorem:

Theorem 5. The Cevian Corner Product of the Feuerbach Point and the Symmedian Point exists.

Figure 3 illustrates theorem 5. In Fig. 3, \(F\) is the Feuerbach point, \(P a P b P c\) is the cevian triangle of \(F, K a, K b\) and \(K c\) are the symmedian points of triangles \(A P c P b, B P a P c\) and \(C P b P a\), respectively. Then lines \(A K a, B K b\) and \(C K c\) concur in point \(Q\), the cevian corner product of the Feuerbach point and the symmedian point.

Fig. 2.

Fig. 3.

We can now define the point “Cevian Corner Product of the Feuerbach Point and the Symmedian Point” as a new remarkable point of the triangle. By using theorem 2, we easily find that the barycentric coordinates of the new point are as follows: \(f(a, b, c)\), \(f(b, c, a)\) and \(f(c, a, b)\), where \[ \begin{aligned} & f(a, b, c)=a^{2}(c+a-b)(c-a)^{2}(a+b-c)(a-b)^{2} \\ & \cdot\left((b+c-a)(b-c)^{2}+(c+a-b)(c-a)^{2}\right) . \\ & \cdot\left((b+c-a)(b-c)^{2}+(a+b-c)(a-b)^{2}\right) . \end{aligned} \]

By using the “Discoverer” we can easily find properties of the new point. Below we give one of the theorems related to the new point:

Theorem 6. The Cevian Corner Product of the Feuerbach Point and the Symmedian Point is the Ceva Product of the Symmedian Point and the Isogonal Conjugate of the Feuerbach Point.

The Isogonal Conjugate of the Feuerbach Point is the point X(59) in (Kimberling). Hence, from theorem 6 we conclude that the Ceva Product of points X(6) and X(59) is not included in (Kimberling).

Figure 4 illustrates theorem 6. In Fig. 4, \(K\) is the symmedian point, \(F\) is the Feuerbach point,\(g F\) is the isogonal conjugate of the Feuerbach point,\(Q\) is the cevian corner product of the Feuerbach point and the symmedian point, \(J a J b J c\) is the anticevian triangle of \(K\). Point \(A_{1}\) is the intersection of the lines \(g F J a\) and \(B C, B_{1}\) is the intersection of the lines \(g F J b\) and \(C A, C_{1}\) is the intersection of the lines \(g F J c\) and \(A B\). Then the lines \(A A_{1}, B B_{1}\) and \(C C_{1}\) concur in point \(Q\). Note that the last three lines are not drown in the figure.

Fig. 4.

6. On a theorem by Pierre Douillet

Pierre Douillet has published the following theorem:

Theorem 7. (Douillet, 17.2.6). The Triangle of the Incenters of the Cevian Corner Triangles of the Orthocenter is the Triangle of the Orthocenters of the Cevian Corner Triangles of the Gergonne Point.

By using the “Discoverer” we may find a number of similar theorems. Below we give two theorems:

Theorem 8. The Triangle of the Incenters of the Cevian Corner Triangles of the Centroid is the Triangle of the Circumcenters of the Cevian Corner Triangles of the Gergonne Point.

Figure 5 illustrates theorem 8. In Fig. 5, \(P a P b P c\) is the medial triangle, \(Q a Q b Q c\) is the intouch triangle, \(O a, O b\) and \(O c\) are the incenters of triangles \(A P c P b, B P a P c\) and \(C P b P a\),respectively. Also, \(O a, O b\) and \(O c\) are the circumcenters of triangles \(A Q c Q b, B Q a Q c\) and \(C Q b Q a\),respectively. The circumcircles of triangles \(A Q c Q b\), \(B Q a Q c\) and \(C Q b Q a\) are not drawn in the figure. Note that triangle \(O a O b O c\) is the Eulet triangle.

Fig. 5.

Theorem 9. The Triangle of the Orthocenters of the Cevian Corner Triangles of the Centroid is is the Triangle of the Circumcenters of the Cevian Corner Triangles of the Orthocenter.

Note that The Triangle of the Orthocenters of the Cevian Corner Triangles of the

Centroid in the above theorem is the Euler triangle of the Incenter. For the definition of the Euler triangle of the Incenter, see (Grozdev & Dekov, 2014b), (Grozdev & Dekov, 2015b, Definitions, Triangles, Euler Triangle).

Supplementary material

The enclosed file “2015_ccp.zip” contains the files quoted in this paper. The reader may download it from the web site of the journal.

REFERENCES

Castellsaguer, Q. The Triangles Web, available at: http://www.xtec.cat/~qcastell/ttw/ ttweng/portada.html

Danneels, E. (2003). Some properties of existing points, Hyacinthos message 7892, https://groups.yahoo.com/neo/groups/Hyacinthos/conversations/messages/7892

Grinberg, D. (2003). Isotomcomplement Theory, Hyacinthos message 6423, https:// groups.yahoo.com/neo/groups/Hyacinthos/conversations/topics/6423

Douillet, P. (2012). Translation of the Kimberling’s Glossary into barycentrics, available at: http://eg-enc.webege.com/htm/links/glossary.pdf

Grozdev, S. & Dekov, D. (2014a). Computer-generated mathematics: Points on the Kiepert hyperbola, The Mathmatical Gazette, vol. 98, no. 543, 509-511.

Grozdev S. & Dekov D. (2014b). The Computer Program “Discoverer” and the Encyclopedia of Computer-Generated Mathematics” (in Bulgarian), International Journal of Computer-Generated Mathematics, vol 9, no. 2, available at: http://www. ddekov.eu/j/index.htm

Grozdev, S. & Dekov, D. (2015a). A Computer Improves the Steiner’s Construction of the Malfatti Circles, Mathematics and Infomatics, vol. 58, no.1, 40-51.

Grozdev, S. & Dekov, D. (2015b). Computer-Generated Encyclopedia of Euclidean Geometry, in preparation, available at: http://www.ddekov.eu/e2/index.htm

Grozdev, S. & Nenkov, V. (2012a). Three Remarkable Points on the Medians of a Triangle (in Bulgarian), Sofia, Archimedes.

Grozdev, S. & Nenkov, V. (2012b). On the Orthocenter in the Plane and in the Space (in Bulgarian), Sofia, Archimedes.

Kimberling, C., Encyclopedia of Triangle Centers, available at http://faculty.evansville. edu/ck6/encyclopedia/ETC.html

Paskalev, G. & Tchobanov, I. (1985). Remarkable Points in the Triangle (in Bulgarian), Sofa, Narodna Prosveta.

Weisstein, E.W. MathWorld - AWolfram Web Resource. http://mathworld.wolfram.com/

Yiu, P. (2001, version of 2013). Introduction to the Geometry of the Triangle, available at: http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева