Математика и Информатика

2016/5, стр. 404 - 413

FORECASTING OF TIME-SERIES FOR FINANCIAL MARKETS

Reinhard Magenreuter
E-mail: rm@pariserplatz.eu
University of Finance, Business and Entrepreneurship
1, Gusla St.
1618 Sofia, Bulgaria

Резюме: One of the four backbones to analyze time-series in general and forecast time-series for financial markets, particularly, is the Chaos-Theory. The four backbones are: Chaos-theory, Fuzzy logic, Neural networks and Genetic algorithms. Although each method itself is a powerful analytic tool, the present paper suggests to combine them to a hybrid analytic and analysis tool, where all methods interact and result in promising outcomes.

Ключови думи: market, chaos, synergetics, forecasting

1. Introduction. The Chaos-theory is a mathematical theory of dynamic systems, which describes this systems with deterministic, non-linear differential equations. The essential characteristic of chaotic systems is, that the ‘time paths’ of the variables are reacting highly sensitive to modifications of the boundary conditions; respectively: at only minimal changes of the boundary conditions, after a certain time there are completely different time paths: descriptive to illustrate using the example of a billiard game, at which already minimal differences of the impact lead to extreme variation of the alley. Thus, Chaos-Theory deals with the development or dynamic of nonlinear systems (cf. Horn \({ }^{1}\) ).

2. Synergetics or self-organization. Referring to the past forthy years, science more and more often considers not only deterministic and stochastic processes, but another class of processes and events, as well. They are in principle nonlinear and in particular do not obey the principle of superposition. We shall disclose the detailed meaning of those notions for another publication. On one hand, these are deterministic processes, where quantitative changes take place as a result of the intensification of external impacts. The eventual difficulties of adequate characterization of those changes, as well as related management and control, are mostly technical. Note also that principle obstacles occur when the objects of study undergo qualitative changes. It turns out, as mentioned above, that the smallest inaccuracy of measuring the initial state could grow in time and the corresponding system could attain a chaotic state. Due to sensitivity to initial data, the process transforms from deterministic, i.e. predictable, into stochastic, or at least, it resembles such a process. There occurs a so-called chaos or deterministic (determined) chaos which is one and the same. “Unfortunately, there is still no concise, exact and clear definition of chaos in modern scientific sense.” (Panchev, 2001)

Usually, one would determine chaos descriptively. A typical example is the behavior of a pack of wolves looking for food. Another interesting example concerns the earthquake in Macedonia, 1963. Eyewitnesses said that hundreds of rats “invaded” the foyer of a hotel in Skopie after the first seismic quake and ran chaotically. One can observe chaos not only in biological systems, including systems where people participate. The event is typical for different areas, in Economics included. It is essential to note, however, the well-known fact that Nature has unique capabilities to control chaos and to establish order. For instance, lack of food makes the pack of wolves select a leader. The mechanism of that selection is not clear. As if, everything happens on its own, and order occurs within the pack as a result of the self-organization – the leader-wolf leads (controls) the pack to survival.

A group of human beings is also capable of reflection and self-organization. The group does something, thinks of it simultaneously thinking of what it is thinking about. Yet, man is not capable of predicting everything. Regardless of the high level evolution of the human brain, there are events that man cannot predict. It is enough to note here the results of the first tour of the presidential elections in France, April 2002. The unexpected success of the extreme rightists caused panic (chaos). The streets filled with protesting people, and there were cases of extreme behavior. Then, chaos gradually transformed into order, society underwent self-organization and the second tour of the elections calmed down the turbulence.

Considering the general case, one can not separate order from chaos. It turns out that chaos consists of an extremely complex ordering. Consider the enormous set of interrelated factors and parameters that affect the behavior of a system. Quite often, however, it is possible to separate its most important and key characteristics. Then, self-organization occurs in those cases, related to the determination of the basic factors known as controlling parameters. Complex systems have many degrees of freedom (sometimes hundreds), and this is the characteristic that makes them complex. Yet, there are some cases when one can order those degrees of freedom after the most important ones. Then, we say that a hierarchic system of control occurs, and the wolf-leader dictates it within the pack. Moreover, specific interrelations occur, called by the physiologists synergies (synergy means common action in Greek). All this is due to the system capability of self-organization. The situation with the system of market behaviour is similar. The interaction between its elements and its self-organization yields capabilities to fulfil successfully a specific task, i.e. “to solve Economics problems”.

A considerably young science deals with self-organization. It is known as synergetics. A book Self-organization in non-equilibrium systems by G. Nicolis} and I. Prigogine was issued in the USA in 1977 . It was translated in Russian in 1979 (Nicolis & Prigogine, 1979). The book deals with the theory of non-equilibrium phase transitions and processes of self-or ganization in physical, chemical and biological systems. Note that phase transition is the transition from one state into another that qualitatively differs from the initial one. We shall reduce our historical review to the example of different aggregate states, although that we consider here the equilibrium phase transitions as a specific case. The First International Symposium on Synergetics was held in Elmau, Germany, 1972. The Conference held in Brussels in 1978 was more significant. Its proceedings were issued in 1981. It is now assumed that the years 1977 – 1978 outline the period of synergetic emergence. The name “synergetics” was introduced in 1978, in the original of (Haken, 1980). In fact, synergetics was discussed long before Haken. Regarding modern concepts, however, the related events had quite a small number of the characteristics inherent in this notion. The English physiologist Charles Sherington used this neologism in 19-th century. For instance, the joint behavior of anatomic organs, as well as the combined effect of several pills, were called synergetic. Yet, the effect of summing pills was not a sum of the effects of each pill. (However, this is the case of violating the principle of superposition). One can come across this term in medicine, nowadays, although it is not precise. Later on, during the 60-ies of the 20-th century, the American mathematician Stanislaw Ulam spoke also about synergy, meaning the interaction between man and computer. At the same time, the American physicist-theoretician Norman Zabuski considered a synergetic approach to the unification of the capabilities of ordinary analysis with those of the computer calculations, regarding the discovery of solitons. Note that soliton is a new type of nonlinear wave which occurs when studying the famous problem of Fermi-Pasta-Ulam – the problem was solved by M. Cruscal and N. Zabuski in 1965 (Bushev, 1992).

A more detailed description of the basic characteristics of synergetics is given in (Grozdev, 2007) in connection with the preparation of talented students for participation in Mathematical Olympiads. Our aim is to apply some of them in-depth and to establish their presence in forecasting of time-series for financial markets. As shown mentioned below, foreteaching and planning are complex processes that cannot be modeled easily without using synergetic ideas and methods. Things seem natural, especially when considering mathematical modeling. This is so, since on one hand, synergetics has an inter-disciplinary character. On the other hand, forecating and planning of economics system are related not only to Economics, but also to Mathematics, Information Technology, Psychology, Sociology, Control Theory, Artificial Intelligence etc. Self-organization, as the aim of forecasting of time-series for financial markets, is present both in the practice and activity of the participants in the corresponding processes. It arises during the process of self-organization, too, as a result of communication between people. This is one of the reasons why the activation of synergetic processes and the relation between them, is among the basic problems that financial markets face. Their successful solution is related to the design of appropriate instrumentation, development of adequate methodical means and carrying out of relevant activities. In fact, the present study treats those problems with regard to forecasting.

3. Chaos-theory, cause and effect relation. The main question: is the connectedness of knowledge and benefit linear? If one gets more and more money in a quiz show, if one knows more and more answers, one can say the benefit is linear to the knowledge. But: if one gets more and more chocolate bars, if one knows more and more answers, one can say the benefit is non-linear to the knowledge, because it is no benefit to get e.g. 100 000 chocolate bars for correct answers, where 100 000 Euros would be a benefit. As already mentioned, from a scientific view Chaos-theory belongs to the research area of nonlinear dynamics. Although in a chaotic system there is no linearity between cause and effect (causal connection) and chaotic system behave unpredictable, they follow of course laws of Nature and are therefore not random, per se; one converses of deterministic chaos. Like Edward Lorenz says in 1963: “The stroke of wings of a butterfly in the Amazon Region causes a hurricane in Florida.” (Edward Lorenz (1917–2008) was an American meteorologist and mathematician. He is considered as the father of the Chaos-theory (butterfly wing stroke).)

“Clouds are no spheres, mountains no cones, coastlines no circles. The bark is not smooth – as well the blizzard carves its way not straight.” (From the Introduction of Mandelbrots book “The fractal geometry of the nature (fractal from Latin frangere).) It is possible to decrypt the structure of a natural fractal and by computer models they can be reconstructed exactly.

As mentioned above, Chaos-theory is applied in Medicine, Cybernetics of management, Physics, Mathematics, Economics as well as in financial markets to forecast yields or stock prices.

For analyzing financial time-series of stocks, yields, currencies, indices etc., Chaos-theory applies a good insight to the data and is able to unveil hidden cycles and patterns. Edgar E. Peters offers in (Peters, 1991) “a new view of cycles, prices, and market volatility” in the context of pre-processing financial time-series.

Figure 1 Ocean Wave, “Der Flügelschlag des Schmetterlings“,
Dr. Reinhard Breuer, Deutsche Verlagsanstalt, Stuttgart 1993

4. Mathematical model of chaotic behavior: the magnetic pendulum. “The simulation is based on computing the motion of a metallic pendulum under the influence of three magnets.” (Berg, 1994). The equations of motion are integrated for all possible starting points in a two dimensional grid and where the magnet over which the pendulum came to a rest. The simulation is a good example for the so called butterfly effect. “The butterfly effect is a phrase that encapsulates the more technical notion of sensitive dependence on initial conditions in Chaos-theory. Small variations of the initial condition of a dynamical system may produce large variations in the long term behavior of the system.” The present paper will describe, ”a numerical model that demonstrates how small changes in the initial conditions of the simulation can result in large variations of the results. The result is an unpredictability of the simulation result since even the smallest change in the environment might effect the outcome dramatically. “The classical model assumes having a magnetic pendulum which is attracted by three magnets...” “The magnets are located underneath the pendulum on a circle centered at the pendulum mount-point. They are strong enough to attract the pendulum in a way that it will not come to rest in the center position.”…” Due to energy loss caused by friction, the pendulum will earlier or later stop over one of the magnets.”…” Magnets are assumed to cause a force proportional to the inverse square of the pendulum distance. In principle, this is akin to the Law of gravity or Coulombs law. All those laws are very similar, but of course, here we are dealing with (hypothetic) magnetic monopoles, not masses or charges. That assumption is in line with what everyone does when it comes to the pendulum and magnets simulation. In reality, Magnets are dipoles. A dipole causes forces proportional to \(\cfrac{1}{r^{3}}\) rather than \(\cfrac{1}{r^{2}}\). The force calculation does not take this into account although simulating a dipole by two monopole sources would be an option too. The Pendulum is assumed to be made up of iron neglecting eddy currents that would be induced in reality.”

The equation of motion:

“The pendulum movement is calculated by integrating twice over the accelerations acting on the pendulum. Normally, one would not talk about accelerations but forces. According to Newton’s First Law of Motion, the force necessary to move a body equals mass times acceleration. We solve that equation for the acceleration:

\[ \vec{F}=m \cdot \vec{a}, \vec{a}=\cfrac{\vec{F}}{m}(\text { Newton's First Law }) \]

Since our initial conditions provide a starting position and a starting velocity (assumed to be null), all we need is to calculate accelerations. For simplicity, mass is assumed to equal one mass unit. Talking about units, we should mention that the simulation in general does not care much about physical units. This is no problem since using real units would just impose scaling factors on the parameters. The following equations list all accelerations relevant for the simulation:”

Accelleration caused by gravitational pullback: \(\overrightarrow{a_{g}}=k_{g} \cdot \vec{r}\)

Accelleration caused by a single magnet: \(\overrightarrow{a_{m}}=\) \(k_{m} \cdot \cfrac{\vec{r}}{|\vec{r}|^{3}}\)

Decelleration caused by friction: \(\overline{a_{f}}=-k_{f} \cdot v\)

Total accelleration of the pendulum: \(\overrightarrow{a_{t}}=\overrightarrow{a_{g}}+\left(\sum_{m=1}^{3} \overrightarrow{a_{m}}\right)-\overrightarrow{a_{f}}\) , where \[ \begin{gathered} \overrightarrow{a_{t}}-\text { total pendulum accelleration; } \\ \overrightarrow{a_{g}}-\text { accelleration caused by gravity pullback; } \\ \overrightarrow{a_{m}}-\text { accelleration caused by magnet with index } m ; \\ a_{f}-\text { accelleration caused by friction; } \\ \vec{v}-\cfrac{\text { velocity of the pendulum; }}{k_{f}}-\text { friction constant; } \\ \overrightarrow{k_{g}}-\text { strength of the gravity pullback; } \\ \overrightarrow{k_{m}}-\text { strength of the magnet; } \\ \vec{r}-\text { position vector of the pendulum. } \end{gathered} \] (cf. Ingo Berg: demonstrating the butterfly effect with a magnetic pendulum)

Thus, the magnet pendulum shows the phenomenon of deterministic chaos. Small changes in the boundary conditions, generate big differences in the phenomena. Predictions get impossible, and we have a random result (Henry Poincaré assumption 1904).

5. Some popular examples. Following we will outline a case study, how Chaos-theory can be applied within another section of Economics, the Strategic management.

In a distribution branch of an EDP manufacturer (due to confidential reason, the company can’t be named) the management decided to rearrange the organization – namely from functional product applied orientation towards target of a specific branch. It was planned to liquidate product oriented functional units in distribution, in software- and marketing domains. Instead profit-center should develop, where marketing- distribution- and software consultants should concentrate on one target audience. Normally one would have got to work with strategic planning, organigrams, job specification and new procedure- and decision rules (Taylor).

This is where the management proceeded different. It has been guided by patterns and self-organization. Such patterns can be worked out by the qualitative analysis of success and failure projects, by interpretation of the company history and by analysis of the growth-strategy and strategy during the crisis. The evaluation of customer- and employee interviews clarified here the intensity of the company, on which to connect was necessary.

Two examples: once the company was outlined as a gyroscope, which is stable, because it is spinning very fast. In another comparison the company was described with a Grand Prix car, on which many mechanics – admittedly dedicated – but uncoordinated, mess about. This results indeed the motor runs, but the car is not getting any place and many components have big attrition. Both comparisons describe actually chaotic situations – at the same time they point to solution approaches. Which patterns of self-organization are inherent this “messages”? They reveal, that dynamic and commitment dominate in the company. In crises and stress situations however, competition instead of integration, intensified actionism and personal orientation dominate. Too many believe to know what the mistake is. The circulus vitiosus of the company lies in the following self-reinforcing loop:

crisis/uncertainty →reinforces→dynamic/actionism →reinforces….

At the same time it is clear, that a slow way of proceeding of the management would provoke opposition; if one would proceed slower, the gyroscope would tumble over. So, how this pictures could be used for the implementation of the management decision, that the reorganization could take place just in time? The management captured personal orientation and the principle of dynamics and decided the following: the personal team composition of strategic market-teams was appointed, which was initiated with one representative of the distribution, the software and the marketing department, each. For this managements success criteria have been agreed, a mix of corporate criteria. The market-teams got the mission for self-organization, more precise:

They had to develop for their branches over the next six month a market diagnosis and strategy, to conceptualize and test their organization, how the structure of their meetings should be, how the distribution of know-how and the resources should be organized. The old and the new organization methods worked during the next six month in parallel mode, to get a graduate transition. The market-teams were allowed to make use of external consultants, when necessary. The experiences of the pilot project and the status quo has been discussed in open conversations and open questions have been resolved, monthly. The implementation of the reorganization went very fast with this few decisions.

Why the decisions had the wanted effect? The management captured dynamic and dedication (mandate for self-organization). Due to the marketteams and the concerted success criteria, the competition between the functional departments (where it hampered the success) has been shifted to competition between the market-teams. The management implemented continual monthly negotiations and feedback loops and gave up huge concepts with planning and organization manuals. Fast operating and trying correspond to the gyroscopic, which is fast, because it is spinning fast. The parallel operation of two organization methods appears maybe chaotic, but it sizes the positive element of Chaos: Confusion stimulates, only in turbulences something new develops.

The decision mix of the management included evident personal decisions (basis for networks), decisions for incentive schemes (open and narrow measure criteria for performance and success). It stimulated the self-organization, additionally, delegated the strategic and organizational expertise in formation and ensured, that the involved persons negotiated and analyzed their actions, permanently. Therein has been the success: Open and indirect we guide the right way, how the Chaos-theory can adapted to management tasks.

6. Conclusion. We hope we could interest the reader a bit to explore, “what keeps the world together, internally”.

(Johann Wolfgang von Goethe, Faust)

NOTES

1. Prof. Dr. Gustav A. Horn, Hans-Böckler-Stiftung, Institut für Makroökonomie und Konjunkturforschung (IMK)

REFFERENCES

Panchev, S. (2001). Teoria na haosa. Sofia: M. Drinov APH.

Nicolis, G. & I. Prigogine, (1979). Samorganizacia v neravnovestnih sistemah. Moskva: Mir.

Haken, G. (1980). Sinergetika. Moskva: Mir.

Bushev, M. (1992). Sinergetika. Haos, order, self-organizacia. Sofia: St. Cl. Ohridski UPH.

Grozdev, S. (2007). For high achievements in mathematics. The Bulgarian experience (Theory and practice). Sofia: ADE.

Peters, E. (1991). Chaos and Order in Capital Markets. New York: John Wiley & Sons Inc.

Berg, I. (1994). Educational articles for programmers on topics of computational physics and mathematics. Referring to: Hilgenfeldt, S. & H. Ch. Schulz (1994). Specktrum der Wissenschaft 1, p. 72.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева