Математика и Информатика

https://doi.org/10.53656/math2022-1-1-the

2022/1, стр. 7 - 18

THE INFLUENCE OF COLLABORATIVE LEARNING ON STUDENTS’ ACHIEVEMENT IN EXAMINING FUNCTIONS WITH PARAMETERS IN DYNAMIC SOFTWARE ENVIRONMENT

Radoslav Bozic
OrcID: 0000-0003-1128-8823
WoSID: AAT-3079-2020
E-mail: radoslav.bozic@gmail.com
Faculty of Pedagogy
Educons University
Novi Sad Serbia
Djurdjica Takaci
OrcID: 0000-0002-6547-822X
E-mail: djtak@dmi.uns.ac.rs
Faculty of Science
University of Novi Sad
Novi Sad Serbia
Milan Grujin
E-mail: milan.grujin@mpn.gov.rs
Ministry of Education Science and Technological Development
Novi Sad Serbia

Резюме: In this paper, the influence of collaborative learning of functions, algebraically represented as functions with parameters, in GeoGebra environment is analyzed. The research presented in this paper is the continuation of the research in Bozic and Takaci (2021), conducted at the University of Novi Sad, Serbia, with two groups of students, the experimental and the control one. The students in the experimental group learned in small, four member groups and the students in the control group learned individually. The students from both the groups learned in GeoGebra environment. The students’ learning achievements in examining properties of functions with parameters is analyzed and compared. It is proved that it is better when the students work in collaborative groups than when they learn individually.

Ключови думи: Calculus; Collaborative learning; Dynamic software; Functions with parameters

1. Introduction

Numerous research showed that students have difficulties in working with functions with variable parameters and transformations of functions and that some of these difficulties can be overcome by using modern technology in teaching and learning, but some of the students have difficulties even with using technology (Anabousy et al. 2014; Borba & Confrey 1996; Daher & Anabousy 2015). In particular, according to Anabousy et al. (2014), “It could be seen that the students preferred to draw the resulting function, but not to draw manually and graphically the transformations performed on the original function (i.e. they drew the transformations virtually).” Also, it is shown that collaborative learning, applied together with modern technology, contributes to better quality of the learning process (Lipponen 2002; Weinberger & Fischer 2006). Therefore, it is decided to be conducted a research in order to examine the students’ approach in examining the properties of related families of functions in a dynamic environment during collaborative learning and to examine whether the application of collaborative learning, combined with modern technology, contribute to better achievement in examining the functions with parameters.

Also, the mentioned studies (Anabousy et al. 2014; Borba & Confrey 1996; Daher & Anabousy 2015) have dealt with several types of functions, such as quadratic and polynomial, also considering the absolute values of these functions, but they haven’t deal with functions like rational, trigonometric, exponential or logarithmic, which are, usually, more difficult for students. Taking into account the above, as well as the importance of all these functions for further application, this research covered more types of functions. In the research Takači et al. (Takači et al. 2015), all mentioned types of functions are examined with fixed parameters, hence the students did not consider the process of transformation of functions, but only its result (Anabousy et al. 2014). On the other side, in this research, functions are considered with variable parameters, which enabled observing the process of transformation of functions, a more general overview of different types of functions and their properties, as well as the connections between different types of functions.

2. Theoretical background

2.1. Collaborative learning

Collaborative learning is a common term for different approaches in education that involve collaborative efforts of the students, or collaborative efforts of teacher and students. It is a teaching method that implies that students work together, to achieve a common goal, or to solve a posed problem (Gokhale 1995). During collaborative learning, students \({ }^{\text {6 }}\) activity is most pronounced. This kind of learning is focused precisely on students‘ activities, not on the teacher‘s lecture, or on the teaching unit. The mentioned activities of the students are not always the same, but they are adapted to the needs of concrete collaborative work (Goodsell et al. 1992).

Golub (1988) presents collaborative learning as a form of indirect lecture where the teacher poses a problem and organizes the students who will jointly solve the problem. During collaborative learning, students‘ interaction is necessary in order to better implement joint activities. In these discussions, learning and creating new knowledge are being realized. With this approach, the student develops the ability to solve problems, but also to understand complex relationships, as well as the ability to make decisions in complex situations.

Benefits of collaborative learning do not come to the fore if the students are expected to solve routine mathematical tasks. Therefore, tasks for collaborative learning should be carefully designed. Open-ended tasks, which require problem solving, are appropriate for collaborative learning (Lotan 2003).

Although students’ activity is in the first place, the role of teachers in collaborative learning is also very important. At first, students should be trained to work in groups, because the process of collaborative learning, due to its complexity, can, if not organized properly, be very confusing and disoriented. It is necessary that the teacher, at least initially, leads the students through the process of collaborative learning, until they become trained for this kind of learning and understand what they need to achieve (Romer & Whipple 1990).

2.2. Multiple representations

The opinions of the researchers about the kinds of representations differ, but they agree that it is necessary to use several different types of representations for the successful presentation of certain concepts. Different external representations, which offer the same information in different forms, are called multiple representations. Multiple representations provide information about the observed object in different ways, so the observer can analyze its properties from different points of view (Ozgun-Koca 1998). They provide a convenient environment for abstracting and understanding key concepts in mathematics by students, and therefore there are many researchers in the field of mathematics education which deal with multiple representations (Borba & Confrey 1996; Hwang & Hu 2013; Ozmantar et al. 2010).

A quality of the multiple representations is significantly improved by using modern technology. The use of technology to work within multiple representations and to link them has a great attention of the contemporary researchers (Rau, et al. 2015; Ozgun-Koca 2008; Sever & Yerushalmy 2007).

There are several dynamic software packages. One of the more commonly used, because of its availability, simplicity and performances, is GeoGebra. This software is used more often in teaching mathematics, from elementary school to university level. The application of GeoGebra was the topic of many researches in the last few years (Abu Bakar et al. 2010; Arzarello et al. 2012; Doruk, Aktumen & Aytekin 2013; Takači et al. 2015). All of the mentioned studies have shown that the application of GeoGebra in teaching and learning mathematics contributed to better students’ achievements.

2.3. Multiple representations of functions

Multiple representations of functions are, in the researches above, usually considered in order to improve students’ achievements and to help them to overcome difficulties they have with functions’ examining and graphing. Earlier researches have shown that students, when it comes to functions’ examining, have the most difficulties in working with functions with variable parameters, as well as with the transformations of functions (Borba & Confrey 1996; Bozic, Takaci & Stankov 2019; Daher & Anabousy 2015; Dede & Soybas 2011; Tall 1992).

Transformations are connected with parameters. They can be considered as a consequence of the parameter’s value changing. The use of multiple representations helps students to analyze properties of the functions from different points of view (Anabousy et al. 2014; Borba & Confrey 1996; Daher & Anabousy 2015).

The students have to work with different representations, because each representation enables an adequate overview of some properties of the functions, but no one representation provides a complete overview of functions’ properties (Doorman et al. 2012). By analyzing connections between different representations, students can note some characteristics which they wouldn’t note by considering each representation separately, because they can observe the dependence between the properties of functions. By observing different representations simultaneously, the students are enabled to choose the most appropriate representation for each case separately (Borba & Confrey 1996).

GeoGebra is one of the software packages which enables connecting of different representations and work within multiple representations of functions. It also enables forming the dynamic multiple representations of the functions, which are being formed by creating sliders, by which are defined variable parameters. The moving of the slider causes immediate changes of the parameter’s value and, consequently, causes changes in algebraic and graphical representation, simultaneously.

3. Research questions

The aim of this research is to examine how the students’ collaborative learning in GeoGebra environment contributes to better understanding the properties of functions with parameters.

Due to the aims of the research, the main research question is:

1. Does the collaborative learning in GeoGebra environment contribute to better achievement in examining functions with parameters?

4. Methodology

4.1. General background

In this research, experimental approach was applied and the experiment is conducted with parallel groups: the experimental and the control group. In the experimental group, collaborative learning was applied, and in the control group students worked individually. The benefits of work within collaborative groups were examined. Students of both the groups had possibility of using dynamic software package GeoGebra for examining the properties of related families of functions.

All students in the experimental group worked in the four member heterogeneous collaborative groups, in the manner applied in research Takači et al. (2015).

4.2. Participants

The research is conducted with 120 undergraduate students, during their calculus course, at Faculty of Sciences, University of Novi Sad, Serbia, in 2017.

4.3. Instruments and procedures

At the beginning of the research the experimental and control group of students are formed (with 60 students in each group), based on the pretest results (Bozic & Takaci 2021), such that the difference between these groups was not statistically significant at the level of significance 0.01. The pre-test results were used only to ensure that the difference between the experimental and the control group will not be significant, as well as for creating collaborative groups (Bozic & Takaci 2021). Later, during the research, the pre-test results were not used. Instead, the research is conducted similar to the Campbell and Stanley’s “design 6” (Campbell & Stanley 1963).

After forming the experimental and the control group, students’ work on examining properties of families of functions in GeoGebra environment. The learning process and the analysis of students’ tasks is presented in Bozic and Takaci (2021).

Two weeks after their exercises, students of both the groups, experimental and control one, solved the test, without the computer. The results of this test are analyzed and compared.

4.4. Data analysis

The mean score and standard deviation of the test are determined. In accordance with Campbell & Stanley’s (1963) instructions for this type of the research, Student‘s tudent's \(t\)-test of difference between arithmetic means of two large independent samples was applied for testing difference between students’ test results of the experimental and the control group. The effect size is estimated by Cohan’s \(d\).

5. Analysis of results of the test

About two weeks after exercises described in (Bozic & Takaci 2021) the students’ knowledge about the properties of functions was tested. The test contained two tasks and each task carried 10 points. Time for solving was 120 minutes. The students did not have the possibility to use a computer during the test. The tasks of the test are given in Appendix A.

In the first task, the students were required to work within algebraic and graphical representation simultaneously. This task consisted requirements which enable students’ knowledge about the influence of parameters on the properties of functions to be checked. For correctly determined value of the parameter \(a\), the students got 2 points, while examining the properties of the function carried 8 points, distributed in the following way: correctly discussed domain and determined zeros – 2 points, correctly examined asymptotes and period – 2 points, correctly determined derivative – 2 points and correctly examined monotonicity and the extreme values – 2 points. In the second task, students had to work firstly within algebraic representation and examine properties of a given function, and then to sketch the graph of the function. Points in the second task were distributed in the following way: correctly discussed domain and determined zeros – 2 points, correctly examined asymptotes and period – 2 points, correctly determined derivative – 2 points, correctly examined monotonicity and the extreme values – 2 points and correctly sketched graph of the function – 2 points. The average number of points for each task and for complete test is given in Table 1.

Table 1. Average number of points scored on the test (for each task and total)

Group\Task1st task2nd taskTotal number of pointsExperimental group7.625.5813.20Control group5.974.8510.82

By analyzing results given in Table 1, we can notice that students of both the groups had better results in the first task than in the second. In our opinion this is due to the fact that graphical representation of observed function was given.

Maximum number of points on the test was 20 (10 points for each task). The average number of points scored by the students of the experimental group was \(13.20(66.00 \%)\), and the average number of points in the control group was 10.82 \((54.08 \%)\). In the control group there were students with zero points and in both the groups there were students who achieved the maximum number of points. The highest frequencies were about 16 points and about 10 points in the experimental and control group, respectively.

Distributions of points in the experimental and the control group for the test are presented with graphs in Figure 1. The number of points (from 0 to 20, in the intervals of 4) is presented on \(x\)-axis, and the number of students who achieved the corresponding points, is presented on \(y\)axis.

Looking at Figure 1 it can be remarked that the black line (the experimental group) is below the gray line (the control group), under 13 points, and the gray line is under the black one in the intervals from 13 to 20 points. In the experimental group 3 students got maximum points, did everything correctly, and in the control group 1 student got maximum points. The statistical results obtained for the test are shown in Table 2.

It can be concluded that the difference between the results of the test of the experimental group and the control group is statistically significant at the level of significance of \(0.01(\mathrm{t}(118)=2.9211 ; \mathrm{p}=0.00418)\).

It may also be noted that the effect size of the experimental factors is medium (Cohan’s \(d=0.533\) ), meaning that the obtained difference enables the practical advantage of the experimental group compared to the control group. In fact, we proved that the students’ learning achievement of the properties of functions is better when they practice in collaborative groups.

Figure 1. Distributions of the number of students according to the number of points (scored on the test)

Table 2. Statistical results of the test

GroupNumberof studentsArithmeticmeansStandarddeviationTest of difference betweenarithmetic meansEffect sizenMSDtp(2-tailed)Cohan’sdExperimental6013.2004.5052.92110.004180.533Control6010.8174.432

6. Discussion

The objective of this research is to show the benefits of collaborative learning of functions with parameters. The dynamic software GeoGebra, which enable simultaneous work within dynamic multiple representations, is used within the learning process, in both, the experimental and the control group.

By observing the students’ work within the small (collaborative) groups, it is noted that they negotiate and harmonize their attitudes about the internal organization of the collaborative groups. They managed their work in order to finish their job successfully in a short time. When they saw that their organization does not function properly, they were ready to change their way of working and adjust it to current needs, in every moment of their work similarly as in the previous researches (Bozic et al. 2019; Gokhale 1995; Laal & Ghodsi 2012; Takaci et al. 2015).

According to Bozic and Takaci (2021) the students’solutions of the tasks, written works and electronic material were reviewed by the teachers. All students, working in collaborative groups, prepared their final solutions in a form of electronic worksheets, and more than a half of them also attached hand written explanations. It is interesting to note that there were no students in the experimental group who used only classical hand written tasks’ solutions. By analyzing students’ conclusions and explanations in attached solutions, it can be concluded that they constructed their knowledge in different and interesting ways. Despite these differences, most of the students’ solutions were correct and explained in detail (Bozic & Takaci 2021).

In order to check the efficacy of collaborative work, the students of both the groups got the test with appropriate tasks. The results of the test were analyzed statistically. It was shown that the students of the experimental group, working in small collaborative groups, had significantly better results than the students of the control group, working individually.

Finally, we can say that the application of new didactical approach, created for students’ exercises of examining the properties of families of functions, in GeoGebra collaborative environment, proved to be successful, in terms of students’ achievements.

7. Conclusions

In this research, collaborative learning process was applied, unlike the earlier (Anabousy et al. 2014; Borba & Confrey 1996; Daher & Anabousy 2015), where students’ worked on examining the functions with variable parameters individually. In the research Takači et al. (2015), collaborative learning was applied, but functions with parameters were not observed. The collaboration between students contributes to overcoming difficulties with understanding some of the most important functions’ properties (Bozic & Takaci 2021). From their discussion, we can conclude that the students are able to manage their work within collaborative groups independently, so that the organization of the group contributes to successful solving their tasks.

Dynamic multiple representations of the functions with parameters are appropriate for examining the properties of such functions, because the students can visualize the changes and connections between the algebraic and graphical representation. In this research, students examined more general families of functions, than in previous researches (Anabousy et al. 2014; Borba & Confrey 1996; Daher & Anabousy 2015). By reviewing and comparing the students’ solutions of the tasks for learning (Bozic & Takaci 2021) and for the test (Appendix A) the benefits of using dynamic multiple representations in collaborative learning environment are shown. This is, in fact, the positive answer to the research question.

The test results showed that the experimental group students better understand the properties of functions than the control group students and that they are able to apply previously learned in the tasks which are new for them. At the end, we can conclude that, during this research, many benefits of the collaborative learning functions and their properties are confirmed.

REFERENCES

ABU BAKAR, K., MOHD AYUB, A. F. & AHMAD TARMIZI, R., 2010. Utilization of computer technology in learning transformation. International Journal of Education and Information Technologies, 4(2), 91 – 99.

ANABOUSY, A., DAHER, W., BAYA’A N. & ABU-NAJA, M., 2014. Conceiving function transformations in different representations: Middle school student working with technology. Mathematics Education, 9(2), 99 – 114.

ARZARELLO, F., FERRARA, F. & ROBUTTI, O., 2012. Mathematical modelling with technology: the role of dynamic representations. Teaching Mathematics and Its Applications, 31(1), 20 – 30.

BORBA, M. & CONFREY, J., 1996. A student‘s construction of transformations of functions in a multiple representational environment. Educational Studies in Mathematics, 31, 319 – 337.

BOZIC, R. & TAKACI, D., 2021. The benefits of collaborative learning in examining functions with parameters in dynamic software environment. Mathematics and Informatics, 5, 463 – 475.

BOZIC, R., TAKACI, D. & STANKOV, G., 2019. Influence of dynamic software environment on students’ achievement of learning functions with parameters. Interactive Learning Environments, 29:4, 655 – 669.

CAMPBELL, D. T. & STANLEY, J. C., 1963. Experimental and quasi-experimental designs for research. Chicago: Rand McNally & Company.

DAHER, W. M. & ANABOUSY, A. A., 2015. Students’ recognition of function transformations’ themes associated with the algebraic representation. REDIMAT, 4(2), 179 – 194.

DEDE, Y. & SOYBAS, D., 2011. Preservice Mathematics Teachers \({ }^{6}\) Experiences about Function and Equation Concepts. Eurasia Journal of Mathematics, Science and Technology Education, 7(2), 89 – 102.

DORUK, B. K., AKTUMEN, M. & AYTEKIN, C., 2013. Pre-service elementary mathematics teachers‘ opinions about using GeoGebra in mathematics education with reference to ‘teaching practices’. Teaching Mathematics and its Applications, 32(3), 140 – 157.

DOORMAN, M., DRIJVERS, P., GRAVEMEIJER, K., BOON, P. & REED, H., 2012. Tool use and the development of the function concept: from repeated calculations to functional thinking. International Journal of Science and Mathematics Education 10, 1243 – 1267.

GOKHALE, A., 1995. Collaborative Learning Enhances Critical Thinking. Journal of Technology Education, 7(1), 22 – 30.

GOLUB, J. (Ed.), 1988. Focus on collaborative learning. Urbana, IL: National Council of Teachers of English.

GOODSELL, A. S., MAHER, M. R., TINTO, V., LEIGH SMITH, B. & MACGREGOR, J., 1992. Collaborative Learning: A Sourcebook for Higher Education. University Park, Pennsylvania: National Center on Postsecondary Teaching, Learning, and Assessment.

HWANG, W. Y. & HU, S. S., 2013. Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Computers and Education,62, 308 – 319.

LAAL, M., & GHODSI, S. M., 2012. Benefits of collaborative learning, Procedia - Social and Behavioral Sciences, 31, 486 – 490.

LIPPONEN, L., 2002. Exploring foundations for computer-supported collaborative learning. In G. Stahl (Ed.), Proceedings of Computer Supported Collaborative Learning, 72 – 81. Boulder, Colorado, USA.

LOTAN, R. A., 2003. Group-worthy tasks. Educational Leadership, 60(6), 72 – 75.

OZGUN-KOCA, S. A., 1998. Students‘ use of representations in mathematics education. Paper presented at the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Raleigh, NC.

OZGUN-KOCA, S. A., 2008. Ninth Grade Students Studying the Movement of Fish to Learn about Linear Relationships: The Use of Video-Based Analysis Software in Mathematics Classrooms. The Mathematics Educator, 18(1), 15 – 25.

OZMANTAR, M., F., AKKOC, H., BINGOLBALI, E., DEMIR, S. & ERGENE, B., 2010. Pre-Service Mathematics Teachers’ Use of Multiple Representations in Technology-Rich Environments. Eurasia Journal of Mathematics, Science and Technology Education, 6(1), 19 – 36.

RAU, M., MICHAELIS, J. & FAY, N., 2015. Connection making between multiple graphical representations: A multi-methods approach for domain-specific grounding of an intelligent tutoring system for chemistry, Computers and Education, 82, 460 – 485.

ROMER, K. & WHIPPLE, W., 1990. Collaboration across the Power Line. College Teaching, 39(2).

SEVER, G. & YERUSHALMY, M., 2007. To sense and to visualize functions: The case of graphs‘ stretching. In P. P. Demetra & P. George (Eds.), The Fifth Conference of the European Society for Research in Mathematics Education (CERME5) (1509 – 1518). Larnaca, Deprtment of Education, University of Cyprus.

TAKAČI, DJ., STANKOV, G. & MILANOVIC, I., 2015. Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups. Computers and Education, 82, 421 – 431.

TALL, D., 1992. The Transition to Advanced Mathematical Thinking: Functions, Limits, Infinity, and Proof. In Grouws D.A. (Eds.) Handbook of Research on Mathematics Teaching and Learning (495 – 511). New York: Macmillan.

WEINBERGER, A. & FISCHER, F., 2006. A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71 – 95.

Appendix A. The tasks for the test.

1. The graph of the function \(f(x)=\tfrac{x^{2}-3}{x+a}\) is given.

a) Determine the value of parameter \(a\), so that the graph below corresponds to the function \(f\).

b) Examine the function for the determined parameter and show its properties on the graph.

2. Examine the properties and sketch the graph of the function \(f(x)=\tfrac{x-2}{x-6} e^{\tfrac{x}{8}}\).

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева