Mamemamuxa Volume 63, Mathematics
U uHGopmamuxa Number 2, 2020 and Informatics

Educational Technologies
Obpazoseamentu mexHono2uu

ON SOME RANDOMIZED ALGORITHMS
AND THEIR EVALUATION

Krasimir Yordzhev
South-West University — Blagoevgrad (Bulgaria)

Abstract. The paper considers implementations of some randomized algorithms
in connection with a random n* % n® Sudoku matrix with the programming
language C++. For this purpose we describe the set II,; of all {2n} * n matrices,
consisting of elements of the set Z, = {1.2....n}, such that every row is a
permutation. We emphasize the relationship betweenlIl,-matrices and the n* x n°
Sudoku matrices. An algorithm to obtain random II,, matrices is presented. Several
auxiliary algorithms that are related to the underlying problem have been described.
We evaluated all algorithms according to two criteria - probability evaluation, and
time for the generation of random objects and checking a belonging to a specific set.
These evaluations are interesting from both theoretical and practical points of view
because they are particularly useful in the analysis of computer programs.

Keywords: randomized algorithm; random object; permutation; binary matrix;
algorithm evaluation; Sudoku matrix

1. Introduction

This article is intended for anyone who studies programming, as well as for
teachers. The work is a continuation and addition of (Yordzhev, 2012). Here, along
with the basic definitions and ideas for constructing randomized algorithms out-
lined in the cited publication, we will also describe specific implementations of
these algorithms in the C++ programming language.

To demonstrate the ideas outlined in the article, we have chosen the C ++ pro-
gramming language (Todorova, 2002), (Todorova, 2011a), (Todorova, 2011b), but
they can be implemented in any other algorithmic language. We hope that students
who prefer to write in Java (Hadzhikolev & Hadzhikoleva, 2016) or any other mod-
ern programming language will have no problems with the implementation of the
algorithms we have proposed.

The presented in the article source codes have been repeatedly tested with vari-
ous input data and they work correctly.

Let 9% be a finite set. 4 Random objects generator of Il is every algorithm gy
randomly generating any element of i}, while elements generated by a random
objects generator will be called random elements of 9}, for example random num-

202

On Some Randomized Algorithms...

bers, random matrices, random permutations, etc. We take for granted that proba-
bilities to obtain different random elements of 9} by means of «Aqy are equal, and

1 . .
are also equal to T We denote the time that the random objects generator needs to

obtain a random element of I} with T {4y).

By randomized algorithm we will mean any algorithm which essentially uses a
random object generator in its work.

The randomized algorithms are very often used to solve problems, which are
proved to be NP-complete. For detailed information about NP-complete problems
and their application see (Garey & Jonson, 1979) or (Hopcroft et al., 2001). A proof
that a popular Sudoku puzzle is NP-complete is given in (Yato, 2003) and (Yato &
Seta, 2003).

In this study, we will solve some particular cases from the following class of
problems:

Let n and m = m{n) be natural numbers. Let us consider the set U, consisting of
objects every of which dependent on m parameters, and every parameter belongs to the
finite set J}. We assume that there is a rule that uniquely describes object u € U, if all
m parameters are specified. Let 17 = T{. The problem is to obtain (at least one) object,
which belongs to the set 1. The number of the elements of the sets 1 and 17 depends
only on the parameter 111, which is an integer function of the argument n.

The standard algorithm that solves the above problem is briefly described as
follows:

Algorithm 1

1) We obtain consequently m = min) random elements of MW using random
objects generator A and so we get the object u € U,

2) We check if u € V. If the answer is no, everything is repeated.

In other words, if we already have a random objects generator, a randomized
algorithm can be used as a generator of more complex random objects. The effi-
ciency of Algorithm 1 depends on the particular case in which it is used and can be
evaluated according to the following criteria:

Probability evaluation: If p{n) denotes the probability after generating
m = m(n) random elements of P} of obtaining an object of 17, then according to
the classical probability formula:

- 7l
p(n) = T (1)

Time for generating and checking: We denote by 7(n) the time needed to

execute one iteration (repetition) of Algorithm 1. Then

t(n) = m(n)T (Am) + 8(n), (2)

203

Krasimir Yordzhev

where #(n) is the time to examine if the obtained object belongs to the
set 1.

It is obvious that the efficiency of Algorithm 1 will be proportional to p{n) and
inversely proportional to T(1).

Of course, time for generating and checking does not give us the total time to
execute the algorithm, since the number of repetitions is not known in advance.
However, the characteristic T{n) is essential to the effectiveness of any randomized
algorithms.

The cases in which probability evaluation is equal to 1, i.e. the cases in which
the algorithm is constructed directly to obtain element of the set 17 and there is no
need of belonging examination, are of great interest, as only one iteration is imple-
mented then, i.e. there is no repetition. Let 11 be a positive integer. We denote by Z,,
the set of the integers

Z,=1{12..,n}

There are standard procedures for obtaining random numbers of the set Z,, in
most of the programming environments. We take this statement for granted and we
will use it in our examinations. Let =4, be a similar procedure. In the current study,
we will consider that for n # I

T(A,) ® T(A;) = ty = Const. 3)

Below we show an example of a C ++ function that generates a random positive
integer belonging to the set Z,, = {1,2, ...,n}

Algorithm 2.
int rand Zn(int n)

{

o)

return rand() $ n + 1;

}

In order for the function rand_Zn(int) to work so that every time we execute the
program in which we will use it to obtain various random numbers, we must add
the procedure

srand (time (0)) ;
before first accessing this function, for example, at the beginning of the main()
function. The functions rand() and srand(s) are from the library <cstdlib>, and the

function time(t) is from the library <ctime>. For more details, see for example (Az-
alov & Zlatarova, 2011, p. 75).

Let F;, 0=i,j=n—1be n® in number square n x n matrices, whose ele-
ments belong to the set T,z = {1,2, ..., n*}. Then n* x n* matrix

204

On Some Randomized Algorithms...

PE' o Pl} 1 o Pl} n—1
p=[p,]= PJ. 0 PJ. Lo PJ. n-1
P:-z—l[!l P:lz—il P:'z—i n—1

is called a Sudoku matrix, if every row, every column and every submatrix P,
0 =i,j = n — 1 make permutation of the elements of set Z,z, i.e. every integer
s €{1,2, ..., n?} is present only once in every row, every column and every subma-
trix P;;. Submatrices F;; are called blocks of P.

In this paper we will illustrate the above mentioned ideas by analyzing some
randomized algorithms for obtaining an arbitrary permutation of 1 elements, an
arbitrary n® x n* Sudoku matrix and an arbitrary {2Zn) x n matrix with 2n rows
and n columns, every column of which is a permutation of n elements.

We will prove that the problem for obtaining ordered n* - tuple of {2n) x n
matrices, every row of which is a permutation of elements of Z,, is equivalent to the
problem of generating a Sudoku matrix. We will analyze some possible algorithms
for generating a random Sudoku matrix.

How to create computer program for Sudoku solving (a mathematical model of
the algorithm), using the concept set combined with the trial and error method is
described in (Yordzhev, 2018).

2. Random permutations

Let n be an positive integer. We denote by &, the set of all permutations
{0, Q1 ey Ap—q), Where a; EZ, and a; F ajwheni =, 0=, j=n— 1

If ¢ ={agas..a,-1)E5, is a permutation of all elements of the set
Z, =1{12,..,n} then obviously o depends of m(n)=n parameters ag, a;,
vy gy .

As it is well known, the number of all n-tuples of integers {xj,xa, ., Xy),
x; € L, is equal to

|Z, x L, %L | =n" 4)

n

and the number of all permutations of 7 elements is equal to
|&p=nl=1-2.3.n, ®)

We denote by py (1) the probability to obtain a random permutation of &,, with
the help of Algorithm 1. Then according to equations (1), (4) and (5) we obtain:

py(n) == ©6)

The next algorithm works in time O{n) and checks if ordered n-tuple
{Ap, Ay, . 0pq)a; EE,, 1 =01, ..,1—11s apermutation.

205

Krasimir Yordzhev

Algorithm 3. Check if given integer array a[n] is a permutation of the elements
from the set Z,, = {1,2, ...,n}.

bool alg3(int al[], int n)

{
int v[n+1];
for (int i=1; i<=n; 1i++) v[i] = 0;
for (int i=0; i<n; i++)

{

if ((a[i] > n) || (al[i] < 1)) return false; /* Incorrect data -
there is an element that does not belong to the setZ,,.*/
vla[i][++;

if (v[al[i]] > 1) return false; /* Since the number a[i]
occurs more than once in the n-tuple. */
}

return true;

}

Let 74(n) denote the time for implementing one iteration of Algorithm 1 when
a random permutation of elements of Z,, is obtained, and let &, (n} denote the time
for checking whether an arbitrary n-tuples of numbers of Z,, belongs to &,,. Ana-
lyzing Algorithm 3, it is easy to see that

6 (n) € O(n). (7)
Then, having in mind the equations (2), (3) and (7) we obtain the following time
for generating and checking:

y(n) =nT{A,)+ 8;(n) € nty+ 0(n) = 0(n). ®)

The following algorithm is also randomized (random integers are generated),
but its probability evaluation is equal to 1, i.e. in Algorithm 1 step 2 is not im-
plemented, because when the first random n numbers are generated the obtained
ordered n-tuple is a permutation.

Algorithm 4a Obtaining random permutation & = (g, 0y, o, Bp—1} E Sy,
O ={0g, 0y, s Q1) E Sy, wherea; €L, i = 1,2, ...,n, a; F a;wheni # J.

void alg4 (int al], int n)
{
int v[n];
for (int i=0; i<n; i++) v[i] = 1i+1;
int r;
for (int i=0; i<n; i++)

{

206

On Some Randomized Algorithms...

r = rand Zn(n-1i)-1;
alil = v([rl; /* Weremove the element v[x] and reduce the number
of the elements of the array with 1. */
for (int j=r; j<=n-i; J++) v[3j] = v[j+1];

}
}

Analyzing the work of Algorithm 4, we see that in the end, n different elements
of the set Z,, = {1,2,...,n} are filled in the array a[n]. We consistently randomly
take these elements from the array v with length n where all integers 1,2, ..., n are
filled, such that v[i] =i+1, i = 0,1, ..., n — 1. After each choice we remove the se-
lected integer from the array v, i.e. from the integers which we will randomly take
in the next steps of the algorithm. Therefore Algorithm 4 which obtains random
permutation has probability evaluation:

pa(n)=1 ©

In Algorithm 4, there are two nested loops, so that the outer loop is repeated
exactly n times. Internal loop in the worst case (if randomly selected integer equal
to the value of the item v[0]) will be repeated as many times as is the length of the
array v, which in the first iteration of the outer loop is equal to n and decreased
each time by 1. Thus, we obtain the following time evaluation for generating and
checking in one iteration of Algorithm 4.

.(n) € tp[0n)+ O(n — 1) + -+ 0(1)] = O(n?). (10)

We see that Algorithm 1 applied for obtaining random permutations is more effi-
cient than Algorithm 4 in terms of the time for generating and checking. But on the
other hand, the probability evaluation of Algorithm 4 is equal to po(n) = 1. The

probability evaluation of Algorithm 1 is equal to gy (n) = :!L,l < 1forn = 2. Consid-

ering that the number of iterations is previously unknown and lim,, .. py(n) = 0,
then this makes Algorithm 4 overall much more effective than the Algorithm 1
when applied to generate random permutations.

3. Random (2n) X n matrices, every row of which is a permutation of elements of Z,,

Let IT,, denote the set of all {2n) % n matrices, which are also called I1,, matri-
ces, in which every row is a permutation of all elements of Z,,. In this case I} = I,
and m(n) = 2n? 1t is obvious that

T, | = (n})" (11)

It is easy to see that when we obtain random II,, matrix with the help of Algo-
rithm 1 the following evaluations can be observed:
Probability evaluation:

207

Krasimir Yordzhev

(m1)30

: |
ps(n) = =" (12)
Time for generating and checking:
t3(n) = m(n)T(A,) + 2nt,(n) € 2n’ty + 2n0(n) = 0(n?), (13)
where T4(n) is obtained according to equation (8).

The next randomized algorithm will be more efficient than Algorithm 1 in ob-
taining random IT;, matrix according to the probability evaluation.

Algorithm 5. Obtaining a random matrix M = [ﬂ-’i }-]ﬂn , £ II,, with proba-
bility evaluation equal to 1. The algorithm will write the elements of the matrix
M= ﬁz‘j]ﬂnx” in the array p[] with size 2n*, such that ;; =p[i*ntj], where
0=i<<2n0=j<n

void alg5(int p[], int n)
{
int m=2*n;
int a[n];
for (int i=0; i<m; i++)
{
alg4(a,n);
for (int j=0; Jj<n; Jj++)
{
pli*n+j] = aljl;
}

}

Practically, Algorithm 5 repeats 2n times Algorithm 4. As Algorithm 4 has a
probability evaluation equal to 1, then Algorithm 5 which obtains random II,, ma-
trix also has probability evaluation

Pa(n) = 1ps(n) = 1 (14)
It is easy to see that Algorithm 5 works in time for generating and checking
1.(n) = 2nt3(n) € 2n0(n?) = 0(n?). (15)

As we can see below I1,, matrices can successfully be used to create algorithms
that are efficient in developing Sudoku matrices.

4. S-permutation matrices

A binary (or boolean, or (0,1)-matrix) is called a matrix whose elements belong
to the set B = {0,1}. With B,,..,, we will denote the set of all n x m binary matri-
ces. The set of all square nn » n binary matrices we will denote with 8,, = 8,,...

208

On Some Randomized Algorithms...

Two binafy matrices A = [z_;l] € Buumand B = [E_J] € Bem will be
called disjoint if there are not elements a;;EAand b; EB with one and the same
indices i and j, such that a;; = b;; = 1, 1e if a;; = 1 then b;; = 0 and if by;
thena;; =0,1=i=nl=j=m

A square binary matrix 4 € B8, is called permutation, if there is only one 1 in
every row and every column of the matrix A.

Let I,z denote the set of all permutation n® x n* matrices of the follow-
ing type

Apo Apy o Ap -t
A= fqll} ‘:11: :" ‘Iql n—1) (16)
J'!’:11—1 o J'!’:11—1 1 " J"”:lz—l n—1
where for every s,t € {0,1,2,...,n — 1}A_, is a square n X n binary submatrix
(block) with only one element equal to 1, and the rest of the elements are equal to
0. The elements of X,z will be called S-permutation.

Geir Dahl introduces the concept of S-permutation matrix [Dahl, 2009] in rela-

tion to the popular Sudoku puzzle giving the following obvious proposition:

Proposition 4.1. (Dahl, 2009) 4 square n* xn* matrix P with elements of
T2 ={1,2, ...,n*} is Sudoku matrix if and only if there are mutually disjoint ma-
trices Ay, Az Apz € Z 2 such that P can be presented as follows:

P=1-A;+2 A, +-+n?-A,
|
As it is proved in [Dahl, 2009] and with other methods in (Yordzhev, 2013)

|Z,z] = (n1)2" 17)

Therefore, if a random Z,= matrix obtained by means of Algorithm 1 the follow-
ing probability evaluation is valid:

(n)® (af®"

PE{TI} = am%2 T on* (18)

In order to obtain a random Z,;2 matrix, we have to generate m(n) = (n*)? =n*

random integers, which belong to the set 8 = {0,1}. Hence, whatever randomized
algorithm is used, the result is the following time for generating and checking:

te(n) = m{nT{A,) + G:(n) = n*ty + 6 (n) € 0(n®), z=4, (19)

where 8z (n) is time for checking that the given binary matrix belongs to the set 2.

Below we will give an algorithm (Algorithm 6), which checks that the
given binary matrix is L,z and works in time O{n%*), i.e. 8z = 0(n*) and
therefore z = 4.

209

Krasimir Yordzhev

Let A, = [{@z)pilpwn be an arbitrary n x n matrix, 0 < k,I,5,t < n. Let
A= [arz-_,-]”:m:, 0 = i,j < n® beann® x n? matrix such that for every i, j, k, 1,5, t,
0=ij<n®and0 <kl st <n,the equality

& = {.ﬂsr}m
is satisfied. Then, taking into account that the numbering of indexes starts from 0,
it is easily seen that
i=sn+k (20)
and
j=tn+1l 20

Algorithm 6. Checking that a binary n* xn* matrix B = [f; il E X2 The
algorithm gets the elements of the matrix B = [;;] from the array a[] with size n*,
such that B;; =a[i*n2+j], wheren2 =n%, 0=i<n’*-1 0=j<n*—1

For ease, we will not check for correctness of the input data, i.e. whether the

input matrix is binary, in other words whether all its elements are 0 or 1. We leave
this check to the reader for an exercise.

bool algé6(int a[], int n)
{
int n2 = n*n;
int r;
int i,3,k,1,s,t;
for (1i=0; 1i<n2; 1i++)
{
r=0;
for (3=0; j<n2; j++)
{
r = r+ali*n2+3j];
if(r>1) return false; /* There are more than one
1 in the i-th row. */
}
if (r==0) return false;/* i-th row is completely
zero.*/
}
for (3=0; j<n2; Jj++)
{
r=0;
for (i=0; 1i<n2; 1i++)

r = r+al[i*n2+3];
if(r>1) return false; /* There are more than one
1 in the i-th column. */

}

210

On Some Randomized Algorithms...

if (r==0) return false;/* i-th column is completely
zero.*/

}
for (s=0; s<n; s++)
{
for (t=0; t<n; t++)
{
r=0;
for (k=0; k<n; k++)
{
for (1=0; 1<n; 1++)
{
i = s*n+k; /* According to equation (20) * /
j = t*n+l; /* According to equation (21)*/
r= r+al[i*n2+j];
}
}

if(r!=1) return false;
}
}

return true;

}

When we compare (18) with (12) and (14), as well as (19) with (13) and
(15) we may assume that algorithms which use random II,, matrices are ex-
pected to be more efficient (regard to probability and time for generating
and checking) than algorithms using random Z,z matrices to solve similar
problems. This gives grounds for further examination of the II,, matrices’
properties.

5. Random Sudoku matrices
We will give a little bit more complex definition of the term “disjoint” regarding
I, matrices. Let C = |c;;|, and D' = [d;;], betwo II,, matrices. We regard
D 442nxy Inxn
€ and D as disjoint matrices, if there are no natural numbers 5,t €{1,2,...n} such
that the ordered pair {r.., C,+:-) is equal to the ordered pair {d.., 1.2}
The relationship between II,, matrices and Sudoku matrices is illustrated by the

following theorem, considering Proposition 4.1.

Theorem 5.1. There is a bijective map from II,, to X2 and the pair of disjoint
matrices of I, corresponds to the pair of disjoint matrices of 2

Proof. Let P = [T;;]2p%s € 1,,. We obtain an unique matrix of £,z from P by
means of the following algorithm:

T

Krasimir Yordzhev

Algorithm 7.
From_a given matrix M = [Irz- }-],, £ 11, we obtain a unique matrix

» € Eu2. The algorithm ge_t?szﬁ?qze elements of the matrix M = [rrz- }-]:M”

from the array p[] with size 2n*, such that p[i*n+j]= m; p0=i<n0=j<n

and obtained using Algorithm 5. The algorithm will write the elements of the

matrix 4 = 1] = - in the array a[] with size n*, such that a; ; =a[i*n*ntj],

0=1ij<n-.
void alg7 (int pl[], int al], int n)
{

int 1i,3,s,t;

int n2 = n*n;
int n4 = n2*n2;
for (i=0; i<n4; i++) al[i] = 0;

int b[2] [n] [n];

for (i=0; i<n; 1i++)
for (3=0; j<n; Jj++)
b[0][1]1[J] = pli*n+jl;/* (22) */

for (i=0; i<n; 1i++)
for (3=0; j<n; Jj++)
b[1][J]1[i] = pln2+4i*n+3];/* (23) */

for (s=0; s<n; s++)
for (t=0; t<n; t++)
{
i = s*n+b[0][s][t]-1; /* According to equation (20) */
j = t*n+b[1][s][t]-1;/* According to equation (21) */
al[i*n2+3] = 1;
}

}

For convenience, at the beginning of Algorithm 7, we constructed an auxiliary
2 ® n % n three-dimensional array b such that,according to equation (22)

b[O][i][j]= m:; 24)
and according to equation (23)

b[l][J][l] = :'T:'z+z'_;l' (25)
is satisfied for each i, j € {0,1, ...,n — 1}.

212

On Some Randomized Algorithms...

For example, from the matrix

€11, (26)

[T S
[S I e T WA
L P A

1 3

we get the array b. For more clearly, to the left of the comma we will write the ele-
ments of b[0], and to the right of the comma — the elements of b[1]:

13 31 21
b=|21 32 1.2 27)
12 23 33

From the array b, Algorithm 7 obtains a binary matrix A = [Hfi];-ﬁxub
0= 14,j <n? of type (16) such that if A = [yi;] . 0=t <nis ablock in

A, then _{1:sx11+b[[]][5][t]— 1
V==t en+b[1][s][f] — 1

From (24), (25) and (28) follows that there is a single 1 in each block A_, £ A.

Let s € {0, ...,n —1}. Since 5-th row of the matrix P is a permutation, then
there is only one 1 in every row of 1 X 1= matrix

R, = [Asl} Agq As:lz—i]-)

Similarly, since ordered n-tuple {Ppss 1, Pnse 2r - s Prsen) Which is (n + £)-th
row 9f P is a permutation for every £ € I, then there is only one 1 in every column
of m= ® 1 matrix 4

1t

Azt

(28)

C,=
A nr
Therefore, the matrix A which is obtained with the help of Algorithm 7 is a Z,;2
matrix.

For example, from the array B, which corresponds to the array (27) and using
Algorithm 7, we obtain the Xg-matrix

"ocoocoorococoo
[T e e e T e Y e Y e Y e I e |
=N N=N=-R=E=R=E
coocoocoorRrOoO
coorRroOoOoO O
[T S e N e T e Y e Y e Y e I e |
coocoocoookR o
cooocoRroOoO
| T s T e T e Y e Y e Y e I e |

213

Krasimir Yordzhev

Since a unique matrix of ;= is obtained for every P € II,, by means of Algo-
rithm 7, then this algorithm provides a description of the map ¢ : II, = E,=.
It is easy to see that if there are given different elements of II,;, we can use
Algorithm 7 to obtain different elements of ,=. Hence, ¢ is an injection. But
according to formulas (11) and (17) |E,z| = [II,], whereby it follows that ¢
is a bijection.

Analyzing Algorithm 7, we arrived at the conclusion that P and § are dis-
joint matrices of I1,, if and only if @{P) and @) are disjoint matrices of ;=
according to the above mentioned definitions. The theorem is proved.

|

Let M,z be the set of all square n? x n® matrices with elements of the set
L.z = {12, ..,n%}, and let g,, be the number of all n* x n* Sudoku matrices.
Obviously, |M,z| = (n*)™ =n?"*". Then if we use Algorithm 1 to obtain ran-
dom Sudoku matrix. According to equation (1) there is the following proba-
bility evaluation:

pe(n) = 0= (29)

When n =2, 6, =288 [Yordzhev, 2013].
When n = 3, there are exactly

g3 =6 670 903 752 021 072 936 960 ~ 6.671 x 10
in number Sudoku matrices [Felgenhauer and Jarvis, 2006; Yordzhev, 2018].
As far as the author of this study knows, there is not a universal formula for
the number g,, of Sudoku matrices with every natural number n. We consider
it as an open problem in mathematics.

If we employ random methods to create the matrix P € M = with elements
of Z,=, then according to Algorithm 1 we need to verify if every row, every
column and every block of P is a permutation of elements of Z,z. According
to evaluation of Algorithm 3, every verification can be done in time O{n)
(see equation (8)). Hence, when we employ Algorithm 1 to obtain a random
Sudoku matrix we will obtain the following time for generating and checking:

Te(n) € T(A,)(n?)? + 2n0(n) + n?0(n) = tyn* + 2n0(n) + n°0(n) € 0(n*). (30)
Here we will present a more efficient algorithm for obtaining random Su-

doku matrix, based on the propositions and algorithms which are examined in
the previous sections of this paper. The main point is to obtain 7 in number
random II,; matrices (Algorithm 5). For every II,, matrix which is obtained,
it has to be checked if it is disjoint with each of the above obtained matrices.
The criteria, described in Theorem 5.1 and Proposition 4.1 are used in the ver-
ification. If the obtained matrix is not disjoint with at least one of the above

214

On Some Randomized Algorithms...

mentioned matrices, it has to be replaced with another randomly generated
I1,, matrix.

Algorithm 8. Obtaining random Sudoku matrix
\include <iostream>

#include <cstdlib>

#include <ctime>

#define N 3

#define N2 9 // N2 = N*N

#define N4 81 // N4 = N2*N2

#define d 18 // d = 2*N2

using namespace std;

int main ()

for (int 1=0; i<N4; i++) S[i] = 0;
int K=1;
while (K <= N2)
{
alg5(P,N);
alg7(P,A,N);
z=0;
for (int 1=0; 1i<N4; i++)
{
z += A[1]*S[1];
if (z != 0) break;
}
if (z==0)
{
for (int i=0; i<N4; i++) S[i] += K*A[i];
K++;

}

for (int i=0; 1i<N4; i++)
{

cout<<S[i]<<” “;

if ((i41)%N2 == 0) cout<<endl;
}

return 0;

}

With the help of Algorithm 8, we received a lot of random 9 x 9 random Sudo-
ku matrices, for example the next one:

215

Krasimir Yordzhev

6 4 2 3 1 7 8 9 57
5 3 18 2 9 4 7 6
7 8 9 4 5 6 2 3 1
9 6 7 2 4 5 1 8 3
3 2 46 81957
1 5897 3 6 2 4
8 9 51 3 4 7 6 2
21 3 7 6 8 5 4 9

4 7 65 9 2 3 1 8-

REFERENCES

Azalov, P. & Zlatarova, F. (2011). C++ v primeri, zadachi i prilozheniya.
Sofia: Prosveta.

Dahl, G. (2009). Permutation matrices related to sudoku. Linear
Algebra and its Applications, 430 (8-9): 2457 — 2463.

Felgenhauer, B.& Jarvis, F. (2006). Mathematics of sudoku.
Mathematical Spectrum, 39 (1): 15 —22.

Garey, M. R. & Jonson, D. S. (1979). Computers and Intractability.
A Guide to the Theory of NP-Completeness. Bell Telephone
Laboratories.

Hadzhikolev, E. & Hadzhikoleva, S. (2016). Osnovi na programiraneto
s Java. Plovdiv: Paisiy Hilendarski (ISBN 978-619-202-108-5).
Hopcroft, J. E., Motwani, R. & Ullman, J. D. (2001). Introduction
to Automata Theory, Languages, and Computation. Addison-

Wesley.

Todorova, M. (2002). Programirane na C++, volume I and II. Sofia:
Ciela (ISBN 954-649-454-2(1), 954-649-480-1(2)).

Todorova, M. (2011a). Obektho-orientirano programirane na bazata
na ezika C++. Sofia: Ciela (ISBN 978-954-28-0909-8).

Todorova, M. (2011b). Strukturi ot danni i programirane na C++
Sofia: Ciela (ISBN 978-954-28-0909-6).

Yato, T. (2003). Complexity and Completeness of Finding Another
Solution and Its Application to Puzzles — Masters thesis. Univ. of
Tokyo, Dept. of Information Science.

Yato, T. & Seta, T. (2003). Complexity and completeness of finding
another solution and its application to puzzles. [EICE Trans.
Fundamentals, E86-A(5): 1052 — 1060.

216

On Some Randomized Algorithms...

Yordzhev, K. (2012). Random permutations, random sudoku matrices
and randomized algorithms. International Journal of Mathematical
Sciences and Engineering Applications, 6 (VI): 291 — 302.

Yordzhev, K. (2013). On the number of disjoint pairs of s-permutation
matrices. Discrete Applied Mathematics, 161 (18): 3072 — 3079.

Yordzhev, K. (2018). How does the computer solve sudoku — a
mathematical model of the algorithm. Mathematics and Informatics,
61 (3): 259 —264.

< Assoc. Prof. Krasimir Yordzhev, DSc.
Researcher ID: F-2628-2014

ORCID: 0000-0002-0432-8025

Department of Informatics

Faculty of Natural Sciences

South-West University "Neofit Rilski"

Blagoevgrad, Bulgaria

E-mail: yordzhev(@swu.bg

217

