Математика и Информатика

https://doi.org/10.53656/math2022-1-5-app

2022/1, стр. 72 - 81

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov
OrcID: 0000-0002-2418-3679
E-mail: staribratov@uni-plovdiv.bg
Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
24 Tzar Assen St.
4000 Plovdiv Bulgaria
Nikol Manolova
OrcID: 0000-0001-8108-4864
E-mail: niki_mouse@abv.bg
Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
24 Tzar Assen St.
4000 Plovdiv Bulgaria

Резюме: The articlesharesthepracticalexperience in creatinggraphicdesign in the implementation of projects in the field of applied information technology. The creation of digital art is largely based on mathematical models and concepts that give a good perception of graphics, and it is scientifically justified. The STEAM approach is considered with the idea of the transdisciplinary level of integration between mathematics, graphic design and production practice in student education. For the development of projects like logo design, magazine cover and others, we use software specialized in the field of graphic design and computer graphics. For the realization of the considered projects, among which there are also awarded ones, we use CorelDRAW, Adobe InDesign and Desmos.

Ключови думи: Graphic design; Computer graphics; Digital art; Bézier curves; Logo design; STEAM.

The new art must be based upon science – in particular,
upon mathematics, as the most exact,
logical, and graphically constructive of the sciences.

Albrecht Durer

Mathematics and art, according to the great German artist – Albrecht Durer, mathematician and art critic, combine rational scientific knowledge with philosophy and the dynamic fantasy of art. Only through knowledge of proportions, perspective and symmetry can a true work of art be created.

Mathematics and art have a historical connection during all periods of development of human civilization. Artists have used mathematics since the 4th century BC, when the Greek sculptor Polycleitus wrote his “Canon”, determining the proportions of the ideal naked male figure, based on the ratio \(1: \sqrt{2}\). Mathematics directly influenced art with conceptual tools such as linear perspective, symmetry analysis, and mathematical objects such as polyhedra and the Möbius strip (Gardner 1956). Mathematical concepts such as recursion and logical paradox can be seen in paintings by Rene Magritte and in engravings by Moritz Cornelis Escher (Escher 2001). Computer art often uses fractals, including the Mandelbrot set, and sometimes explores other mathematical objects such as cellular automata.

Since the advent of computers, digital art has developed as part of computer science and contemporary art, which uses digital technology as part of the process of creation or presentation. The art of the new media includes concepts such as digital art, computer graphics, computer animation, virtual art, internet art, interactive art, video games, computer robotics, 3D printing and etc. (Paul 2015).

Digital art can be generated entirely from a computer (such as fractals and algorithmic art) or taken from other sources such as a scanned image or an image, drawn with vector graphics software, using a mouse or graphics tablet. Works of art are considered digital paintings when they are created in a similar way to non-digital paintings, but use software on a computer platform and digitally display the resulting image as painted on canvas (Wands 2006).

Bézier curves and Color models are presented in the project “Application of mathematical models in graphic design”. Their application in logo and magazine cover projects is discussed. The logo has been ranked first in a national competition for logo design of the School Institute of the Bulgarian Academy of Sciences (SchI-BAS) and the design is the new logo of the Institute. The magazine cover is created as a part of student’s graphic design project task. The construction of the composition and the color decision of Nikol Manolova’s projects is in accordance with the main concepts of the theory of colors (Goethe 2018). The STEAM educational approach is аlso discussed with the idea of combining mathematical models with color theory and skillful application in practice in the field of graphic design and advertising in the education of students, studying computer graphics and digital art.

1. Bézier curves

Bézier curves are the most versatile curves in professional vector computer graphics. All important prepress programs work with Bézier curves – Adobe Illustrator, CorelDRAW, etc. Generally, a variant with four points is used – initial, final and two intermediate. The curve passes through the two ends, and the intermediates play the role of “magnets” that easily control the shape. Thus, every conceivable curve can be represented as a finite number of interconnected 4-point Bézier curves. Here we present quadratic and cubic Bézier curves, but there are also higher-order Bézier curves, that need correspondingly more intermediate points. In general, all inscriptions, logos and vector graphics, which are seen on printed materials, television, etc., are created on the basis of Bézier curves (Mortenson 1999).

Quadratic Bézier curve

The quadratic Bézier curve is a Bézier curve of second degree and is determined by 3 points ( \(P_{0}, P_{1}\) and \(P_{2}\) ), as shown on Figure 1.

Figure 1. Quadratic Bézier curve

The mathematical formula for description of a quadratic Bézier curve with three control points is:

(1) \[ B(t)=(1-t)^{2} P_{0}+2(1-t) t P_{1}+t^{2} P_{2} \]

Given the coordinates of the three control points: \(P_{0}\left(x_{0}, y_{0}\right), P_{1}\left(x_{1}, y_{1}\right)\) and \(P_{2}\left(x_{2}, y_{2}\right)\), the curve coordinates can be described by the equation (1) that depends on the parameter \(t\) from the segment \([0,1]\).

In other words, we can put \(x\) and \(y\) instead of \(P\) in (1) to get corresponding coordinates. For instance, the quadratic Bézier curve is formed by points \((x, y)\), calculated as:

(2) \(x=(1-t)^{2} x_{0}+2(1-t) t x_{1}+t^{2} x_{2} \\ \)

(3) \(y=(1-t)^{2} y_{0}+2(1-t) t y_{1}+t^{2} y_{2} \)

Instead of \(x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\) we should put coordinates of the three control points, and then as \(t\) moves from 0 to 1 , for each value of \(t\) we will have \((x, y)\) of the curve.

For example, if the control points of our curve have the following coordinates: \((0,0),(0.5,1)\) and \((1,0)\), then the equations (2) and (3) will become:

(4) \(x=(1-t) t+t^{2} \)

(5) \(y=-2 t^{2}+2 t \)

Since we have the equations (4) and (5), now as \(t\) runs from 0 to 1, the set of values \((x, y)\) for each \(t\) forms the curve for such control points, as shown on Figure 2, where the curve is generated with an online dynamic software for mathematics Desmos.

Figure 2. Quadratic Bézier curve, Desmos

Cubic Bézier curve

The cubic Bézier curve is a Bézier curve of third degree and is determined by 4 points (\(P_{0}, P_{1}, P_{2}\) and \(P_{3}\) ); here the curve starts at \(P_{0}\) and stops at \(P_{3}\). The cubic Bézier curve is presented on Figure 3, where the line \(P_{0} P_{1}\) is a tangent to the curve at point \(P_{0}\) and the line \(P_{2} P_{3}-\) at point \(P_{3}\). The role of \(P_{1}\) and \(P_{2}\) is to provide targeted information. The distance between \(P_{0}\) and \(P_{1}\) determines “how long” the curve moves in direction to \(P_{1}\) before turning to \(P_{3}\).

Figure 3. Cubic Bézier curve

The mathematical formula for description of a cubic Bézier curve with four control points is:

(6) \(B(t)=(1-t)^{3} P_{0}+3(1-t)^{2} t P_{1}+3(1-t) t^{2} P_{2}+t^{3} P_{3}\)

Again, as soon as we have the coordinates of the four control points: \(P_{0}\left(x_{0}, y_{0}\right)\), \(P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)\) and \(P_{3}\left(x_{3}, y_{3}\right)\), , the curve can be described by the equation (6) that depends on the parameter \(t\) from the segment \([0,1]\).

Bézier curves are defined by their control points which contribute to the smooth behaviour of the curve. In this way, Bézier curves are used in computer graphics, modeling and vector graphic editors for making complex shapes and drawing smooth lines (Mortenson 1999).

Logo project of the School Institute of the Bulgarian Academy of Sciences (SchI-BAS)

In the article is discussed the application of quadratic and cubic Bézier curves in logo design as we present the logo of the School Institute of the Bulgarian Academy of Sciences (SchI-BAS) whose author is Nikol Manolova. The logo project shown on Figure 4 is created with the vector graphic program CorelDRAW.

The idea of the logo is to represent the main purpose of the School Institute of the Bulgarian Academy of Sciences (SchI-BAS) – to give opportunity for showing and development of students with inclination to research and creativity in any of the fields of science, art and their applications. The logo aims to illustrate the aspiration and desire of human to make his/her dreams come true.

Figure 4. The logo of SchI-BAS, Author: Nikol Manolova

Тhe creating of the logo involved quadratic and cubic Bézier curves. Figure 5 shows a detailed example of the application of both types of curves in some of the logo elements.

Figure 5. Application of Bézier curves, Logo design

Moreover, we have made a study of the mathematical description of one of the curves. The logo element in the orange circle is made with the help of cubic Bézier curves. On Figure 6, the mathematical representation of a part of this element is shown in a two-dimensional coordinate system. The cubic curve is generated by the online dynamic software for mathematics Desmos.

The coordinates of the four control points in the definition of the cubic curve are: \(P_{0}(5.13,3.55), P_{1}(4.98,11.24), P_{2}(9.68,9.01)\) and \(P_{3}(13,12.73)\). By creating this curve, we can continue with the whole shape, producing a nice smooth line with an elegant movement from left to right in order to achieve the “flame” in the general idea of the logo design – the human and the flame together, revealing the aspiration and desire of students to research.

Figure 6. Cubic Bézier curve, Desmos

The logo of the School Institute of the Bulgarian Academy of Sciences is created with the vector graphic program CorelDRAW. First, we have to make a sketch of the future logo with a pencil, ink or other graphic material. Then, the sketch is scanned or photographed and after that we continue with the work on the logo in the graphic program, being it CorelDRAW, Adobe Illustrator or other vector graphic editor. Using the software integrated tools, we create the logo based on the sketch. For example, in CorelDRAW the tool that we use for creating curves is called Bézier Tool; its parameters can be changed for producing the desired curve. The logo should be saved in format \(10 \times 10 \mathrm{~cm}, 300 \mathrm{dpi}\), CMYK color model \({ }^{1)}\). One of the most used standard formats for presenting vector logo in the industry is \(10 \times 10 \mathrm{~cm}\), which shows how the logo will look in real life. Оther smaller size formats are \(2.5 \times 2.5\) cm and \(5 \times 5 \mathrm{~cm}\). These three formats help public to see whether the logo will look nice on different graphic design projects as business cards, flyers, billboards, etc. For the purpose of preparing the logo for printing, according to the standard for presentation of projects in the field of graphic design and advertising, the print resolution for high resolution output must be 300 dpi and the color model has to be CMYK.

2. Color models

Colors and their presence in our daily lives determine the way we look at the world. That is why color is the subject of study by some of the greatest minds of mankind.

The first serious and scientifically justified breakthrough in color theory was the work of Isaac Newton, who in the seventeenth century managed to prove that light is composed of different colors. His famous experiment with a prism caused the appearance of the visible spectrum of light, and thus the colors are divided into light (additive) and pigment (subtractive).

In 1810, Johann Wolfgang von Goethe published his “Theory of Colors” (Zur Farbenlehre). The book initially influenced the Pre-Raphaelites in the field of art, reflecting on painting, architecture and applied art. The ideas of merging all kinds of arts contribute to the conception of the book as an artistic unity of text, font and illustration.

In his book Goethe makes a general statement about the way colors are perceived in different circumstances, emphasizing the qualitative analysis of the color phenomena. Science has come to understand the difference between the optical spectrum in Newton’s understandings and the phenomenon of human perception of colors, presented by Goethe (Goethe 2018).

Nowadays, light colors are the basis of the RGB color model (Red, Green, Blue). All directly projecting devices – monitors, multimedia projectors, etc., work with these colors and every design for a screen is prepared in this color model. Pigment colors, in turn, are the own colors of the objects around us and mixing them leads to darkening. There are three main colors: Cyan, Magenta and Yellow. In printing industry, for compaction, it is added blacK to the model and therefore the CMYK model’s name comes.

The magazine cover design project of “Vogue” (Bulgaria) is created with the graphic program Adobe InDesign, as the construction of the composition and the color decision is in accordance with the main concepts of color theory \({ }^{2)}\). The combination of figural and geometric elements is consistent with the principles of painting – warm and cold, light and dark. The emerald color symbolizes romance, royalty, luxury, while the silver-gray combines the opposite qualities of black and white in achieving stability and harmony. While building the composition, the principle of balance between accumulation of elements and pause is used in combination with a choice of clean and elegant fonts in the text part.

Figure 7. Magazine cover design project of “Vogue” (Bulgaria) Author: Nikol Manolova

The application of mathematical models in art is the right basis for building a perfect composition and creating an exquisite work of fine art (Durer 2000). Combining mathematical models with color theory and skillful application in practice determines the development of STEAM education with applied character of mathematics in graphic design. The STEM /Science, Technology, Engineering, Math/ approach is a philosophy of education that encompasses teaching skills and subjects in a way that resembles real life. STEM is based on the idea of focused learning in the four areas – science, technology, engineering, mathematics – in an interdisciplinary and applied approach. A variant of STEM is STEAM, which includes A /Arts/. Art design and the arts are an important part of STEM-based education, as creative thinking and the development of creative talents is essential for the progress of innovation. What distinguishes STEM from traditional education and science is the enhanced learning environment that provides integration of science and its application in everyday life. STEM recognizes the fact that the constant advancement of technology is changing the way children learn, connect with others and interact with each other every day. Many STEM lessons involve building models and simulating situations. In this way, projects and programs can be created with the idea of integrating disciplines such as mathematics, graphic design and advertising and production practice. The purpose of the transdisciplinary level of integration in this case is to show students the interaction between the three subjects through topics related to the study of mathematical models – Bézier curves, and their wide application in graphic design and advertising with the implementation of a real task – creation of a trademark (company sign, logo) of a specific company.

Conclusion

The project “Application of mathematical models in graphic design” presents the symbiosis of mathematics and graphic design as a basis for producing wonderful creations and innovative ideas for the development of visual culture and art.

We have discussed the application of the mathematical models: Bézier curves and Color models, in graphic design. The goals and tasks are accomplished through Nikol Manolova’s projects of logo and magazine cover design. The construction of the composition and the color scheme of the projects are in accordance with the main concepts of color theory. Opportunities for further development of the presented project cover the field of two-dimensional computer graphics in the area of graphic design and advertising. There is a wide field for research and development in the combination of models from stereometry and their application in practice through graphic software for three-dimensional computer graphics. By integrating STEAM educational activities with applied character of mathematics in graphic design, students are given the opportunity to develop key skills such as: creative thinking; critical analysis; initiative and mathematical literacy, which provide them with a solid foundation for success, both in school and in real life.

Notes

1. CorelDRAW 12, 2004. Official training course [In Bulgarian].

2. Adobe InDesign CS2, 2006. Official training course [In Bulgarian].

REFERENCES

DURER, А., 2000. Treatises. Diaries. Letters [In Russian].

ЕSCHER, М., 2001. The Graphic work [In Bulgarian].

GARDNER, M., 1956. Mathematics, Magic and Mystery. Dover Publications.

GOETHE, J., 2018. Goethe’s Theory of Colours: Translated from the German. Forgotten Books.

MORTENSON, M. E., 1999. Mathematics for Computer Graphics Applications. Industrial Press.

PAUL, C., 2015. Digital Art. Thames & Hudson.

WANDS, B., 2006. Art of the Digital Age. Thames & Hudson.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева