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Abstract. The paper considers implementations of some randomized algorithms 
in connection with a random  Sudoku matrix with the programming 
language C++. For this purpose we describe the set  of all  matrices, 
consisting of elements of the set , such that every row is a 
permutation. We emphasize the relationship between -matrices and the  
Sudoku matrices. An algorithm to obtain random  matrices is presented. Several 
auxiliary algorithms that are related to the underlying problem have been described. 
We evaluated all algorithms according to two criteria - probability evaluation, and 
time for the generation of random objects and checking a belonging to a specific set. 
These evaluations are interesting from both theoretical and practical points of view 
because they are particularly useful in the analysis of computer programs.
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1.  Introduction
This article is intended for anyone who studies programming, as well as for 

teachers. The work is a continuation and addition of (Yordzhev, 2012). Here, along 
with the basic definitions and ideas for constructing randomized algorithms out-
lined in the cited publication, we will also describe specific implementations of 
these algorithms in the C++ programming language.

To demonstrate the ideas outlined in the article, we have chosen the C ++ pro-
gramming language (Todorova, 2002), (Todorova, 2011a), (Todorova, 2011b), but 
they can be implemented in any other algorithmic language. We hope that students 
who prefer to write in Java (Hadzhikolev & Hadzhikoleva, 2016) or any other mod-
ern programming language will have no problems with the implementation of the 
algorithms we have proposed.

The presented in the article source codes have been repeatedly tested with vari-
ous input data and they work correctly.

Let  be a finite set. A Random objects generator of  is every algorithm  
randomly generating any element of , while elements generated by a random 
objects generator will be called random elements  of , for example random num-
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bers, random matrices, random permutations, etc. We take for granted that proba-
bilities to obtain different random elements of  by means of  are equal, and 
are also equal to . We denote the time that the random objects generator needs to 
obtain a random element of  with .

By randomized algorithm we will mean any algorithm which essentially uses a 
random object generator in its work.

The randomized algorithms are very often used to solve problems, which are 
proved to be NP-complete. For detailed information about NP-complete problems 
and their application see (Garey & Jonson, 1979) or (Hopcroft et al., 2001). A proof 
that a popular Sudoku puzzle is NP-complete is given in (Yato, 2003) and (Yato & 
Seta, 2003).

In this study, we will solve some particular cases from the following class of 
problems:

Let  and  be natural numbers. Let us consider the set , consisting of 
objects every of which dependent on  parameters, and every parameter belongs to the 
finite set . We assume that there is a rule that uniquely describes object , if all 

 parameters are specified. Let . The problem is to obtain (at least one) object, 
which belongs to the set . The number of the elements of the sets  and  depends 
only on the parameter , which is an integer function of the argument .

The standard algorithm that solves the above problem is briefly described as 
follows:

Algorithm 1 
1) We obtain consequently  random elements of  using random 

objects generator   and so we get the object ;
2) We check if . If the answer is no, everything is repeated.

In other words, if we already have a random objects generator, a randomized 
algorithm can be used as a generator of more complex random objects. The effi-
ciency of Algorithm 1 depends on the particular case in which it is used and can be 
evaluated according to the following criteria:

Probability evaluation: If  denotes the probability after generating 
 random elements of  of obtaining an object of , then according to 

the classical probability formula: 
	 	 (1)

Time for generating and checking: We denote by  the time needed to 
execute one iteration (repetition) of Algorithm 1. Then 

	 			           (2)
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where  is the time to examine if the obtained object belongs to the 
set .

It is obvious that the efficiency of Algorithm 1 will be proportional to  and 
inversely proportional to .

Of course, time for generating and checking does not give us the total time to 
execute the algorithm, since the number of repetitions is not known in advance. 
However, the characteristic  is essential to the effectiveness of any randomized 
algorithms.

The cases in which probability evaluation is equal to 1, i.e. the cases in which 
the algorithm is constructed directly to obtain element of the set  and there is no 
need of belonging examination, are of great interest, as only one iteration is imple-
mented then, i.e. there is no repetition. Let  be a positive integer. We denote by  
the set of the integers 

There are standard procedures for obtaining random numbers of the set  in 
most of the programming environments. We take this statement for granted and we 
will use it in our examinations. Let  be a similar procedure. In the current study, 
we will consider that for 

	 			           (3)

Below we show an example of a C ++ function that generates a random positive 
integer belonging to the set :

Algorithm 2. 
int rand_Zn(int n)
{
    return rand() % n + 1;
}

In order for the function rand_Zn(int) to work so that every time we execute the 
program in which we will use it to obtain various random numbers, we must add 
the procedure 

srand(time(0)); 

before first accessing this function, for example, at the beginning of the main() 
function. The functions rand() and srand(s) are from the library <cstdlib>, and the 
function time(t) is from the library <ctime>. For more details, see for example (Az-
alov & Zlatarova, 2011, p. 75).

Let ,  be  in number square  matrices, whose ele-
ments belong to the set . Then  matrix 
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is called a Sudoku matrix, if every row, every column and every submatrix , 

 make permutation of the elements of set , i.e. every integer
 is present only once in every row, every column and every subma-

trix . Submatrices  are called blocks of .
In this paper we will illustrate the above mentioned ideas by analyzing some 

randomized algorithms for obtaining an arbitrary permutation of  elements, an 
arbitrary  Sudoku matrix and an arbitrary  matrix with  rows 
and  columns, every column of which is a permutation of  elements.

We will prove that the problem for obtaining ordered  - tuple of  
matrices, every row of which is a permutation of elements of  is equivalent to the 
problem of generating a Sudoku matrix. We will analyze some possible algorithms 
for generating a random Sudoku matrix.

How to create computer program for Sudoku solving (a mathematical model of 
the algorithm), using the concept set combined with the trial and error method is 
described in (Yordzhev, 2018).

2.  Random permutations
Let  be an positive integer. We denote by  the set of all permutations

, where  and  when , .
If  is a permutation of all elements of the set 

 then obviously  depends of  parameters , , 
.

As it is well known, the number of all -tuples of integers , 
 is equal to 

	 			           (4)

and the number of all permutations of n elements is equal to 

	 			            (5)
We denote by  the probability to obtain a random permutation of  with 

the help of Algorithm 1. Then according to equations (1), (4) and (5) we obtain:

	 				            (6)

The next algorithm works in time  and checks if ordered -tuple 
, ,  is a permutation.
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Algorithm 3.  Check if given integer array a[n] is a permutation of the elements 
from the set .

bool alg3(int a[], int n)
{
    int v[n+1];
    for (int i=1; i<=n; i++) v[i] = 0;
    for (int i=0; i<n; i++)
    {

if ( (a[i] > n) || (a[i] < 1) ) return false;  /* Incorrect data - 
there is an element that does not belong to the set .*/

v[a[i]]++;
        if (v[a[i]] > 1)  return false; /* Since the number a[i] 

occurs more than once in the n-tuple. */
}
    return true;
}

Let  denote the time for implementing one iteration of Algorithm 1 when 
a random permutation of elements of  is obtained, and let  denote the time 
for checking whether an arbitrary -tuples of numbers of  belongs to . Ana-
lyzing Algorithm 3, it is easy to see that 

	 				            (7)
Then, having in mind the equations (2), (3) and (7) we obtain the following time 

for generating and checking: 
	 		         (8)

The following algorithm is also randomized (random integers are generated), 
but its probability evaluation is equal to 1, i.e. in Algorithm 1 step 2 is not im-
plemented, because when the first random  numbers are generated the obtained 
ordered -tuple is a permutation.

Algorithm 4л  Obtaining random permutation 
 where , ,  when .

void alg4(int a[], int n)
{
    int v[n];
    for (int i=0; i<n; i++) v[i] = i+1;
    int r;
    for (int i=0; i<n; i++)
    {
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        r = rand_Zn(n-i)-1;
        a[i] = v[r];  /* We remove the element v[x] and reduce the number 

of the elements of the array with 1. */
for (int j=r; j<=n-i; j++) v[j] = v[j+1];
    }
}

Analyzing the work of Algorithm 4, we see that in the end,  different elements 
of the set  are filled in the array a[n]. We consistently randomly 
take these elements from the array v with length  where all integers  are 
filled, such that v[i] = i+1, . After each choice we remove the se-
lected integer from the array v, i.e. from the integers which we will randomly take 
in the next steps of the algorithm. Therefore Algorithm 4 which obtains random 
permutation has probability evaluation: 

	 			           	          (9)
In Algorithm 4, there are two nested loops, so that the outer loop is repeated 

exactly  times. Internal loop in the worst case (if randomly selected integer equal 
to the value of the item v[0]) will be repeated as many times as is the length of the 
array v, which in the first iteration of the outer loop is equal to  and decreased 
each time by 1. Thus, we obtain the following time evaluation for generating and 
checking in one iteration of Algorithm 4. 

	 	        (10)

We see that Algorithm 1 applied for obtaining random permutations is more effi-
cient than Algorithm 4 in terms of the time for generating and checking. But on the 
other hand, the probability evaluation of Algorithm 4 is equal to . The 
probability evaluation of Algorithm 1 is equal to  for . Consid-
ering that the number of iterations is previously unknown and , 
then this makes Algorithm 4 overall much more effective than the Algorithm 1 
when applied to generate random permutations.

3.  Random (2n) X n matrices, every row of which is a permutation of elements of 
Let  denote the set of all  matrices, which are also called  matri-

ces, in which every row is a permutation of all elements of . In this case  
and . It is obvious that 

	 				           (11)
It is easy to see that when we obtain random  matrix with the help of Algo-

rithm 1 the following evaluations can be observed:
Probability evaluation: 
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	 			         (12)

Time for generating and checking: 
	 	       (13)

where  is obtained according to equation (8).
The next randomized algorithm will be more efficient than Algorithm 1 in ob-

taining random  matrix according to the probability evaluation.

Algorithm 5.  Obtaining a random matrix  with proba-
bility evaluation equal to 1. The algorithm will write the elements of the matrix 

 in the array p[] with size , such that p[i*n+j], where 
, .

void alg5(int p[], int n)
{
    int m=2*n;
    int a[n];
    for (int i=0; i<m; i++)
    {
        alg4(a,n);
        for (int j=0; j<n; j++)
        {
            p[i*n+j] = a[j];
        }
    }
}

Practically, Algorithm 5 repeats  times Algorithm 4. As Algorithm 4 has a 
probability evaluation equal to 1, then Algorithm 5 which obtains random  ma-
trix also has probability evaluation 

	 			         (14)
It is easy to see that Algorithm 5 works in time for generating and checking 

	 	                 (15)
As we can see below  matrices can successfully be used to create algorithms 

that are efficient in developing Sudoku matrices.

4.  S-permutation matrices
A binary (or boolean, or (0,1)-matrix) is called a matrix whose elements belong 

to the set . With  we will denote the set of all  binary matri-
ces. The set of all square  binary matrices we will denote with 
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Two binary matrices  and  will be 
called disjoint if there are not elements  and  with one and the same 
indices  and , such that , i.e. if  then  and if  
then , , .

A square binary matrix  is called  permutation, if there is only one 1 in 
every row and every column of the matrix .

Let  denote the set of all permutation  matrices of the follow-
ing type 

	 		        (16)

where for every  is a square  binary submatrix 
(block) with only one element equal to 1, and the rest of the elements are equal to 
0. The elements of  will be called S-permutation.

Geir Dahl introduces the concept of S-permutation matrix [Dahl, 2009] in rela-
tion to the popular Sudoku puzzle giving the following obvious proposition:

Proposition 4.1. (Dahl, 2009) A square  matrix  with elements of 
 is Sudoku matrix if and only if there are mutually disjoint ma-

trices  such that  can be presented as follows: 
	

As it is proved in [Dahl, 2009] and with other methods in (Yordzhev, 2013) 
	 				          (17)
Therefore, if a random  matrix obtained by means of Algorithm 1 the follow-

ing probability evaluation is valid:

	 			          (18)

In order to obtain a random  matrix, we have to generate  
random integers, which belong to the set . Hence, whatever randomized 
algorithm is used, the result is the following time for generating and checking: 

	 	        (19)
where  is time for checking that the given binary matrix belongs to the set .

Below we will give an algorithm (Algorithm 6), which checks that the 
given binary matrix is  and works in time , i.e.  and 
therefore .
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Let  be an arbitrary  matrix, . Let 
,  be an  matrix such that for every , 

 and , the equality 

is satisfied. Then, taking into account that the numbering of  indexes starts from 0, 
it is easily seen that 

	  				           (20)
and 
	 				           (21)
Algorithm 6.  Checking that a binary  matrix . The 

algorithm gets the elements of the matrix  from the array a[] with size , 
such that a[i*n2+j], where , , .

For ease, we will not check for correctness of the input data, i.e. whether the 
input matrix is binary, in other words whether all its elements are 0 or 1. We leave 
this check to the reader for an exercise.

bool alg6(int a[], int n)
{
    int n2 = n*n;
    int r;
    int i,j,k,l,s,t;
    for (i=0; i<n2; i++)
    {
        r=0;
        for (j=0; j<n2; j++)
        {
            r = r+a[i*n2+j];
            if(r>1) return false; /* There are more than one 

1 in the i-th row. */
}
        if(r==0) return false;/* i-th row is completely 

zero.*/
}
    for (j=0; j<n2; j++)
    {
        r=0;
        for (i=0; i<n2; i++)
{
            r = r+a[i*n2+j];
            if(r>1) return false; /* There are more than one 

1 in the i-th column. */
}
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        if(r==0) return false;/* i-th column is completely 
zero.*/

}
    for (s=0; s<n; s++)
    {
        for (t=0; t<n; t++)
        {
            r=0;
            for (k=0; k<n; k++)
            {
                for (l=0; l<n; l++)
                {
                    i = s*n+k;/* According to equation (20) */
j = t*n+l; /* According to equation (21)*/
r= r+a[i*n2+j];
                }
            }
            if(r!=1) return false;
        }
    }	
    return true;
}

When we compare (18) with (12) and (14), as well as (19) with (13) and 
(15) we may assume that algorithms which use random  matrices are ex-
pected to be more efficient (regard to probability and time for generating 
and checking) than algorithms using random  matrices to solve similar 
problems. This gives grounds for further examination of the  matrices’ 
properties.

5.  Random Sudoku matrices
We will give a little bit more complex definition of the term ”disjoint” regarding 
 matrices. Let  and , be two  matrices. We regard 

 and  as disjoint matrices, if there are no natural numbers  such 
that the ordered pair  is equal to the ordered pair .

The relationship between  matrices and Sudoku matrices is illustrated by the 
following theorem, considering Proposition 4.1.

Theorem 5.1.  There is a bijective map from  to  and the pair of disjoint 
matrices of  corresponds to the pair of disjoint matrices of 

Proof. Let . We obtain an unique matrix of  from  by 
means of the following algorithm:
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Algorithm 7. 
From a given matrix  we obtain a unique matrix 

. The algorithm gets the elements of the matrix  
from the array p[] with size , such that p[i*n+j] , ,  
and obtained using Algorithm 5. The algorithm will write the elements of the 
matrix  in the array a[] with size , such that a[i*n*n+j], 

.

void alg7(int p[], int a[], int n)
{
    int i,j,s,t;
    int n2 = n*n;
    int n4 = n2*n2;
    for (i=0; i<n4; i++) a[i] = 0;
	
    int b[2][n][n];

    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
	 b[0][i][j] = p[i*n+j];/*  (22)  */

    for (i=0; i<n; i++)
        for (j=0; j<n; j++) 
	 b[1][j][i] = p[n2+i*n+j];/*  (23)  */

    for (s=0; s<n; s++)
        for (t=0; t<n; t++)
        {
            i = s*n+b[0][s][t]-1; /* According to equation (20) */
j = t*n+b[1][s][t]-1;/* According to equation (21) */
a[i*n2+j] = 1;
}
		
}

For convenience, at the beginning of Algorithm 7, we constructed an auxiliary 
 three-dimensional array b such that,according to equation (22)

	 b[0][i][j]                              		    (24)
and according to equation (23)

	 b[1][j][i]  			                   (25)
is satisfied for each .
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For example, from the matrix

	 			          (26)

we get the array b. For more clearly, to the left of the comma we will write the ele-
ments of b[0], and to the right of the comma – the elements of b[1]: 

	 b 		    	      (27)

From the array b, Algorithm 7 obtains a binary matrix , 
 of type (16) such that if ,  is a block in 

, then 
	 			         (28)

From (24), (25) and (28) follows that there is a single 1 in each block .
Let . Since -th row of the matrix  is a permutation, then 

there is only one 1 in every row of  matrix 
	
Similarly, since ordered -tuple  which is -th 

row of  is a permutation for every , then there is only one 1 in every column 
of  matrix 

	

Therefore, the matrix  which is obtained with the help of Algorithm 7 is a  
matrix.

For example, from the array B, which corresponds to the array (27) and using 
Algorithm 7, we obtain the -matrix 
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Since a unique matrix of  is obtained for every  by means of Algo-
rithm 7, then this algorithm provides a description of the map . 
It is easy to see that if there are given different elements of , we can use 
Algorithm 7 to obtain different elements of . Hence,  is an injection. But 
according to formulas (11) and (17) , whereby it follows that  
is a bijection.

Analyzing Algorithm 7, we arrived at the conclusion that  and  are dis-
joint matrices of  if and only if  and  are disjoint matrices of  
according to the above mentioned definitions. The theorem is proved.

Let  be the set of all square  matrices with elements of the set 
, and let  be the number of all  Sudoku matrices. 

Obviously, . Then if we use Algorithm 1 to obtain ran-
dom Sudoku matrix. According to equation (1) there is the following proba-
bility evaluation: 

	 				           (29)

When n = 2, σ2 = 288  [Yordzhev, 2013].
When , there are exactly 
	

in number Sudoku matrices [Felgenhauer and Jarvis, 2006; Yordzhev, 2018]. 
As far as the author of this study knows, there is not a universal formula for 
the number  of Sudoku matrices with every natural number . We consider 
it as an open problem in mathematics.

If we employ random methods to create the matrix  with elements 
of , then according to Algorithm 1 we need to verify if every row, every 
column and every block of  is a permutation of elements of . According 
to evaluation of Algorithm 3, every verification can be done in time  
(see equation (8)). Hence, when we employ Algorithm 1 to obtain a random 
Sudoku matrix we will obtain the following time for generating and checking: 

	         (30)
Here we will present a more efficient algorithm for obtaining random Su-

doku matrix, based on the propositions and algorithms which are examined in 
the previous sections of this paper. The main point is to obtain  in number 
random  matrices (Algorithm 5). For every  matrix which is obtained, 
it has to be checked if it is disjoint with each of the above obtained matrices.
The criteria, described in Theorem 5.1 and Proposition 4.1 are used in the ver-
ification. If the obtained matrix is not disjoint with at least one of the above 
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mentioned matrices, it has to be replaced with another randomly generated 
 matrix.

Algorithm 8.  Obtaining random Sudoku matrix
\include <iostream>
#include <cstdlib>
#include <ctime>
#define N 3
#define N2 9   // N2 = N*N
#define N4 81  // N4 = N2*N2
#define d 18   // d = 2*N2
using namespace std;
int main()
{
    srand(time(0));
    int S[N4];
    int P[d];
    int A[N4];
    int z;
    for (int i=0; i<N4; i++) S[i] = 0;
    int K=1;
    while (K <= N2)
    {
        alg5(P,N);
        alg7(P,A,N);
        z=0;
        for (int i=0; i<N4; i++)
        {
z += A[i]*S[i];
            if (z != 0) break;
        }
        if (z==0)
        {
            for (int i=0; i<N4; i++) S[i] += K*A[i];
            K++;
        }
    }

    for (int i=0; i<N4; i++)
    {
        cout<<S[i]<<” “;
        if ((i+1)%N2 == 0) cout<<endl;
    }
    return 0;
}

With the help of Algorithm 8, we received a lot of random  random Sudo-
ku matrices, for example the next one:
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