Математика и Информатика

2020/2, стр. 202 - 217

ON SOME RANDOMIZED ALGORITHMS AND THEIR EVALUATION

Krasimir Yordzhev
OrcID: 0000-0002-0432-8025
WoSID: F-2628-2014
E-mail: yordzhev@swu.bg
Department of Informatics
Faculty of Natural Sciences
South-West University "Neofit Rilski"
Blagoevgrad Bulgaria

Резюме: The paper considers implementations of some randomized algorithms in connection with a random \(n^{2} \times n^{2}\) Sudoku matrix with the programming language \(\mathrm{C}++\). For this purpose we describe the set \(\Pi_{n}\) of all \((2 n) \times n\) matrices, consisting of elements of the set \(\mathbb{Z}_{n}=\{1,2, \ldots, n\}\), such that every row is a permutation. We emphasize the relationship between \(\Pi_{n}\)-matrices and the \(n^{2} \times n^{2}\) Sudoku matrices. An algorithm to obtain random \(\Pi_{n}\) matrices is presented. Several auxiliary algorithms that are related to the underlying problem have been described. We evaluated all algorithms according to two criteria - probability evaluation, and time for the generation of random objects and checking a belonging to a specific set. These evaluations are interesting from both theoretical and practical points of view because they are particularly useful in the analysis of computer programs.

Ключови думи: randomized algorithm; random object; permutation; binary matrix; algorithm evaluation; Sudoku matrix

1. Introduction

This article is intended for anyone who studies programming, as well as for teachers. The work is a continuation and addition of (Yordzhev, 2012). Here, along with the basic definitions and ideas for constructing randomized algorithms outlined in the cited publication, we will also describe specific implementations of these algorithms in the C++ programming language.

To demonstrate the ideas outlined in the article, we have chosen the \(\mathrm{C}++\) programming language (Todorova, 2002), (Todorova, 2011a), (Todorova, 2011b), but they can be implemented in any other algorithmic language. We hope that students who prefer to write in Java (Hadzhikolev & Hadzhikoleva, 2016) or any other modern programming language will have no problems with the implementation of the algorithms we have proposed.

The presented in the article source codes have been repeatedly tested with various input data and they work correctly.

Let \(\mathfrak{M}\) be a finite set. A Random objects generator of \(\mathfrak{M}\) is every algorithm \(\mathcal{A}_{\mathfrak{M}}\) randomly generating any element of \(\mathfrak{M}\), while elements generated by a random objects generator will be called random elements of \(\mathfrak{M}\), for example random numbers, random matrices, random permutations, etc. We take for granted that probabilities to obtain different random elements of \(\mathfrak{M}\) by means of \(\mathcal{A}_{\mathfrak{M}}\) are equal, and are also equal to \(\tfrac{1}{|m|}\). We denote the time that the random objects generator needs to obtain a random element of \(\mathfrak{M}\) with \(T\left(\mathcal{A}_{\mathfrak{M}}\right)\).

By randomized algorithm we will mean any algorithm which essentially uses a random object generator in its work.

The randomized algorithms are very often used to solve problems, which are proved to be NP-complete. For detailed information about NP-complete problems and their application see (Garey & Jonson, 1979) or (Hopcroft et al., 2001). A proof that a popular Sudoku puzzle is NP-complete is given in (Yato, 2003) and (Yato & Seta, 2003).

In this study, we will solve some particular cases from the following class of problems:

Let \(n\) and \(m=m(n)\) be natural numbers. Let us consider the set \(\mathcal{U}\), consisting of objects every of which dependent on \(m\) parameters, and every parameter belongs to the finite set \(\mathfrak{M}\). We assume that there is a rule that uniquely describes object \(u \in \mathcal{U}\), if all \(m\) parameters are specified. Let \(\mathcal{V} \subset \mathcal{U}\). The problem is to obtain (at least one) object, which belongs to the set \(\mathcal{V}\). The number of the elements of the sets \(\mathcal{U}\) and \(\mathcal{V}\) depends only on the parameter \(m\), which is an integer function of the argument \(n\).

The standard algorithm that solves the above problem is briefly described as follows:

Algorithm 1

1) We obtain consequently \(m=m(n)\) random elements of \(\mathfrak{M}\) using random objects generator \(\mathcal{A}_{\mathbb{m}}\) and so we get the object \(u \in \mathcal{U}\);

2) We check if \(u \in \mathcal{V}\). If the answer is no, everything is repeated.

In other words, if we already have a random objects generator, a randomized algorithm can be used as a generator of more complex random objects. The efficiency of Algorithm 1 depends on the particular case in which it is used and can be evaluated according to the following criteria:

Probability evaluation: If \(p(n)\) denotes the probability after generating \(m=m(n)\) random elements of \(\mathfrak{M}\) of obtaining an object of \(\mathcal{V}\), then according to the classical probability formula:

(1)\[ p(n)=\tfrac{|\mathcal{v}|}{|\mathcal{u}|} \]

Time for generating and checking: We denote by \(\tau(n)\) the time needed to execute one iteration (repetition) of Algorithm 1. Then

(2)\[ \tau(n)=m(n) T\left(\mathcal{A}_{\mathfrak{m}}\right)+\theta(n), \]

where \(\theta(n)\) is the time to examine if the obtained object belongs to the set \(\mathcal{V}\).

It is obvious that the efficiency of Algorithm 1 will be proportional to \(p(n)\) and inversely proportional to \(\tau(n)\).

Of course, time for generating and checking does not give us the total time to execute the algorithm, since the number of repetitions is not known in advance. However, the characteristic \(\tau(n)\) is essential to the effectiveness of any randomized algorithms.

The cases in which probability evaluation is equal to 1, i.e. the cases in which the algorithm is constructed directly to obtain element of the set \(\mathcal{V}\) and there is no need of belonging examination, are of great interest, as only one iteration is implemented then, i.e. there is no repetition. Let \(n\) be a positive integer. We denote by \(\mathbb{Z}_{n}\) the set of the integers

\[ \mathbb{Z}_{n}=\{1,2, \ldots, n\} \]

There are standard procedures for obtaining random numbers of the set \(\mathbb{Z}_{n}\) in most of the programming environments. We take this statement for granted and we will use it in our examinations. Let \(\mathcal{A}_{n}\) be a similar procedure. In the current study, we will consider that for \(n \neq l\)

(3)\[ T\left(\mathcal{A}_{n}\right) \approx T\left(\mathcal{A}_{l}\right)=t_{0}=\text { Const } \]

Below we show an example of a C ++ function that generates a random positive integer belonging to the set \(\mathbb{Z}_{n}=\{1,2, \ldots, n\}\) :

Algorithm 2.

int rand_Zn(int n)
{
return rand() % n + 1;
}

In order for the function rand_Zn(int) to work so that every time we execute the program in which we will use it to obtain various random numbers, we must add the procedure

srand(time(0));

before first accessing this function, for example, at the beginning of the main() function. The functions rand() and srand(s) are from the library <cstdlib>, and the function time(t) is from the library <ctime>. For more details, see for example (Azalov & Zlatarova, 2011, p. 75).

Let \(P_{i j}, 0 \leq i, j \leq n-1\) be \(n^{2}\) in number square \(n \times n\) matrices, whose elements belong to the set \(\mathbb{Z}_{n^{2}}=\left\{1,2, \ldots, n^{2}\right\}\). Then \(n^{2} \times n^{2}\) matrix

\[ P=\left[P_{i j}\right]=\left[\begin{array}{llll} P_{00} & P_{01} & \cdots & P_{0 n-1} \\ P_{10} & P_{11} & \cdots & P_{1 n-1} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n-10} & P_{n-11} & \cdots & P_{n-1 n-1} \end{array}\right] \] is called a Sudoku matrix, if every row, every column and every submatrix \(P_{i j}\), \(0 \leq i, j \leq n-1\) make permutation of the elements of set \(\mathbb{Z}_{n^{2}}\), i.e. every integer \(s \in\left\{1,2, \ldots, n^{2}\right\}\) is present only once in every row, every column and every submatrix \(P_{i j}\). Submatrices \(P_{i j}\) are called blocks of \(P\).

In this paper we will illustrate the above mentioned ideas by analyzing some randomized algorithms for obtaining an arbitrary permutation of \(n\) elements, an arbitrary \(n^{2} \times n^{2}\) Sudoku matrix and an arbitrary \((2 n) \times n\) matrix with \(2 n\) rows and \(n\) columns, every column of which is a permutation of \(n\) elements.

We will prove that the problem for obtaining ordered \(n^{2}\)- tuple of \((2 n) \times n\) matrices, every row of which is a permutation of elements of \(\mathbb{Z}_{n}\) is equivalent to the problem of generating a Sudoku matrix. We will analyze some possible algorithms for generating a random Sudoku matrix.

How to create computer program for Sudoku solving (a mathematical model of the algorithm), using the concept set combined with the trial and error method is described in (Yordzhev, 2018).

2. Random permutations

Let \(n\) be an positive integer. We denote by \(\mathcal{S}_{n}\) the set of all permutations \(\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle\), where \(a_{i} \in \mathbb{Z}_{n}\) and \(a_{i} \neq a_{j}\) when \(i \neq j, 0 \leq i, j \leq n-1\).

If \(\sigma=\left\langle a_{0}, a_{2}, \ldots, a_{n-1}\right\rangle \in \mathcal{S}_{n}\) is a permutation of all elements of the set \(\mathbb{Z}_{n}=\{1,2, \ldots, n\}\) then obviously \(\sigma\) depends of \(m(n)=n\) parameters \(a_{0}, a_{1}\), … \(a_{n-1}\).

As it is well known, the number of all \(n\)-tuples of integers \(\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle\), \(x_{i} \in \mathbb{Z}_{n}\) is equal to

(4)\[ |\underbrace{\mathbb{Z}_{n} \times \mathbb{Z}_{n} \times \cdots \times \mathbb{Z}_{n}}_{n}|=n^{n} \]

and the number of all permutations of \(n\) elements is equal to

(5)\[ \left|\mathcal{S}_{n}\right|=n!=1 \cdot 2 \cdot 3 \cdots n \]

We denote by \(p_{1}(n)\) the probability to obtain a random permutation of \(S_{n}\) with the help of Algorithm 1. Then according to equations (1), (4) and (5) we obtain:

(6)\[ p_{1}(n)=\tfrac{n!}{n^{n}} \]

The next algorithm works in time \(O(n)\) and checks if ordered \(n\)-tuple \(\left\langle a_{0}, a_{1}, \ldots a_{n-1}\right\rangle, a_{i} \in \mathbb{Z}_{n}, i=0,1, \ldots, n-1\) is a permutation.

Algorithm 3. Check if given integer array a[n] is a permutation of the elements from the set \(\mathbb{Z}_{n}=\{1,2, \ldots, n\}\).

bool alg3(int a[], int n)
{
int v[n+1];
for (int i=1; i<=n; i++) v[i] = 0;
for (int i=0; i<n; i++)
{
if ( (a[i] > n) || (a[i] < 1) ) return false; /* Incorrect data

there is an element that does not belong to the set .*/ v[a[i]]++; if (v[a[i]] > 1) return false; /* Since the number a[i] occurs more than once in the n-tuple. */

}
return true;
}

Let \(\tau_{1}(n)\) denote the time for implementing one iteration of Algorithm 1 when a random permutation of elements of \(\mathbb{Z}_{n}\) is obtained, and let \(\theta_{1}(n)\) denote the time for checking whether an arbitrary \(n\)-tuples of numbers of \(\mathbb{Z}_{n}\) belongs to \(\mathcal{S}_{n}\). Analyzing Algorithm 3, it is easy to see that

(7)\[ \theta_{1}(n) \in O(n) . \]

Then, having in mind the equations (2), (3) and (7) we obtain the following time for generating and checking:

(8)\[ \tau_{1}(n)=n T\left(\mathcal{A}_{n}\right)+\theta_{1}(n) \in n t_{0}+O(n)=O(n) \]

The following algorithm is also randomized (random integers are generated), but its probability evaluation is equal to 1, i.e. in Algorithm 1 step 2 is not implemented, because when the first random \(n\) numbers are generated the obtained ordered \(n\)-tuple is a permutation.

Algorithm 4л Obtaining random permutation \(\sigma=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle \in \mathcal{S}_{n},\) \(\sigma=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle \in \mathcal{S}_{n}\), where \(a_{i} \in \mathbb{Z}_{n}, i=1,2, \ldots, n, a_{i} \neq a_{j}\) when \(i \neq j\).

void alg4(int a[], int n)
{
int v[n];
for (int i=0; i<n; i++) v[i] = i+1;
int r;
for (int i=0; i<n; i++)
{
r = rand_Zn(n-i)-1;
a[i] = v[r]; /* We remove the element v[x] and reduce the number

of the elements of the array with 1. */

for (int j=r; j<=n-i; j++) v[j] = v[j+1];
}
}

Analyzing the work of Algorithm 4, we see that in the end, \(n\) different elements of the set \(\mathbb{Z}_{n}=\{1,2, \ldots, n\}\) are filled in the array \(\mathrm{a}[\mathrm{n}]\). We consistently randomly take these elements from the array v with length \(n\) where all integers \(1,2, \ldots, n\) are filled, such that \(\mathrm{v}[\mathrm{i}]=\mathrm{i}+1, i=0,1, \ldots, n-1\). After each choice we remove the selected integer from the array v, i.e. from the integers which we will randomly take in the next steps of the algorithm. Therefore Algorithm 4 which obtains random permutation has probability evaluation:

(9)\[ p_{2}(n)=1 \]

In Algorithm 4, there are two nested loops, so that the outer loop is repeated exactly \(n\) times. Internal loop in the worst case (if randomly selected integer equal to the value of the item v[0]) will be repeated as many times as is the length of the array v, which in the first iteration of the outer loop is equal to \(n\) and decreased each time by 1. Thus, we obtain the following time evaluation for generating and checking in one iteration of Algorithm 4.

(10)\[ \tau_{2}(n) \in t_{0}[O(n)+O(n-1)+\cdots+O(1)]=O\left(n^{2}\right) . \]

We see that Algorithm 1 applied for obtaining random permutations is more efficient than Algorithm 4 in terms of the time for generating and checking. But on the other hand, the probability evaluation of Algorithm 4 is equal to \(p_{2}(n)=1\). The probability evaluation of Algorithm 1 is equal to \(p_{1}(n)=\tfrac{n!}{n^{n}} \lt 1\) for \(n \geq 2\). Considering that the number of iterations is previously unknown and \(\lim _{n \rightarrow \infty} p_{1}(n)=0\), then this makes Algorithm 4 overall much more effective than the Algorithm 1 when applied to generate random permutations.

3. Random (2n) \(X n\) matrices, every row of which is a permutation of elements of \(\mathbb{Z}_{n}\)

Let \(\Pi_{n}\) denote the set of all \((2 n) \times n\) matrices, which are also called \(\Pi_{n}\) matrices, in which every row is a permutation of all elements of \(\mathbb{Z}_{n}\). In this case \(\mathfrak{M}=\mathbb{Z}_{n}\) and \(m(n)=2 n^{2}\). It is obvious that

(11)\[ \left|\Pi_{n}\right|=(n!)^{2 n} \]

It is easy to see that when we obtain random \(\Pi_{n}\) matrix with the help of Algorithm 1 the following evaluations can be observed:

Probability evaluation:

(12)\[ p_{3}(n)=\tfrac{|v|}{|u|}=\tfrac{(n!)^{2 n}}{n^{2 n^{2}}} \]

Time for generating and checking:

(13)\[ \tau_{3}(n)=m(n) T\left(\mathcal{A}_{n}\right)+2 n \tau_{1}(n) \in 2 n^{2} t_{0}+2 n O(n)=O\left(n^{2}\right), \]

where \(\tau_{1}(n)\) is obtained according to equation (8).

The next randomized algorithm will be more efficient than Algorithm 1 in obtaining random \(\Pi_{n}\) matrix according to the probability evaluation.

Algorithm 5. Obtaining a random matrix \(M=\left[\pi_{i j}\right]_{2 n \times n} \in \Pi_{n}\) with probability evaluation equal to 1. The algorithm will write the elements of the matrix \(M=\left[\pi_{i j}\right]_{2 n \times n}\) in the array p[] with size \(2 n^{2}\), such that \(\pi_{i j}=\mathrm{p}\left[\mathrm{i}^{*} \mathrm{n}+\mathrm{j}\right]\), where \(0 \leq i \lt 2 n, 0 \leq j \lt n\).

void alg5(int p[], int n)
{
int m=2*n;
int a[n];
for (int i=0; i<m; i++)
{
alg4(a,n);
for (int j=0; j<n; j++)
{
p[i*n+j] = a[j];
}
}
}

Practically, Algorithm 5 repeats \(2 n\) times Algorithm 4. As Algorithm 4 has a probability evaluation equal to 1, then Algorithm 5 which obtains random \(\Pi_{n}\) matrix also has probability evaluation

(14)\[ p_{4}(n)=1 p_{4}(n)=1 \]

It is easy to see that Algorithm 5 works in time for generating and checking

(15)\[ \tau_{4}(n)=2 n \tau_{3}(n) \in 2 n O\left(n^{2}\right)=O\left(n^{3}\right) . \]

As we can see below \(\Pi_{n}\) matrices can successfully be used to create algorithms that are efficient in developing Sudoku matrices.

4. \(S\)-permutation matrices

A binary (or boolean, or (0,1)-matrix) is called a matrix whose elements belong to the set \(\mathfrak{B}=\{0,1\}\). With \(\mathfrak{B}_{n \times m}\) we will denote the set of all \(n \times m\) binary matrices. The set of all square \(n \times n\) binary matrices we will denote with \(\mathfrak{B}_{n}=\mathfrak{B}_{n \times n}\)

Two binary matrices \(A=\left[a_{i j}\right]_{n \times m} \in \mathfrak{B}_{n \times m}\) and \(B=\left[b_{i j}\right]_{n \times m} \in \mathfrak{B}_{n \times m}\) will be called disjoint if there are not elements \(a_{i j} \in A\) and \(b_{i j} \in B\) with one and the same indices \(i\) and \(j\), such that \(a_{i j}=b_{i j}=1\), i.e. if \(a_{i j}=1\) then \(b_{i j}=0\) and if \(b_{i j}=1\) then \(a_{i j}=0,1 \leq i \leq n, 1 \leq j \leq m\).

A square binary matrix \(A \in \mathfrak{B}_{n}\) is called permutation, if there is only one 1 in

every row and every column of the matrix \(A\). Let \(\Sigma_{n^{2}}\) denote the set of all permutation \(n^{2} \times n^{2}\) matrices of the following type

(16)\[ A=\left[\begin{array}{llll} A_{0} & 0 & A_{01} & \cdots \\ A_{10} & A_{12} & \cdots & A_{0 n-1} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n-10} & A_{n-11} & \cdots & A_{n-1 n-1} \end{array}\right] \]

where for every \(s, t \in\{0,1,2, \ldots, n-1\} A_{s t}\) is a square \(n \times n\) binary submatrix (block) with only one element equal to 1, and the rest of the elements are equal to 0. The elements of \(\Sigma_{n^{2}}\) will be called \(S\)-permutation.

Geir Dahl introduces the concept of S-permutation matrix [Dahl, 2009] in relation to the popular Sudoku puzzle giving the following obvious proposition:

Proposition 4.1. (Dahl, 2009) A square \(n^{2} \times n^{2}\) matrix \(P\) with elements of \(\mathbb{Z}_{n^{2}}=\left\{1,2, \ldots, n^{2}\right\}\) is Sudoku matrix if and only if there are mutually disjoint matrices \(A_{1}, A_{2}, \ldots, A_{n^{2}} \in \Sigma_{n^{2}}\) such that \(P\) can be presented as follows:

\[ P=1 \cdot A_{1}+2 \cdot A_{2}+\cdots+n^{2} \cdot A_{n^{2}} \]

As it is proved in [Dahl, 2009] and with other methods in (Yordzhev, 2013)

(17)\[ \left|\Sigma_{n^{2}}\right|=(n!)^{2 n} \]

Therefore, if a random \(\Sigma_{n^{2}}\) matrix obtained by means of Algorithm 1 the following probability evaluation is valid:

(18)\[ p_{5}(n)=\tfrac{(n!)^{2 n}}{2^{\left(n^{2}\right)^{2}}}=\tfrac{(n!)^{2 n}}{2^{n^{4}}} \]

In order to obtain a random \(\Sigma_{n^{2}}\) matrix, we have to generate \(m(n)=\left(n^{2}\right)^{2}=n^{4}\) random integers, which belong to the set \(\mathfrak{B}=\{0,1\}\). Hence, whatever randomized algorithm is used, the result is the following time for generating and checking:

(19)\[ \tau_{5}(n)=m(n) T\left(\mathcal{A}_{2}\right)+\theta_{5}(n)=n^{4} t_{0}+\theta_{5}(n) \in O\left(n^{z}\right), \quad z \geq 4 \]

where \(\theta_{5}(n)\) is time for checking that the given binary matrix belongs to the set \(\Sigma_{n^{2}}\).

Below we will give an algorithm (Algorithm 6), which checks that the given binary matrix is \(\Sigma_{n^{2}}\) and works in time \(O\left(n^{4}\right)\), i.e. \(\theta_{5}=O\left(n^{4}\right)\) and therefore \(z=4\).

Let \(A_{s t}=\left[\left(a_{s t}\right)_{k l}\right]_{n \times n}\) be an arbitrary \(n \times n\) matrix, \(0 \leq k, l, s, t \lt n\). Let \(A=\left[\alpha_{i j}\right]_{n^{2} \times n^{2}}, 0 \leq i, j \lt n^{2}\) be an \(n^{2} \times n^{2}\) matrix such that for every \(i, j, k, l, s, t\), \(0 \leq i, j \lt n^{2}\) and \(0 \leq k, l, s, t \lt n\), the equality

\[ \alpha_{i j}=\left(a_{s t}\right)_{k l} \] is satisfied. Then, taking into account that the numbering of indexes starts from 0,

it is easily seen that

(20)\[ i=s n+k \]

and

(21)\[ j=t n+l . \]

Algorithm 6. Checking that a binary \(n^{2} \times n^{2}\) matrix \(B=\left[\beta_{i j}\right] \in \Sigma_{n^{2}}\). The algorithm gets the elements of the matrix \(B=\left[\beta_{i j}\right]\) from the array a[] with size \(n^{4}\), such that \(\beta_{i j}=\mathrm{a}\left[\mathrm{i}^{*} \mathrm{n} 2+\mathrm{j}\right]\), where \(n 2=n^{2}, 0 \leq i \lt n^{2}-1,0 \leq j \lt n^{2}-1\).

For ease, we will not check for correctness of the input data, i.e. whether the input matrix is binary, in other words whether all its elements are 0 or 1. We leave this check to the reader for an exercise.

bool alg6(int a[], int n)
{
int n2 = n*n;
int r;
int i,j,k,l,s,t;
for (i=0; i<n2; i++)
{
r=0;
for (j=0; j<n2; j++)
{
r = r+a[i*n2+j];
if(r>1) return false; /* There are more than one
1 in the i-th row. */
}
if(r==0) return false;/* i-th row is completely
zero.*/
}
for (j=0; j<n2; j++)
{
r=0;
for (i=0; i<n2; i++)
{
r = r+a[i*n2+j];
if(r>1) return false; /* There are more than one
1 in the i-th column. */
}
if(r==0) return false;/* i-th column is completely
zero.*/
}
for (s=0; s<n; s++)
{
for (t=0; t<n; t++)
{
r=0;
for (k=0; k<n; k++)
{
for (l=0; l<n; l++)
{
i = s*n+k;/* According to equation (20) */
j = t*n+l; /* According to equation (21)*/
r= r+a[i*n2+j];
}
}
if(r!=1) return false;
}
}
return true;
}

When we compare (18) with (12) and (14), as well as (19) with (13) and (15) we may assume that algorithms which use random \(\Pi_{n}\) matrices are expected to be more efficient (regard to probability and time for generating and checking) than algorithms using random \(\Sigma_{n^{2}}\) matrices to solve similar problems. This gives grounds for further examination of the \(\Pi_{n}\) matrices' properties.

5. Random Sudoku matrices

We will give a little bit more complex definition of the term ”disjoint” regarding \(\Pi_{n}\) matrices. Let \(C=\left[c_{i j}\right]_{2 n \times n}\) and \(D=\left[d_{i j}\right]_{2 n \times n}\), be two \(\Pi_{n}\) matrices. We regard \(C\) and \(D\) as disjoint matrices, if there are no natural numbers \(s, t \in\{1,2, \ldots n\}\) such that the ordered pair \(\left(c_{s t}, c_{n+t s}\right)\) is equal to the ordered pair \(\left(d_{s t}, d_{n+t s}\right)\).

The relationship between \(\Pi_{n}\) matrices and Sudoku matrices is illustrated by the following theorem, considering Proposition 4.1.

Theorem 5.1. There is a bijective map from \(\Pi_{n}\) to \(\Sigma_{n}{ }^{2}\) and the pair of disjoint matrices of \(\Pi_{n}\) corresponds to the pair of disjoint matrices of \(\Sigma_{n}{ }^{2}\)

Proof. Let \(P=\left[\pi_{i j}\right]_{2 n \times n} \in \Pi_{n}\). We obtain an unique matrix of \(\Sigma_{n^{2}}\) from \(P\) by means of the following algorithm:

Algorithm 7.

From a given matrix \(M=\left[\pi_{i j}\right]_{2 n \times n} \in \Pi_{n}\) we obtain a unique matrix \(A=\left[\alpha_{i j}\right]_{n^{2} \times n^{2}} \in \Sigma_{n^{2}}\). The algorithm gets the elements of the matrix \(M=\left[\pi_{i j}\right]_{2 n \times n}\) from the array p[] with size \(2 n^{2}\), such that \(\mathrm{p}\left[\mathrm{i}^{*} \mathrm{n}+\mathrm{j}\right]=\pi_{i j}, 0 \leq i \lt 2 n, 0 \leq j \lt n\) and obtained using Algorithm 5. The algorithm will write the elements of the matrix \(A=\left[\alpha_{i j}\right]_{n^{2} \times n^{2}}\) in the array a[] with size \(n^{4}\), such that \(\alpha_{i j}=\mathrm{a}\left[\mathrm{i}^{*} \mathrm{n}^{*} \mathrm{n}+\mathrm{j}\right]\), \(0 \leq i, j \lt n^{2}\).

void alg7(int p[], int a[], int n)
{
int i,j,s,t;
int n2 = n*n;
int n4 = n2*n2;
for (i=0; i<n4; i++) a[i] = 0;
int b[2][n][n];
for (i=0; i<n; i++)
for (j=0; j<n; j++)
b[0][i][j] = p[i*n+j];/* (22) */
for (i=0; i<n; i++)
for (j=0; j<n; j++)
b[1][j][i] = p[n2+i*n+j];/* (23) */
for (s=0; s<n; s++)
for (t=0; t<n; t++)
{
i = s*n+b[0][s][t]-1; /* According to equation (20) */
j = t*n+b[1][s][t]-1;/* According to equation (21) */
a[i*n2+j] = 1;
}
}

For convenience, at the beginning of Algorithm 7, we constructed an auxiliary \(2 \times n \times n\) three-dimensional array b such that,according to equation (22)

(24)\[ \mathrm{b}[0][\mathrm{i}][\mathrm{j}]=\pi_{i j} \]

and according to equation (23)

(25)\[ \mathrm{b}[1][\mathrm{j}][\mathrm{i}]=\pi_{n+i j} \]

is satisfied for each \(i, j \in\{0,1, \ldots, n-1\}\).

For example, from the matrix

(26)\[ P=\left[\begin{array}{lll} 1 & 3 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right] \in \Pi_{3} \]

we get the array b. For more clearly, to the left of the comma we will write the elements of \(\mathrm{b}[0]\), and to the right of the comma-the elements of \(\mathrm{b}[1]\) :

(27)\[ b=\left[\begin{array}{lll} 1,3 & 3,1 & 2,1 \\ 2,1 & 3,2 & 1,2 \\ 1,2 & 2,3 & 3,3 \end{array}\right] \]

From the array b, Algorithm 7 obtains a binary matrix \(A=\left[\alpha_{i j}\right]_{n^{2} \times n^{2}}\), \(0 \leq i, j \lt n^{2}\) of type (16) such that if \(A_{s t}=\left[\gamma_{i j}\right]_{n \times n}, 0 \leq s, t \lt n\) is a block in

(28)\(A\), then

\[ \gamma_{i j}=\left\{\begin{array}{l} i=s * n+b[0][s][t]-1 \\ j=t * n+b[1][s][t]-1 \end{array}\right. \]

From (24), (25) and (28) follows that there is a single 1 in each block \(A_{s t} \in A\).

Let \(s \in\{0,1, \ldots, n-1\}\). Since \(s\)-th row of the matrix \(P\) is a permutation, then there is only one 1 in every row of \(n \times n^{2}\) matrix

\[ R_{s}=\left[\begin{array}{llll} A_{s 0} & A_{s 1} & \cdots & A_{s n-1} \end{array}\right] \]

Similarly, since ordered \(n\)-tuple \(\left\langle p_{n+t}, p_{n+t}, \ldots, p_{n+t n}\right)\) which is \((n+t)\)-th row of \(P\) is a permutation for every \(t \in \mathbb{Z}_{n}\), then there is only one 1 in every column

of \(n^{2} \times n\) matrix \[ C_{t}=\left[\begin{array}{l} A_{1 t} \\ A_{2 t} \\ \vdots \\ A_{n t} \end{array}\right] \]

Therefore, the matrix \(A\) which is obtained with the help of Algorithm 7 is a \(\Sigma_{n^{2}}\) matrix.

For example, from the array B, which corresponds to the array (27) and using Algorithm 7, we obtain the \(\Sigma_{9}\)-matrix

\[ A=\left[\begin{array}{lllllllll} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right] \]

Since a unique matrix of \(\Sigma_{n^{2}}\) is obtained for every \(P \in \Pi_{n}\) by means ofAlgorithm 7, then this algorithm provides a description of the map \(\varphi: \Pi_{n} \rightarrow \Sigma_{n^{2}}\). It is easy to see that if there are given different elements of \(\Pi_{n}\), we can use Algorithm 7 to obtain different elements of \(\Sigma_{n^{2}}\). Hence, \(\varphi\) is an injection. But according to formulas (11) and (17) \(\left|\Sigma_{n^{2}}\right|=\left|\Pi_{n}\right|\), whereby it follows that \(\varphi\) is a bijection.

Analyzing Algorithm 7, we arrived at the conclusion that \(P\) and \(Q\) are disjoint matrices of \(\Pi_{n}\) if and only if \(\varphi(P)\) and \(\varphi(Q)\) are disjoint matrices of \(\Sigma_{n^{2}}\)

according to the above mentioned definitions. The theorem is proved.

Let \(\mathcal{M}_{n^{2}}\) be the set of all square \(n^{2} \times n^{2}\) matrices with elements of the set \(\mathbb{Z}_{n^{2}}=\left\{1,2, \ldots, n^{2}\right\}\), and let \(\sigma_{n}\) be the number of all \(n^{2} \times n^{2}\) Sudoku matrices. Obviously, \(\left|\mathcal{M}_{n^{2}}\right|=\left(n^{2}\right)^{n^{2}}=n^{2 n^{2}}\). Then if we use Algorithm 1 to obtain random Sudoku matrix. According to equation (1) there is the following probability evaluation:

(29)\[ p_{6}(n)=\tfrac{\sigma_{n}}{n^{2 n^{2}}} \]

When \(\mathrm{n}=2, \sigma_{2}=288\) [Yordzhev, 2013].

When \(n=3\), there are exactly \[ \sigma_{3}=6670903752021072936960 \approx 6.671 \times 10^{21} \] in number Sudoku matrices [Felgenhauer and Jarvis, 2006; Yordzhev, 2018]. As far as the author of this study knows, there is not a universal formula for the number \(\sigma_{n}\) of Sudoku matrices with every natural number \(n\). We consider it as an open problem in mathematics.

If we employ random methods to create the matrix \(P \in \mathcal{M}_{n^{2}}\) with elements of \(\mathbb{Z}_{n^{2}}\), then according to Algorithm 1 we need to verify if every row, every column and every block of \(P\) is a permutation of elements of \(\mathbb{Z}_{n^{2}}\). According to evaluation of Algorithm 3, every verification can be done in time \(O(n)\) (see equation (8)). Hence, when we employ Algorithm 1 to obtain a random Sudoku matrix we will obtain the following time for generating and checking:

(30)\[ \tau_{6}(n) \in T\left(\mathcal{A}_{n}\right)\left(n^{2}\right)^{2}+2 n O(n)+n^{2} O(n)=t_{0} n^{4}+2 n O(n)+n^{2} O(n) \in O\left(n^{4}\right) . \]

Here we will present a more efficient algorithm for obtaining random Sudoku matrix, based on the propositions and algorithms which are examined in the previous sections of this paper. The main point is to obtain \(n^{2}\) in number random \(\Pi_{n}\) matrices (Algorithm 5). For every \(\Pi_{n}\) matrix which is obtained, it has to be checked if it is disjoint with each of the above obtained matrices. The criteria, described in Theorem 5.1 and Proposition 4.1 are used in the verification. If the obtained matrix is not disjoint with at least one of the above mentioned matrices, it has to be replaced with another randomly generated \(\Pi_{n}\) matrix.

Algorithm 8. Obtaining random Sudoku matrix

\include <iostream>

#include <cstdlib>
#include <ctime>
#define N 3
#define N2 9 // N2 = N*N
#define N4 81 // N4 = N2*N2
#define d 18 // d = 2*N2
using namespace std;
int main()
{
srand(time(0));
int S[N4];
int P[d];
int A[N4];
int z;
for (int i=0; i<N4; i++) S[i] = 0;
int K=1;
while (K <= N2)
{
alg5(P,N);
alg7(P,A,N);
z=0;
for (int i=0; i<N4; i++)
{
z += A[i]*S[i];
if (z != 0) break;
}
if (z==0)
{
for (int i=0; i<N4; i++) S[i] += K*A[i];
K++;
}
}
for (int i=0; i<N4; i++)
{
cout<<S[i]<<” “;
if ((i+1)%N2 == 0) cout<<endl;
}
return 0;
}

With the help of Algorithm 8, we received a lot of random \(9 \times 9\) random Sudoku matrices, for example the next one:

\[ \left[\begin{array}{lllllllll} 6 & 4 & 2 & 3 & 1 & 7 & 8 & 9 & 5 \\ 5 & 3 & 1 & 8 & 2 & 9 & 4 & 7 & 6 \\ 7 & 8 & 9 & 4 & 5 & 6 & 2 & 3 & 1 \\ 9 & 6 & 7 & 2 & 4 & 5 & 1 & 8 & 3 \\ 3 & 2 & 4 & 6 & 8 & 1 & 9 & 5 & 7 \\ 1 & 5 & 8 & 9 & 7 & 3 & 6 & 2 & 4 \\ 8 & 9 & 5 & 1 & 3 & 4 & 7 & 6 & 2 \\ 2 & 1 & 3 & 7 & 6 & 8 & 5 & 4 & 9 \\ 4 & 7 & 6 & 5 & 9 & 2 & 3 & 1 & 8 \end{array}\right] \]

REFERENCES

Azalov, P. & Zlatarova, F. (2011). C++ v primeri, zadachi i prilozheniya. Sofia: Prosveta.

Dahl, G. (2009). Permutation matrices related to sudoku. Linear Algebra and its Applications, 430 (8-9): 2457 – 2463.

Felgenhauer, B.& Jarvis, F. (2006). Mathematics of sudoku. Mathematical Spectrum, 39 (1): 15 – 22.

Garey, M. R. & Jonson, D. S. (1979). Computers and Intractability. A Guide to the Theory of NP-Completeness. Bell Telephone Laboratories.

Hadzhikolev, E. & Hadzhikoleva, S. (2016). Osnovi na programiraneto s Java. Plovdiv: Paisiy Hilendarski (ISBN 978-619-202-108-5).

Hopcroft, J. E., Motwani, R. & Ullman, J. D. (2001). Introduction to Automata Theory, Languages, and Computation. AddisonWesley.

Todorova, M. (2002). Programirane na C++, volume I and II. Sofia: Ciela (ISBN 954-649-454-2(1), 954-649-480-1(2)).

Todorova, M. (2011a). Obektho-orientirano programirane na bazata na ezika C++. Sofia: Ciela (ISBN 978-954-28-0909-8).

Todorova, M. (2011b). Strukturi ot danni i programirane na \(\mathrm{C}++\) Sofia: Ciela (ISBN 978-954-28-0909-6).

Yato, T. (2003). Complexity and Completeness of Finding Another Solution and Its Application to Puzzles – Masters thesis. Univ. of Tokyo, Dept. of Information Science.

Yato, T. & Seta, T. (2003). Complexity and completeness of finding another solution and its application to puzzles. IEICE Trans. Fundamentals, E86-A(5): 1052 – 1060.

Yordzhev, K. (2012). Random permutations, random sudoku matrices and randomized algorithms. International Journal of Mathematical Sciences and Engineering Applications, 6 (VI): 291 – 302.

Yordzhev, K. (2013). On the number of disjoint pairs of s-permutation matrices. Discrete Applied Mathematics, 161 (18): 3072 – 3079.

Yordzhev, K. (2018). How does the computer solve sudoku – a mathematical model of the algorithm. Mathematics and Informatics, 61 (3): 259 – 264.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева