Математика и Информатика

https://doi.org/10.53656/math2025-4-6-bgp

2025/4, стр. 451 - 474

BRIDGING THE GAP: A PEDAGOGICAL TOOL FOR TEACHING MATHEMATICAL MODELING WITH SPREADSHEETS

Dávid Paksi
OrcID: 0009-0009-2066-9389
E-mail: paksid@ujs.sk
Department of Informatics
J. Selye University
945 01 Komárno Slovakia
Márk Csóka
OrcID: 0000-0001-9286-2780
E-mail: csokam@ujs.sk
Department of Informatics
J. Selye University
945 01 Komárno Slovakia
Szilárd Svitek
OrcID: 0000-0002-8293-4899
E-mail: sviteks@ujs.sk
Department of Mathemtics
J. Selye University
945 01 Komárno Slovakia

Резюме: The widespread use of information and communication technologies (ICT) offers new opportunities in many topic s of mathematics education. As science and technology are constantly evolving, information technology is becoming increasingly intertwined with education. Modeling, simul ation and visualiz ation are already proven methods in teaching subjects such as physics, chemistry or engineering. These methods can help students see connections more clearly and develop their creative thinking. This paper aims to further explore this direction in the field of mathematics education, with focus on differential equations. We chose spreadsheets as our tool to calculate and visualize the processes described by differential equations. We demonstrate a wide range of applications of different ial equa tions thro ugh r eal-life exampl es, such as in mo deling physical, biological, and economic processes. This method provides students a better understanding of the practical usefulness and applicability of these equations. The study thus shows how integrating ICT into mathematics education can help students gain a deeper understanding of the underlying mathematical concepts and improve their mathematical thinking and problem-solving skills. ICT tools enable teachers to use interactive and engaging teaching methods, resulting in an exciting and practical education for students. This paper outlines the potential of ICT in mathematics education, with a focus on the use of spreadsheets for modelling and visualization. It highlights the benefits of integrating technology i nto the classroo m to enhance s tudent learning and engagement.

Ключови думи: mathematics education; spreadsheets; differ ential equations; interdisciplinary education; advanced uses of ICT; real-world problems

1. Introduction

This study is an extended version of the previous conference paper which evaluates the usability of spreadsheets in education. In this paper we narrow our focus to differential equations aimed to support mathematics education by using ICT technologies to solve otherwise complex problems addressed by the field of mo deling (Paksi et al., 20 22b). The prepared teac hing to ol is available online \({ }^{1}\).

This study is primarily aimed at undergraduates, especially those who are open to new methods and technologies. Integrating ICT into mathematics education offers significant benefits: it provides modern, interactive and illustrative teaching methods that help students understand theory and apply it in p ractice. In university-level education , tradit ional meth ods are often unable to arouse students' i nterest or dee pen their knowledge. New teachers ca n particularly b enefit from incorporating these innovative tools into their workflow, as they can convey complex mathematical concepts in a more efficient and motivating way. Such approaches not only develop students' problem-solving skills, but also introduce real-life applications of mathematical modelling.

The development of science and technology brought changes to the whole world. Information Technology (IT) is no exception either. Over the past few years the repertoire of available digital tools expanded and they also caught up in education (Oleksandr et al., 2023). At the same time the mentioned advancement raised the stakes: the required digital skills to master for general computer literacy are diverse.

To trai n p eople who successfully overcome mo dern challenges we must pay atten tion to the con tent of educat ion and its pre sentation (Talhofer, 2017).

In the field of education, IT has gradually become indispensable in the last decade (Ro drigez-Jim´enez, 2023). The shift to wards remote lear ning and the need for digital solutions further increased its importance. With the aid of IT, education can go on without significant interruptions in the digital space. It became essential to devise methods for instructing specialized subjects like physics, electronics, and chemistry. Fortunately, a solution was already in existence before the demand arose, as the field of modeling and simulation had been a researched discipline for quite some time.

There are many to ols available for teaching mathemati cal mo dels, but most of them require the usage of high-level programmin g language. The usage of Excel for teaching natural sciences is crucial because provides an opportunity for st udents to deve lop skills in dat a analysis, mo deling, and scientific thinking (Pohoriliak et al., 2023).

Spreadsheet applica tions have a relatively long history and their usage often constitutes part of computer (and digital) literacy. Computational thinking (CT) surfaced as part of digital literacy and is mostly described as a problem-solving approach imported from computer science. CT got attention over the years because the skillset it promotes is universally usable (Borkulo et al., 2023). Hence, the task at hand was for educators to develop and refine the necessary tools, experiments, and teaching materials, making them available for educational purposes (Svitek et al., 2022).

A common feature of similar educational tools is that they all require a strong mathematical bac kground to b e effectively applied and to sup port deeper understanding of students (Serra & Godoy, 2011).

Today, crafting educational tools remains a challenging endeavor. It may seem logical that everyone can access the same con tent since most people have a computer at home. However, the reality is more intricate. To ensure access to the same content, individuals must be able to access the relevant digital environment. This may e ntail installing sp ecific soft ware, while in other cases, mer ely having a web bro wser su ffices. When it c omes to the former situation, the software can either be paid or free. If it demands high performance, users may encounter factors that disturb the user experience or even pr event ac cess to the con tent. T his is particularly relevant in the context of modeling and simulation, and from an educator’s perspective, such barriers are unacceptable.

Public education systems typically prefer solutions that are freely accessible to all (Paksi et al., 2022a). Several companies have longstanding commitment to supporting education. Spreadsheet applications are part of the curriculum a nd widely used fo r various tasks in the lab or market. In Slovakia, the Microsoft 365 software suite, including the aforementioned member of the software family, is av ailable free of c harge for educational purposes. In recent years, the emergence of Google Suite in educational institutions has diversified the range of tools used and made it more difficult to develop out of the b ox, platform-independent learning materials. Thu s, the primary challenge remaining for educators in higher educational institutions (HEIs) is to adapt the teaching material to effectively facilitate the teaching of modeling simulation and visualization (MSV).

2. Pedagogical approach

We define methodological approach as a set of ideas, principles related to the nature of learning along which the educational process is implemented. The term pedagogical methodological approach covers the ideas about teaching and learning. The goal of pedagogical methodological approaches is to maxi mize the success of the educational process. It is not unique that different educational institu tes and teachers com bine multiple approache s during teaching sessions (Ha rizanov, 2023). This is necessary t o meet the needs of the specific blend of students and the curriculum at the same time. Nowadays teachers can choose from multiple approaches, for this study we used and combined the problem-based learning, deep learning and interdisciplinary learning approaches.

Problem-based learning (PBL) is a pedagogical approach that has emphasis on theoretical foundations. It is a n in structional method, whe re students are presented with an open-ended question or a real-world problem. The p rimary objective is to systematically ga ther i nformation, dev elop a viable solution, present their results and express their own insights related to the topic. The chosen prob lem must b e carefully sele cted to invite th e students on a journey to carry out their own research, organize and evaluate the col lected info rmation. In PB L, the educational roles hav e u ndergone changes: the teacher assumes a mentoring role to guide students during their research, while students gain a prominent role in the problem-solving process. The PBL relates to a particular context and situation by engaging participants in the processing of authentic scenarios as opposed to abstract theoretical constructs (Csóka & Czakóová, 2021; Tempelmeier, 2016).

Deep learning utilizes understanding and thinking as the method’s main pillars. It is characterized by thorough understanding of the fundamentals of the subject matter accompanied by critical thinking and the ever-promoted problem-solving of IT. The mentioned core competencies are complemented by collaborative work, communication, and the autonomy of one’s own learning. Such learning can help cultivate positive beliefs and attitudes about oneself which provides motivation for continuous learning (Marton & Saljö, 1976a; Marton & Saljö, 1976b; Csoka et al., 2022).

Interdisciplinary learning is a p edagogical approach that dra ws a wide variety of perspectives from diverse academic disciplines. It not only introduces these vi ewpoints in t he learning en vironment but also requires that collaborative tasks actively share, discuss, and integrate them. Interdisciplinarity is essential to so lve complex , rea l-world challenges th at draw from m ultiple science fields and also demand expertise. By directing students’ attention to a particular problem or topic while exploring it through the perspective of multiple disciplines helps them to organize their knowledge their own wa y a nd supp orts their compreh ension of their own intellectual maturation. Moreover, exposure to interdisciplinary learning can foster critical thinking and metacognitive skills (Zhu & Burrow, 2022).

3. Implementing MSV at a glance

The making of mathematical models is the pro cess of encoding and decoding reality, in which a natura l phenomenon is reduced t o a formal numerical expression. There is an essential difference between the mathematical model and the laws of physics. The first is a representation of a particular system in mathematical terms, wh ile the second is a g eneral statement based on a physical theory. Modeling, simulation and visualization (MSV) are all tools that help the user better understand, predict, test and optimize real-world systems and processes without having to work directly with the real system. The first step in the process is to create the mathematical model. We set the parameters required for the model according to our best knowledge, then run the simulation to imitate and reproduce the behavior of the real system (Meng et al., 2020). After that, we evaluate the results. If they meet the defined expectations, we have reached the end of the pro cess, ot herwise w e examine whethe r the mathemat ical mo del w as correct, or if the parameters need to be adjusted.

3.1.Role of MSV in education

MSV pl ays a us eful rol e in teaching mathe matics and science subjects (Bilbokaite, 2016), as it allows students to gain a deeper understanding of abstract concepts and phenomena (Niazi & Temkin, 2017). These pedagogical tools help students not only to interpret knowledge as passive recipients, bu t a lso t o becom e act ive part icipants in the learning p rocess. One of the main advantages of MSV is that they provide concrete and tangible examples of mathematical and other scientific principles. Borba also states that many processes and concepts can be tied to visual representations, which can be built to help the understanding of the hidden mathematical structure (Borba, 2005). In this way, mathematics and scientific knowledge do not remain at the level of abstract theories but can also introduce their application in real life.

Creating models requires students to analyze phenomena, form associations, derive algorithms, test and reformulate hypotheses. Modeling is particularly useful in co nstructivist learning en vironments where stud ents explore, experiment, create, collaborate and reflect on real-world problems. MSV a lso helps st udents to conn ect theor etical knowledge with pr actical application. For example, when a student calculates the velocity (including air resistance) of a free-falling body, or simulates a chemical reaction, they apply their theoretica l knowledge to a real problem. In this w ay, one will experience how the concepts and formulas learned can be used in real life, resulting in motivation and deeper understanding. In addition, modeling and visualization help students develop their critical thinking and problemsolving skills (Smirnov & Bogun, 2007). The visualization provides an opportunity for students to experience the process. For example, in the case of this study, differential equations are given a form that is easy to interpret even for laics, thus promoting a deeper understanding of the topic (Csoka2021a; Svitek et al., 2022). When a student analyzes a complex model, they employ a set of skills related to computational thinking : logical- and algorithmic thinking, information processing, recognition and solving of subtasks. These skills are useful no t on ly in mat hematical and scien tific fields, but also in other areas of life.

3.2.The information and communication technologies in mathematics education

Information and Communication Technologies (ICT) are processes, methods and laws related to the recording, analytical-synthetical processing, storage, retrieval and disseminati on of scientific information ( Mikhailov et al., 1966; Wellisch, 1972). The goal of ICT is to make the mentioned processes more effective, safe and easy to use. The use of ICT plays an increasingly important role in the teaching of various educational subjects. Such development cannot be attributed alone to the overwhelming use of digital tools, but o ne must acknowledge that ICT is capabl e of transfo rming and enriching education in ways that match with modern pedagogical goals. ICT has the potential to spark students’ scientific interest and engage them (DeWitte & Rogge, 2014). The use of these technologies increases the interactivity and enjoyment of learning (Bowers & Berland, 2013) and can be a tool for bridging the ever-growing gap between mathematics and other subjects (Jehlicka & Rejsek, 2018).

Interactive learning environments, simulations and online labs allow students to experiment and pr actice without expo sing themselves to real world risks. This way aids students in developing a deeper understanding of natural sci ences and en courages curiosity and disco very. In a ddition, the digital space makes it possible to model and observe events that would not be possible in real life due to lack of time, financial background, resources, too large-, small scale or are simply too dangerous. Furthermore, ICT helps learners to connect what they have learned (theory) with lifelike problems, situations, events (practice). For example, in mathematics and physics they can use softw are a nd computer mo deling to understand abst ract concepts and apply them to solving real-world problems (Oliveira & Nápoles, 2017). In this way, students experience the practical application of the knowledge acquired during learning, whic h shoul d be the goal of the whole teach ing process.

3.3.Spreadsheets in education

Spreadsheets represent a group of application packages used for tabular calculations. Spreadsheets are inexpensive, can be run on machines with lowend specifications, and are widely used by companies, institutes, and all levels of education. In addition, introduction to spreadsheets is part of the general IT curriculum (Arganbright, 1993).

In general, students can support their ideas with numbers and graphs, or keep a record of daily activities using spreadsheets (Abramovich et al., 2010). However, not many people use spreadsheets in the classroom to draw new conclusions about a topic, since spreadsheets are usually not developed with the intention of provoking new ideas or creating an environment of debate. Depending on the topic, spreadsheets like Microsoft Excel can be involved in high school education on a basic level, and in HEIs for more advanced tasks and topics.

Spreadsheets are present virtually everywhere in today’s engineering field: from elementary numerical analysis in the general engineering field to software quality control, cache-based parallel processing systems in the electrical industry. Spreadsheet simulation models can be used as a platform to understand the mechanisms behind a discrete event, as well as for system dynamics approaches. Their advantages include gaining software knowledge in a short period of time, wide availability and smooth usability (Skafa et al., 2022).

3.4. The interdisciplinary role

The use of mathematics in interdisciplinary education (IE) can provide various scientific and pedagogical benefits, states (Jehlička & Rejek 2018). This approach connects mathematical thinking w ith other disciplines and real-world problem-solving situations, which expands students’ cognitive and intellectual skills. Interdisciplinary education allows the integration of mathematics with the help of computer science into other disciplines such as computer science, physics, biology, engineering, i.e. STE M areas (D oig & Jobling, 2019). As a result, students gain a broader perspective and can see the relevance of mathematical principles and methods to real life and other disciplines. This improves general knowledge and scientific literacy.

An interdisciplinary approach fosters problem-solving ability and critical thinking. Students encounter complex problems that are not limited to just one area or subject but involve knowledge from several diverse disciplines of different educational levels (Lucas et al., 2019). As a result, students must use different approaches to solve problems. It is expected that this process helps to dev elop their creativit y and analytical skills. In interdisciplinary education, the application of mathematical principles and methods to real problems creates real value. Students learn how to use mathematics via realworld examples, such as cooling a tea, the spreading of cancer cells, financial decision-making, data a nalysis, environmental protection, and more. This practical applicability helps to transfer knowledge to real life.

4. Process of implementation

Differential equations are mathematical tools that can be used to model changes and processes in specific systems. Differential equations are useful in many scientific fields, such as physics, modeling chemical reactions, analyzing biological systems, describing economic processes, and many other applications. One of their most important features is to describe the relationships that govern changes over time in a system. So, if we are interested in how the parameters of a system change over time or how the properties of a particular system change in a particular area, we can model these processes using differential equations. Differential equations also play an important role in scientific research and engineering practice. With their help, the behavior of different systems can be predicted, analyzed and optimized. In addition, they can solve complex problems that would be difficult to deal with other methods.

4.1.Continuous models

By continuous models we mean continuous state and continuous-time differential equations, which can be classified as members of the Differential Equation System Specifications (DESS) group (Zeigler et al., 2018).

Differential equations are a common means of describing natural, technical, and economic processes, i.e., continuous mathematical models are often possible to describe with their help. The theory of Ordinary Differential Equations (ODE) deals with the study of such models among others. These studies focus primarily on the solving of different types of tasks, primarily examining the cond itions under whic h the task will be correctly set. It is rarely possible to produce a solution in a closed form (i.e., to specify it using formulas that contain known and easy-to-evaluate functions). Therefore, from a practical point of view, an approach in which we seek the solution in an approximate form with the help of some numerical method is unavoidable. These methods allow us to produce a numerical solution with high accuracy and reliabilit y (Atkinson et al., 2009). F or di fferential equation mo dels, a derivative function is used to specify the speed of change in the status variables. At any given time of the time axis, for a given state and input value, only the speed state changes are known. From this information it is necessary to calculate the state that will occur at any time in the future.

When we w ant to express this in the fo rm of an equa tion, we need a variable that represents the current state. In our case, it is represented by the \(z(t)\) state variable. The current input \(u(t)\) indicates the speed at which the actual content is changing, which is expressed by the equation

\[ \tfrac{d z(t)}{d t}=u(t) \] where output \(y(t)\) is equal to the current \(z(t)\) state. By further, shaping the equation, we can get the classic ODE state equation representation:

\[ z(t)=f(z(t), u(t)) \]

Most continuous-time models are actually described (or converted) in the form of an equation that does not give an explicit value to the state \(z(t)\) after a certain period of time. Thus, in order to get the state trajectories, the ODE must be resolved. The problem is that obtaining a solution to the equation is not only exceedingly difficult, but in some cases, impossible. Very few ODEs hav e analytical solutions in the form of known functions and expressions. This is the reason why ODEs are usually solved with numerical integration algorit hms th at provide a pproximate sol utions (Zeigler et al ., 2018).

4.2.Explicit Euler method

Let \([a, b]\) be th e in terval, wh ere the initial v alue pr oblem \(\dot{y}=f(t, y)\) solution must be found, where \(y(a)=y_{0}\). Instead of searching for the solution of a differentiable function, which satisfies the initial problem \(\left\{\left(t_{i}, y_{i}\right)\right\}\) set of points are generated and these points are used for approximation, where \(y\left(t_{i}\right) \approx y_{i}\). To determine the set of points that approximately satisfy the differential equation, we first select the abscissas of the points. For simplicity, we divide the \([a, b]\) interval into M equal parts and s elect the mes h p oints ( Mathews & Fink, 1999 ): \(t_{i}=a+i h\) and \(i=\)

\(0,1, \ldots, N\), , where \(h=\tfrac{b}{N}\).

The value \(h\) is the step length. Next, an approximation can be given for the differential equation.

\(y^{\prime}=f(t, y) \quad\left[t_{0}, t_{N}\right]\) where \(y\left(t_{0}\right)=y_{0}\).

The standard Euler-method can be written as follows: \[ t_{i+1}=t_{i}+h \quad y_{i+1}=y_{i}+\mathrm{h} f\left(t_{i}, y_{i}\right), \quad i=0,1, \ldots, N-1 \]

The above described can be easily translated into an algorithm (see Listing 1), that determines the substitution values of the chosen differential equation at an arbitrary interval in fixed steps.

It is important to mention that there are many other ways to prepare the previous algorithm. The first feature of the algorithm we created is that it will not determine the values on the interval set by the user, instead extending to a maximum 1 step larger from the right limit.

Listing 1: Pseudocode for Explicit Euler method

Input: a, b, y0, h, fa - Initial timeb – Final timey0 – Initial valueh – Step sizef – Functionbeginy(1) = y0t(1) = ai = 1whilet(length(t)) < by(i+1) = y(i) + h * f(t(i),y(i))t(i+1) =t(i) + hi = i+1endendOutput: t, yt – Time arrayy – Value array

4.3.The examined platforms

The User Interface (UI, see fig. 1) consists of two main parts: on the side down the user can set the initial values (I) the specific values (II) related to the exact problem to be modeled and the equation (III) itself, while the other part contains a XY Scatter chart showing the results. The initial values are the following: model simulation start time, model simulation end time, initial value and the s tep size ex presses the de tailedness. The p roblem speci fic values are model dependent and vary by each model, therefore they must be specified manually. These values have further usage because the modelspecific equation resides in (III). The results of the actual model are shown here, but the values regarding each step are saved to a separate worksheet. These values are later presented on a chart.

Figure 1. The UI (user interface) realized in Microsoft Excel

The corresponding values of each step calculated by the VBA (or Apps) Script are saved to a worksheet named “Data” (Paksi and Csóka, 2023). These values are necessary for creating the visual representation of the model. Due to the increased popularity of G Suite in education we considered it important that the introduced method should work with multiple applications. Microsoft Excel uses VBA programming language for automation and macro creation, while Google Sheets utilizes their own Google Apps Script for similar functionality. Depending on the target application the above presented pseudo code (See Listing 1) can be easily localized for the target application.

5. The established curriculum components

In the following section we refer to each model as a teaching unit because the introduction, explanation, creation and reflection of one model can easily take up the 45-minute standard lesson time.

5.1.Problem: Emptying a liquid-filled tank (Zeigler, Muzy & Kofman, 2018)

Grade Level: 6th to 8t h Gra de of element ary school Subject: Science and Mathematics Learning Objectives:

Students will understand the concept of the problem,

Students will apply mathematical skills to measure and calculate (whit their basic skills) the problem,

Students will work collaboratively in gro ups to design and conduct experiments.

The teacher begins the lesson by presenting the problem and discussing the importance of it (e.g. predicting flooding or water usage). The students will work in groups to investigate the problem. At least two types of groups are needed: those who create and measure the actual situation, and those who d o the modelling with the spread sheet an d analyze the re sults. I t is possible and even recommended (especially for the accuracy of the measurements) to create m ultiple instan ces of eac h group type. After the students are done with the experiments and modelling (fig. 2), the teacher should:

ask each group to share their findings,

gather the students back as a whole class,

discuss the factors that may have affected the experiment,

guide the students in interpreting the results and drawing conclusions, encourage students to think about how this knowledge can be applied in real-life situations.

Figure 2. The simulated model for emptying the tank

In the spirit of spiral method of teaching mathematics and informatics in high schools, the same problem can b e revisited in later sc hool years. By doing so the form ulas b ehind sprea dsheets can b e analysed in compute r science lessons with a more complex approach.

5.2.Problem: Cooling a hot beverage

In grammar schools, such use of spreadsheets can be beneficial in several different lessons, thus forming stronger interdisciplinary connections. For example, in computer science classes, students could get to know the functions used for programming better, while in STEM subjects, individual models help to underst and the prese nted pr oblems more deeply an d more easily (Kézi, 2023).

In ph ysics class, the fig. 3 mo del can be used to illustrat e the giv en problem, and students have the opportunity to experiment with the given values, i.e., what happens when cooling tea under different parameters. The same model should also be incorporated into math lessons, for example in function analysis. Thus, students encounter the same model in several lessons.

Figure 3. The simulated model for cooling a hot beverage

5.3.Problem: Spruce Budworm Model

Most species of spruce budworms are pests that destroy coniferous forests. Eastern spruce budworms’ diet mainly consists of spruce and balsam firtrees in the United States and Canada. The ecological dynamics of these outbreaks have been described using mathematical mo dels that focus on the pest (spruce budworms), host (trees) and the worms’ main predator (birds) groups. A simple model describing the budworm population size over time can be built using the logistic growth model (Moghadas and Jaberi‐Douraki, 2018).

Figure 4. The simulated model for the budworms in the wood

For undergr aduate studen ts who ha ve dealt with di fferential equations during their studies, prescribing and calculating ODE should not cause any particular problems. We can formulate the ODE based on the given parameters and the problem’s model is given by Error! Reference source not found.:

\[ \dot{N}=r N\left(1-\tfrac{N}{K}\right)-\tfrac{a N^{2}}{b^{2}+N^{2}} \]

Consider the following realistic parameters:

-\(N(t)\) : The number of budworms in the spruce at time t.

-\(r\) : Grow rate of the budworm population.

-\(K\) : Carrying capacity (limits the maximum population size of the budworms)

-\(\tfrac{a N^{2}}{b^{2}+N^{2}}\) : Rate of predation of budworms by birds.

This model combines logistic growth and predation, considering limited resources and the effect of population density. The first term (\(r N\left(1-\tfrac{N}{K}\right)\) ) model’s growth and the second term \(\left(\tfrac{a N^{2}}{b^{2}+N^{2}}\right)\) model's negative effects (such as predation) as the population size increases.

6. Discussion and implications

We examined the applicability of the developed teaching tool within school environment, as well as its pedagogical value, based on feedback from practicing teachers. The in vestigation was co nducted with in a qualitative research framework, as our aim was to achieve a deeper, contextually grounded understanding (Creswell, 2013).

As a first step, we reached out to in-service teachers who expressed openness to testing the teaching tool and subsequently shared their experiences in semi-structured, in-person interviews. From the pool of applicants, we selected participants based on their professional background and motivation. Ultimately, four teachers, each specializing in different subjects (physics, mathematics, and computer science) – met the predefined criteria. The interviews were subjected to content analysis, through which several recurring themes, experiences, and challenges emerged.

According to the interviewees’ feedback, the application of the teaching tool yielded several pedagogical benefits:

Increased student motivation and engagement: Students reported enjoying the o pportunity to conduc t the ir own experime nts, even if these were carried out in a digital space rather than physical format.

Analyzing the results of the experiments using spreadsheets encouraged autonomy and active participation.

Interactivity and visualization: Differential equations and other abstract mathema tical concep ts became more comprehensible using interactive charts. Visualization supported understanding and contributed to an experiential, meaningful learning process.

Integrability into classroom practice: The tool did not require the adoption of a new p latform o r advan ced techno logical knowled ge – familiarity with Excel or Google Sheets was sufficient for its use. This enabled students to repurpose their existing software skills for educational purposes.

Interdisciplinary potential: Several teachers emphasized the tool’ s usefulness in interdisciplinary projects (e.g., blending computer science, mathematics, and biology), as it facilitates both modeling and interpretation across diverse subject domains.

Despite the advantages, several limitations and critical remarks were identified regarding the use of the tool:

Lack of technological infrastructure: Not all classrooms are equipped with a sufficient number of computers or tablets, particularly during lessons in the natural sciences.

Variations in digital competencies: Proficient use of Excel is not selfevident for all teachers and students, which may limit the full utilization of the developed tool.

Limited range of models and creative space: In its current version, the tool offers only pre-designed mo dels. Creating new mo dels is more complex, which reduces students’ opportunities to engage in the creative aspects of the modeling process.

Challenges in interdisciplinary collaboration: Although the tool lends itself to interdisciplinary applications, the current structure of the education system offers limited support for cross-subject collaboration.

Generational differences: Our experience suggests that older teachers were generally less op en to trying the to ol, highligh ting a br oader challenge in integrating digital tools into teaching process.

Depth of understanding not guaranteed: While the tool can make abstract concepts more “playable”, this does not necessarily result in a deeper conceptual understanding.

ICT tools not only broaden the means of access to information, but also increase the quality and e fficiency of ed ucation. T he interactive, prac tical and global approach enables students at all levels of education to find realworld interpretations of science s ubjects. It promotes the development of critical thinking and problem-solving skills that they will need in future academic and w orkplace challenges. The use of ICT to ols i s therefor e not only a modern trend, but an essential tool for developing scientific knowledge and computer literacy. Modeling and visualization help us understand and remember the curriculum more easily. The human brain tends to memorize and understand images and diagrams better than textual information. Therefore, using visual tools helps students to learn and memorize the educational material more effectively (O’Bannon et al., 2006).

Overall, teaching interdisciplinary mathemat ics (whether in primary or secondary school, or even in some areas of higher education) contributes to the broad development of students and prepares them for successful participation in a complex and dynamic world. The tool has been developed with this goal in mind, and its usage should b e considered for the same reason. In our research, we examined the educational possibilities of modelling, how we can bridge the gap between mathematics and other science subjects. We chose spreadsheets as the modeling tool, as it is more user fri endly and b etter kno wn a mong students t han MATLAB or other symbolic algebra software (Lim, 2006).

Finished simulations are those that exemplify a certain mathematical concept or relations hip with dynamic dat a. The users’ task is to c hange certain parameters in a fixed scenario to get the results produced by running the model. However, changing only certain parameters to understand a mathematical context or a mathematical concept can be considered as a form of passive participation without excessive interaction (Karakirik, 2015).

Although ICT tools enable in teractive learning and realistic mo delling, not all students and educational institutions have the adequate technological infrastructure and access. Thus, the use of ICT tools in mathematics education may cause disadvantages for some students and create inequalities in education. In contrast, spreadsheets are widely available and can run on most consumer-grade computers. By using spreadsheets for modeling, students may be able to gain a deeper understanding of abstract concepts and rela tionships, ho wever the le vel of activ e partic ipation and cr eativity may vary. Passive data entry or changing parameters does not always ensure full interaction of students with the learning process. This limitation is recommended to be considered when developing interactive learning environments. The implementation of interdisciplinary education is not always easy: cooperation between educational institutions and teachers, as well as the development of interdisciplinary curriculum, can present challenges, such as the parallel teaching of interconnected topics. In addition, it is important to properly train and support teachers in this type of education.

Our future plans include a full qualitative and quantitative study of the developed tool, tested in classrooms, to obtain verifiable results on its didactic effectiveness.

Acknowledgements

The paper was supported by the national project, KEGA 014TTU-4/2024 “Intelligent Animation-Simulation Models, Tools, and Environments for Deep Learning.” and by the KEGA 004UJS-4/2025 project. Furthermore, the research was supported by J. Selye University Grant for young researchers and doctoral students (2025).

NOTES

1) Paksi, D., Csoka, M., 2023. MSV–ODE–Spreadsheets. https://github.com/JSelyeUniversity/MSV_ODE_spreadsheet.git

REFERENCES

Abramovich, S., Nikitina, G., Romanenko, V., 2010. Spreadsheets and the development of skills in the STEM disciplines. Spreadsheets in Education ,

3(3), 1 – 20. https://sie.scholasticahq.com/article/4565spreadsheets-and-thedevelopment-of-skills-in-the-stem-disciplines

Arganbright, D.E., 1993. Innovations in Mathematics Education Through

Spreadsheets. Proceedings of the IFIP TC3/WG3.1/WG3.5 Open Conference on Informatics and Changes in Learning, 113 – 118. https://dblp.unitrier.de/db/conf/ifip3-1/ifip3-1-1993.html#Arganbright93

Atkinson, K.E., Han, W., Stew art, D., 2009. Numerical Solution of Ordinary Differential Equations. John Wiley & Sons, Hoboken, New Jersey. doi: 10.1002/9781118164495

Bilbokaite, R., 2016. Prognosis of Visualisation Usage in the Science Education Process. Society Integration Education, Proceedings of the International Scientific Conference, IV, 225 – 233. doi: 10.17770/sie2016vol4.1566

Borba, M., 2005. Visualization, Mathematics Education and Computer En

vironments. Humans-with-Media and the Reorganization of Mathematical Thinking. Mathematics Education Library, Springer, New York, 79 – 99. doi: 10.1007/0-387-24264-3_5

Borkulo, S.P., Chytas, Ch. , Drijvers, P., Barendsen, E., Tolboom, J., 2023. Spreadsheets in Secondary School Statistics Education: Using Authentic Data for Computational Thinking. Digit. Exp. Math. Educ ., 9, 4120 – 443 . doi: 10.1007/s40751-023-00126-5

Bowers, A.J., Berland, M., 2013. Does Recreational Computer Use Affect High School Achievement? Education Tech. Research Dev., 61, 51 – 69. doi: 10.1007/s11423-012-9274-1

Creswell, J.W., 2013. Qualitative Inquiry and Research Design: Choosing Among Five Approaches, 3rd ed. SAGE Publications, Thousand Oaks, CA.

Csoka, M., 2021. Data Visualization as Part Of High School Programming. 13th EDULEARN Conference Proceedings, 9484 – 9489. doi: 10.21125/edulearn.2021.1916

Csoka, M., Czakóová, K., 2021. Innovations In Education Through The Application of Raspberry Pi Devices and Modern Teaching Strategies. 15th INTED Conference Proceedings, 6653 – 6658. doi: 10.21125/inted.2021.132

Csoka, M., Paksi, D., Czakóová, K., 2022. Bolstering Deep Learning with´

Methods and Platforms for Teaching Programming. AD ALTA – Journal of interdisciplinary research, 12(2), 308 – 313. doi: 10.33543/1202308313

Dewitte, K., Rogge, N., 2014. Does ICT Matter for Effectiveness and

Efficiency in Mathematics Education ? Computers & Education , 75, 173 – 184. doi: 10.1016/j.compedu.2014.02.012

Doig, B., Jobling, W., 2019. Inter-disciplinary Mathematics: Old Wine in New Bottles? Interdisciplinary Mathematics Education, Springer, New York,

245 – 255. doi: 10.1007/978-3-030-11066-6_15

Harizanov, K. , 2023. Severa l Opportunities for Implem enting the Training in “Computer Modeling and Information Technologies” in the 7th Grade. Mathematics and Informatics, 66(1), 67 – 72. doi: 10.53656/math20231-6-sev

Jehlička, V., Rejsek, O., 2018. A Multidisciplinary Approach to Teaching Mathematics and Information a nd Communication Technology, EURASIA J. Math. Sci. Tech. Ed., 14(5), 1705 – 1718. doi: 10.29333/ejmste/85109

Karakirik, E., 2015. Enabling Students to Make Investigations Through Spreadsheets. Spreadsheets in Education, 8(1), \(1-20\). https://sie.scholasticahq.com/article/4639-enabling-students-to

makeinvestigations-through-spreadsheets

Kézi, C.S., 2023. Teaching the Analysis of Newton’s Cooling Model to Engineering Students. International Journal of Engineering and Management Sciences (IJEMS), 8(2), 63 – 68. doi: 10.21791/IJEMS.2023.2.7.

Lim, K.F., 2006. Use of Spreadsheet Simulations in University Chemistry

Education. Journal of Computer Chemistry, 5, 139 – 146. doi:

10.2477/JCCJ.5.139

Lucas, C., Cota, M.P., Bon, C.F., Miras, J.M.C., 2019. Linking Mathematical Praxeologies With an Epidemic Model. International Journal of Technology and Human Interaction, 15(2), 53 – 69. doi: 10.4018/IJTHI.2019040105

Marton, F., Saljö, R., 1976a. On Qualitative Differences in Learning: I –¨ Outcome and Process. British Journal of Educational Psychology, 46, 4 – 11. doi: 10.1111/j.2044-8279.1976.tb02980.x

Marton, F., SALJÖ, R., 1976b. On Quali tative Differences In L earning – II¨ Outcome As A Function Of The Learner’s Conception Of The Task. British Journal of Educational Psychology, vol. 46, pp. 115 – 127. doi: 10.1111/j.20448279.1976.tb02304

Mathews, J.H., Fink, K.D., 1999. Numerical Methods Using MATLAB. Prentice Hall, Upper Saddle River.

Meng, L., Gu, P., Yue, X., Li, S., He, J., 2020. Exploration of Systems Modeling and Simu lation Methods. Journal of Physics: Conference Series , 1635(1), 9484 – 9489. doi: 10.1088/1742-6596/1635/1/012064

Mikhailov, A.I., Chernyi, A.I., Gilyarevskii, R.S., 1966. Informatics –

New Name for the Theory of Scientific Communication. Naukotekhnicheskaya informatsiya, 12, 35 – 39. English translation in FID News Bull., vol. 17 (1967), pp. 70 – 74. doi: 10.1111/j.2044-8279.1976.tb02980.x

Niazi, M.A., Temkin, A., 2017. Why Teach Modeling & Simulation in Schools? Complex. Adapt. Syst. Model, 5(7), 1 – 4. doi: 10.1186/s40294-017-0046-y

O’Bannon, B., Puckett, K., Rakes, G., 2006. Using Technology to Support Visual Learning Strategies. Computers in the Schools, 23(1 – 2), 125 – 137. doi: 10.1300/J025v23n01_11

Oleksandr, P., Synyavska, O., Slyvka-Tylyshchak, A., Tegza, A., Tylyshchak, A., 2023. Integrated Course of Calculus By Using Software. Mathematics and Informatics, 66(4), 373 – 389. doi: 10.53656/math2023-4-4int

Oliveira, M., Napoles, S., 2017. Functions and Mathematica l Modelling´ with Spreadsheets. Spreadsheets in Education, 10(2), 1 – 30. https://sie.scholasticahq.com/article/4658-functions-and

mathematicalmodelling-with-spreadsheets

Paksi, D., Csoka, D., Annuš, N., 2022a. An Overview of Modern Methodological Approaches of IT Education. 14th EDULEARN Conference Proceedings, 5812 – 5817. doi: 10.21125/edulearn.2022.1363

Paksi, D., Csoka, D., Svitek, Sz., 2022. Spreadsheets Feasibility for Mod-´ eling in Education. 14th EDULEARN Conference Proceedings, 5855 – 5861. doi: 10.21125/edulearn.2022.1371

Pohoriliak, O., Syniavska, O., Slyvka-T ylyshchak, A., Tegza, A., Tylyshchak, A., 2023. Integrated Course of Calculus by Using Software. Mathematics and Informatics, 66(4), 373 – 389. doi: 10.53656/math2023-4-4-int

Rodrigez-Jimenez, C., De la Cruz-Campos, J.-C., Campos-Soto, M.-N., RamosNavas-Parejo, M., 2023. Te aching and Lear ning Math ematics in Primar y Education: The Role of ICT-A Systematic Review of the Literature. Mathematics, 11(2), 1 – 12. doi: 10.3390/math11020272

Serra, H., Godoy, W.A.C., 2011. Using Ecological Modeling to Enhance Instruction i n Populati on Dyna mics and t o Stimula te Scie ntific Think ing. Creative Education, 2(2), 83 – 90. doi: 10.4236/ce.2011.22012

Skafa, E., Evseeva, E., Korolev, M., 2022. Inte gration of Mathematical and Computer Simulation Modeling in Engineering Education. Journal of Siberian Federal University. Mathematics & Physics, 15(4), 413 – 430. doi: 10.17516/1997-1397-2022-15-4-413-430

Smirnov, E., Bogun, V., 2006. Visual Modeling Using ICT in Science and Mathematics Education. Advances in Computer, Information, and Systems Sciences, and Engineering, Springer, New York, 453 – 458. doi: 10.1007/14020-5261-8_70

Svitek, Sz., Annuš, N., Filip, F., 2022. Math Can Be Visual – Teaching and Understanding Arithmetical Functions through Visualization. Mathematics, 10(15), 2656. doi: 10.3390/math10152656

Talhofer, V., 2017. Why We Need Mathematics in Cartography and Geoinformatics? Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences, Springer, New York, 123 – 160. doi:10.1007/978-3-319-54819-7_10

Tempelmeier, T., 2016. Didactics in Computer Science Education at Universities of Appl ied Scienc es – A Personal Review o f Modern T eaching Method s. Proceedings of the 9th GI Conference, 195 – 209.

Wellish, H. , 1972. From Informa tion Science to I nformatics: a terminologica l investigation. J. Amer. Math. Soc., 4(3), 157 – 187. doi: 10.1177/096100067200400302, https://doi.org/10.1177/096100067200400302

Zeigler, B.P., Muzy, A., Kofman, E., 2018. Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, Third Edition, Academic Press. doi: 10.1016/C2016-0-03987-6

Zhu, G., Burrow, A.L., 2022. Youth Voice in Self-Driven Learning as a Context for Interdisciplinary Learning. Journal of Educational Studies and Multidisciplinary Approaches, 2(1), 131 – 154. doi: 10.51383/jesma.2022.29

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева