Математика и Информатика

https://doi.org/10.53656/math2022-3-4-rec

2022/3, стр. 247 - 258

RECOGNITION OF PROBLEMATIC EDUCATIONAL SITUATIONS IN COMPUTER MODELING TRAINING

Hristo Hristov
OrcID: 0000-0003-2990-8015
WoSID: Q-7936-2019
E-mail: hth@uni-plovdiv.bg
Faculty of Mathematics and Informatics
Department of Computer Science
University of Plovdiv „Paisii Hilendarski”
236 Bulgaria Blvd.
4003 Plovdiv Bulgaria

Radka Cherneva
OrcID: 0000-0001-6406-7712
E-mail: radi.cherneva@gmail.com
Elin Pelin Primary School
42 Gen. Kolev St.
4001 Plovdiv Bulgaria

Резюме: The article presents the results of the training in Computer Modeling in the third and fourth grades. Through the methods of participatory observation, interviews, discussions, surveys, and content analysis, data was collected, analyzed and systematized by teachers, principals, parents, university methodologists and IT administrators for problematic educational situations arising from technical reasons. An identification system was developed for their establishment. It is used to assess and measure changes in the complexity of the learning process and the workload of the teachers in the Computer Modeling subject in the event of problematic educational situations. In conclusion, guidelines for overcoming and resolving the identified unforeseen situations are provided.

Ключови думи: computer modelling; qualitative research; problematic educational situations

1. Introduction

1. 1. Statement of the problem

The paper examines how difficulties related to computer technology, software, system and application administration, specialized pedagogical work with computers, etc. affect the learning process in the Computer Modeling subject. Computer Modeling is a new subject, which is part of the general education in the third and fourth grades (Nikolov & Yankov 2018; Todorova & Krasteva 2021). The objectives of the training set in the curriculum are to build digital literacy by studying computer models for familiar objects, processes, and phenomena and by experimenting with them (Nikolov & Yankov 2018; Todorova & Krasteva 2021). It acquires knowledge, skills, and attitudes mainly in the field of digital competencies1) along with the implementation of interdisciplinary links (Gerdanikova, Stoitsov & Dimitrov 2021; Radev 2021). The experience gained before the introduction of the subject shows that such training is appropriate to be based on practical and applied tasks and less theoretical constructions (Garov & Tabakova-Komsalova 2017). According to some authors, the requirements for achieving expected results1) are assessed as ambitious (Yovcheva 2018). This thesis is supported by the comparison of the curriculum content in Computer Modeling of Bulgarian third graders with that of similar subject of students in the United Kingdom, where the same concepts are studied and practiced for one school year in Bulgaria and for three years in British schools (Koleva 2019).

When introducing a new subject in the educational system, unforeseen circumstances and situations inevitably appear . Such situations when working with computer devices and software, which have led to a complication of the learning process and additional work by the teachers, we call Problematic Educational Situations (PES). These PES are the subject of the study.

1. 2. Aim of the study

The aim of the paper is to present a study, in which PES in relation to Computer Modeling that create obstacles to the learning process are identified and analyzed. The results were obtained through qualitative research on the methods of participatory observation, interviews, discussions, surveys, and content analysis conducted in the school year 2020/21 with data collected from 10 teachers, 2 principals, 118 parents, 3 university methodologists and 3 IT administrators from the private sector engaged in the maintenance of computer equipment and software at school.

2. Methodology

2. 1. Aspects, accents, specifics

The study methodology combines the application of the methods of participatory observation, interviews with teachers, discussions with school principals, software administrators and university methodologists, as well as analysis of questionnaires and literature. These methods are used to collect data, following a protocol for identification and systematization of PES. It consists of criteria for identification and evaluation of PES and indicators for measurement of changes in the complexity of the organization and management of the learning process and the additional workload of the teachers.

The study was implemented as a qualitative methodology. It often discusses and criticizes the way data is collected and summarized and the way results are interpreted (Belzile & Öberg 2012; Awasthy 2019; Waite 2014). The truthfulness of data and results in qualitative methods is ensured through approaches such as close interaction with people, reasoned interpretation, organizational efficiency, rigor of protocol preparation, criterion validity, validation of communication, and more (Lee 1999; Corbin & Strauss 2014). There is no consensus in the scientific literature on how to apply qualitative methods. It is common practice for the applied method to have an individual nature adapted to the specifics of the field, aiming to achieve close interaction between researchers and studied people. In our study, in parallel with the established methods and practices, an approach to the identity of the confirmation of PES is also applied. Through it, the identification of the PES is established by several independent entities with different functions, roles and responsibilities for the learning process. For example, the establishment of PES upon participatory observation of teachers should be confirmed by a survey of the parents and interviews with the principals.

2. 2. Criteria and indicators

The elementary teacher of Computer Modeling often solves problems related to computer technology. In the study we analyze how this reflects on the organization and conduct of the learning process. For this purpose, the complexity of conducting a process of teacher training and workload is assessed based on comparisons between planned activities and responsibilities and those in the event of PES. We have tentatively accepted that there is a Unit of Basic Complexity and Workload characteristic of normal teaching practice. For established PES we measure the change in the complexity of training and the workload of the teachers. Data is obtained from teacher interviews. The measurements do not analyze pedagogical and methodological competencies. The Unit of Basic Complexity and Workload serves as a measurement unit of the change in the complexity of training and the workload of the teachers in the event of PES. In this sense, answers to general questions are sought, such as: “What additional activities, responsibilities and tasks does the teacher of Computer Modeling perform in case of PES?”, “How does the teacher find solutions to PES?”, “In what way and to what extent do PES change the learning process and engage the teacher?”, etc.

Problem educational situations are identified and grouped according to four evaluation criteria:

K1) it is required to find a solution to a problem in a field other than pedagogy, which the teacher can handle;

K2) it is required to find a solution to a problem in a field other than pedagogy, which the teacher can solve provided that he or she acquires additional knowledge of computer device, computer network, software technology;

K3) there is a task that is unsolvable by the teacher without the help of an IT specialist;

K4) there is a long-term unsolved problem hindering the effectiveness of training, as a result of which the teacher accumulates psychological burden caused by working conditions.

The indicators for measuring PES have quantitative and qualitative characteristics. The scale compares the Unit of Basic Complexity and Workload and the changed Complexity and Workload upon an existing PES. The scale consists of measurements of change from Changed Complexity and Workload towards Unit of Basic Complexity and Workload:

– several times less (easier): with a coefficient over 2.5;

– less (easier): with a coefficient of 1.5 ~ 2.5;

– identical: with coefficient: 1 ~ 1.5;

– more complex (more difficult, more busy): with coefficient of 1.5 ~ 2.5;

– several times more complicated (more difficult, more busy): with coefficient of more than 2.5;

2. 3. Measurement formula

The evaluation criteria identify and group PES, while the scale of indicators measures the changes in the training process. These assessments of Changed Complexity and Workload (CCW) towards Unit of Basic Complexity and Workload (UBCW) are followed by sequence: the Changed Complexity and Workload is identified upon participatory observation, then verified by the confirmation identity approach, and then measured with interview responses. Data is additionally collected for the established PES for analysis from interviews with principals, system administrators and university methodologists or analysis of questionnaires. The specific measurement of teachers’ answers is done according to the following formula:

CCW = UBCW + D/10 + CLP/10, where:

CCW is the Changed Complexity and Workload;

UBCW is the Unit of Basic Complexity and Workload conditionally accepted as 1;

Dis the difficulty in the emergence of a problematic educational situation;

CLP is the complexity of the learning process upon PES;

The formula is applied in the four groups of criteria by which PES are identified. For Difficulty and Complexity of the Learning Process teachers evaluate the changes with a number from 1 to 10. Thus, the Changed Complexity and Workload assumes possible values between 1 and 3, which are applied as a coefficient in the scale for measuring the Changed Complexity and Workload towards the Unit of Basic Complexity and Workload.

The measurement of the Changed Complexity and Workload is an indicator with which the primary teachers of Computer Modeling assess the problems in the teaching of the subject that have arisen on the occasion of technical reasons. The calculation of the Changed Complexity and Workload aims to trace whether there is a tendency to change the complexity of the learning process and the workload of the teachers upon identified PES. The function of the Changed Complexity and Workload is not to measure the complexity of the teaching and the workload of the teachers, but to measure their change.

3. Discussion of data and results

The analysis of the data aims at a deeper understanding of PES, while the quantitative measurements give a measure of the effect on the teaching and the work of teachers. Qualitative data is a description of problem situations that the teacher has encountered, for example: configuring tablet software during class. The study made a number of sections on the changing complexity of the organization of the learning process and the burden on teachers with non-pedagogical engagement issues, such as: “How many astronomical hours do you spend during the week outside of your working hours to find a solution to a problem you encountered in class?” Such questions are aimed at obtaining information about the duration of PES during classes and the extracurricular activities of the teachers.

The established PES are united in three categories, namely: hardware and system software; application software and work on the Internet; material responsibility, communication with parents, as well as individual activities with students.

3.1. Hardware and system software

22 PES have been identified in this category. Their identity from the point of view of teaching is summarized as:

– shutdown of the computer device, damage to a peripheral device, interruption of the hardware component;

– the technical parameters of the computer devices in the school do not meet the system requirements of the application software intended for use in the educational literature;

– change of system settings of the operating system by a student;

– the computer device is infected with malware.

The analysis of the data presented in Figure 1, shows that PES with computer equipment and system software occurs approximately 3 school hours on 1 desktop computer with 13 work devices used by 103 students and 2 school hours on 1 tablet with 13 work devices used by 52 students. This means that every second lesson has a disrupted work plan and rhythm. The different criteria for PES established that:

K1) The process of training in Computer Modeling is more busy with a coefficient of 1.9 in 55% of the classes;

K2) For additional training and self-education, primary school teachers spend 1 astronomical hour per week on average training for 52 students and 13 work devices, and evaluate the preparation for the lesson as more complex with a coefficient of 2.1;

K3) The learning process is more difficult than the usual educational practices with a coefficient of 2.5 due to the emergence of unsolvable tasks for the primary school teacher.

K4) The tension during classes is higher by a coefficient of 1.5.

Figure 1. Hardware and system software category

3.2. Application of software and work on the Internet

38 PES summarized by identity have been identified in this category:

– inactive functionality of a web-based application;

– shutdown and failure of web browser and application software;

– problems related to registration and maintenance of student account and student avatar;

– installing, configuring, or setting up application software by students that interfere with learning;

– visits to web resources that are not safe for mental and physical health.

The research was done for the application software used for the purposes of Computer Modeling training. In the approved textbooks and exercise books of the Ministry of Education and Science for the school year 2020/21, it is recommended to study the visual programs Scratch2) and Code.org3), and in fourth grade in the section Programmable Devices Management – Lego4), Makecode5) and BeeBot6). Some educators have chosen other programs, such as Kodugamelab7), and in the section Programmable Devices Management – Edison8). The analysis of the data presented in Figure 2 indicates that for web platforms, application software and student work on the Internet PES occurs for 1 lesson on 1 desktop computer with 13 work devices used by 103 students and for 1 lesson on 2 tablets with 13 work devices used by 52 students. This means that in every lesson there have been disruptions in the plan and rhythm of the work of the teachers caused by more than one computer device. In the individual groups of emerging PES the following was established:

K1) The process of training in Computer Modeling is more busy with a coefficient of 1.7 in 75% of the classes;

K2) For additional training and self-education, primary school teachers spend 1.5 astronomical hours per week on average training for 52 students and 13 work devices, and evaluate the preparation for the lesson as more complex with a coefficient of 2.4;

K3) The learning process is more difficult than the usual educational practices with a coefficient of 2.6 due to the emergence of unsolvable tasks for the primary school teacher.

K4) The tension in the class is higher by a coefficient of 1.6.

Figure 2. Application software and work on the Internet category

3.3. Material responsibility, correspondence and communication with parents, individual activities with students

In the category of criteria K2 and K4, 17 PES summarized by identity have been identified:

– inapplicable norms for material responsibility of the teacher for computer devices, especially when they are tablets;

– ignoring the need for cooperation with a teacher and part-time participation in the learning process by a high percentage of parents in cases where the student needs technical support at home;

– presence of students excluded from the learning process in topics with specific learning content.

The Preschool and School Education Act provides for parents to participate in the learning process 9). In the training in Computer Modeling for children in the third and fourth grades it is necessary to pay attention and apply a higher degree of control when working on the Internet. According to the surveyed teachers, twothirds of parents are unaware of or ignore the dangers and needs of the child for a safe and secure Internet environment. This problem raises more general questions about personal responsibility and its sharing between parents and teachers. How far does the responsibilities of the teacher and the parent extent? Indirect involvement of parents in the learning process favors and positively affects the effectiveness of student learning (Stoeva 2022; Mihalev 2021). The authors of the paper also consider it necessary and useful to develop and implement mechanisms that engage the parent with responsibilities. From this point of view, individual topics of the Computer Modeling subject can be considered as a field of cooperation between teachers and parents given the future challenges and cultural needs of the presence of students in the web space.

4. Analysis of the results

In recent years, computer technology in primary schools has grown many times over. The increase in the volume of equipment is influenced by the gradual annual introduction of the subjects Computer Modeling in the third and fourth grades and Information Technology in the fifth, sixth and seventh grades10) during the 2018/19 school year. In parallel with the increase in the amount of computer equipment, schools are developing their own websites, local computer networks, video surveillance networks, and many more. This positive phenomenon for education is accompanied by a number of obstacles to the learning process related to the maintenance of computer devices and software. Deficits in hardware diagnostics and prevention, software installation, configuration, system and application administration of web applications and sites are compensated by teachers. Primary schools, especially with smaller teaching staff, where there are no software specialists or a qualified computer labsmanager, often lead to insurmountable problems. It is common practice at schools to enter into contracts with equipment maintenance companies, but the principle of “device is repaired only when it can no longer work” is widely followed. This is shared by principals, teachers, system administrators, and owners of school equipment maintenance companies. Reducing the existing problems in computer hardware and software has an effect on the learning process and the work of teachers and students. Apart from cases of non-functional and inefficient equipment, including discrepancies between hardware parameters and system requirements for newly provided tablets, teachers report: incompatibility of devices when recombining and editing already created Scratch projects when they contain videos, animation or specific character movements; failure of Scratch video player when changing the view from landscape to portrait; failure to navigate the tablet file system; unexplained interruption of Bluetooth connectivity; problems with the representation of graphic objects, etc. The essential thing in the manifestation of such problems is that the primary school teachers do not have the competence and qualification to ascertain their specificity. They do not have a mechanism, nor are there any good practices in schools to address such problems adequately and in a timely manner. As mentioned, the manifestation of such problems leads to frequent PES, which requires a reduction in learning content, and sometimes leads to disruption of school hours. The direct effects on the learning process of the chaotic maintenance of computer hardware and software can be considered from several points of view: disrupting the rhythm of the learning process, increasing the volume of work, mental strain of the primary school teachers and demotivation of students.

Based on the analysis of the established several dozen PES, we can draw the following conclusions:

– The variable complexity of the training and the workload of the teachers in Computer Modeling depends on the state of the computer technology;

– The work of students with computer devices at school, including the Internet, is not protected by software solutions and good practices. Providing a safe environment for working on the Internet is limited to instructions and verbal recommendation from the teachers. In many cases, the responsibility is only on paper;

– Primary schools do not have the capacity, including qualified human resources and financial resources, to qualitatively administer computer equipment and software;

– Prevention, diagnostics and administration of computer equipment and software follows the principle “device is repaired only when it can no longer work”;

– Frequent Problematic Educational Situations lead to disruption of the learning process in Computer Modeling and the creation of a psychological burden for the teachers;

– Overcoming Problematic Educational Situations in the training in Computer Modeling is closely related to the application of established practices of monitoring and prevention of computer devices and software.

5. Conclusion

From the many interviews conducted with teachers, principals, system administrators, university methodologists and surveyed parents, based on their opinions and positions, we concluded that: Primary schools do not have employees who have the necessary qualifications and competence to provide qualitative service of computer devices, software, networks, websites, and other tools and technologies provided and used for training purposes. For this reason, we believe that it is necessary to find a monitoring mechanism to assess the condition of the technical means provided for training, together with their maintenance. Should the schools be financially secured? Should external specialists with a higher level of qualification be sought? Should a monitoring and service system be set up under an institution of the Ministry of Education and Science or a local principle? All these are questions open for discussion. However, they must be answered by bodies that are higher in the hierarchy of the education system than the individual schools. It is certain that now and in the future primary schools will need qualified specialists and financial resources to service computer equipment and software so that they can function effectively in the service of teachers, students, and the learning process.

Acknowledgements. The work is funded by the MU21-FMI-004 and MU21FMI-011 projects at the Research Fund of Paisii Hilendarski University of Plovdiv.

NOTES

1. Ordinance No.5 of 30.11.2015 on general education (promulgated State Gazette, Issue 95 of 08.12.2015, effective since 08.12.2015), [viewed on 17.01.2022], Available from: https://mon.bg/.

2. Official website of the Scratch, [viewed 13.01.2022], Available from: https:// scratch.mit.edu/.

3. Official website of the Code, [viewed 13.01.2022], Available from: Code.org.

4. Official website of the Lego [viewed 13.01.2022], Available from: https://www. lego.com/en-us.

5. Official website of the Microsoft MakeCode [viewed 13.01.2022], Available from: https://makecode.microbit.org/.

6. Website of the BeeBot [viewed 13.01.2022], Available from: https://beebot. terrapinlogo.com/.

7. Official website of the Kodu Game Lab, [viewed 14.01.2022], Available from: https://www.kodugamelab.com/.

8. Official website of the Edison, [viewed 14.01.2022], Available from:[https:// meetedison.com/.

9. Pre-School and School Education Act (promulgated State Gazette, Issue 79 of 13.10.2015, amended and supplemented State Gazette, Issue 82 of 18.09.2020) (published18.09.2020), [viewed 17.01.2022], Available from: https:// dv.parliament.bg/.

10. Ordinance No 4 of 30.11.2015on the curriculum (promulgated State Gazette, Issue 94 of 04.12.2015, amended and supplemented State Gazette, Issue 76 of 28.08.2020) (updated 10.09.2021) [viewed on 17.01.2022], Available from: https://mon.bg/.

REFERENCES

NIKOLOV, V. & YANKOV, T., 2018. Computer Modelling in the Third Grade – Problems and Solvings. Education and Technologсies. 9(2), 366 – 369.

TODOROVA, N. & KRASTEVA, D., 2021. Computer Modeling in Support of Mathematic in the Initial Stage. Proceedings of the Fiftieth Spring Conference of the Union of Bulgarian Mathematicians, 366 – 369.

GERDANIKOVA, M., STOITSOV, G. & DIMITROV, I., 2021. Interdisciplinary Education with Scratch in Primary School. Proceedings of the Anniversary International Scientific Conference Research and Educationin Mathematics, Informatics and their Applications (REMIA’2021), 163 – 168.

RADEV, V.,2021. Design of Educational Computer Game in Second Grade Mathematics with the Help of Scratch. EDULEARN21 Proceedings, 939 – 948.

GAROV, K. & TABAKOVA-KOMSALOVA, V., 2017. Learning Content of Educational Tasks in Computer Programming Training for 10 – 11 Year Old Children. Tem Journal [online]. 6(4), 847 – 854, [viewed23February 2022]. Available from: https://dx.doi.org/10.18421/TEM64-26.

YOVCHEVA, B., 2018. Rolia na algoritmichnoto programirane za podgotovkata na visokokvalifitsiran I spitsialistiza IT sektora, Proceedings of the XI National Conference on “Education and Research in the Information Society”, 162 – 169.

KOLEVA, Н., 2019. The Primary School Teacher and the Computer Modeling. Pedagogika-Pedagogy, 91(8), 1183– 1200 [InBulgarian].

BELZILE, J. A. & ÖBERG, G., 2012. Where to begin? Grappling with how to use participant interaction in focus group design. Qualitative Research [online], 12(4), 459 – 472, [viewed 24 February 2022]. Available from: https://doi.org/10.1177/1468794111433089.

AWASTHY, R., 2019. Nature of Qualitative Research, In: SUBUDHI, R.N. & S. MISHRA (Eds.) Methodological Issues in Management Research: Advances, Challenges, and the Way Ahead [online]. Bingley: Emerald Publishing Limited, 145 – 161, [viewed 24 February 2022]. Available from: https://doi.org/10.1108/978-1-78973-973-220191010.

WAITE, D., 2014. Teaching the Unteachable: Some Issues of Qualitative Research Pedagogy, Qualitative Inquiry [online], 20(3), 267 – 281, [viewed 24 February 2022]. Available from: https://doi.org/10.1177/1077800413489532.

LEE, T.W., 1999. Using Qualitative Methods in Organizational Research. Thousand Oaks, CA: SAGE Publications.

CORBIN, J. & STRAUSS, A., 2015. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. 4th ed., Thousand Oaks, CA: SAGE Publications.

STOEVA, T., 2022. Parental Training Specified on the Basis of the Child’s Age, Pedagogika-Pedagogy, 94(2), 147 – 158 [In Bulgarian].

MIHALEV, V., 2021. Aspects of Interaction between the School Community and Parents - Possible Solutions, e-Journal VFU [online]. 14(48) [viewed 2June 2022]. Available from: https://ejournal.vfu.bg/AISCP [In Bulgarian].

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева