Математика и Информатика

doi.org/10.53656/math2023-5-6-com

2023/5, стр. 506 - 523

COMPETENCY-BASED MODEL FOR CONDUCTING DISTANCE ONLINE SYNCHRONOUS EDUCATION OF THE STUDENTS

Desislava Georgieva
OrcID: 0000-0002-3506-662X
E-mail: dmgeorgieva2@gmail.com
Faculty of Mathematics and Informatics
St. Cyril and St. Methodius University of VelikoTarnovo
Veliko Tarnovo Bulgaria

Резюме: This research examines the problem of training future primary school teachers and math teachers in the conditions of the Covid-19 crisis. Based on the conducted 3-year pedagogical research, the author developed a didactical competence model for giving online synchronous lectures and seminar exercises in the disciplines of Mathematics and Methodology of teaching mathematics. The universalized model can b e used to form and develop the pedagogical and mathematical competences of future teachers, as well as to conduct online classes with secondary school students and high school students. The model has been utilized in three variants: using of MS Equation’s instruments, GeoGebra and OpenBoard. The competences acquired by the future teachers are described. A model to easily record quality math educational videos is proposed. It is concluded that traditional teaching methods should be applied, renewed, expanded and enriched with new technological means.

Ключови думи: didactics of mathematics; future teachers; model for education; online synchronous seminar exercises; video lectures; e-learning resources

Introduction

The changing world presents new challenges to educators who have to find a solution to the questions: How to continue education in extreme conditions without reducing quality? How can the learning technologies be changed, adapted and improved using the capabilities of new hardware and software? These are critical issues in response to which pedagogical research has been conducted from the beginning of the Covid crisis until March 2022.

The parameters of the research process

The object of the study is the competence-oriented educational technologies for distance learning in an electronic environment.

The subject of the research is the possibilities of innovative educational technologies for synchronous distance learning in an electronic environment, which form pedagogical competences in the students of the specialties "Preschool and primary school pedagogy" and "Pedagogy of learning in mathematics and informatics", in the disciplines "Mathematics" and "Methodology of mathematics education".

The aim of the present study is to develop an effective model for conducting seminar classes of university students in the conditions of remote access.

The tasks of the research are:

1. To outline the theoretical framework and to analyse the main concepts.

2. To analyse the possibilities of different software for quality conducting of lectures and seminar exercises, through which to increase the activity and motivation of the students.

3. To create a model for the formation and development of the competences of the future teachers during online synchronous seminar classes.

4. To implement the model in an online learning process and to analyse the results.

The conducted 3-year pedagogical research consists of four stages:

1. Theoretical study of appropriate theories for education.

2. Examination of the possibilities of various software products in distance teaching.

3. Building a model for online synchronous seminar exercises.

4. Monitoring the results of applying the model.

The following methods of pedagogical research were used: theoretical analysis and synthesis of ideas and models for electronic online learning; direct observation of the learning process of students – future teachers in mathematics (seminar exercises and practices); didactic modelling of objects and processes when developing the competency model for online learning; an empirical study to test the author’s methodology; survey of students’ satisfaction with the innovative technologies of the approved author’s model, method of expert evaluation (opinion of university professors about the qualities of the model).

The concepts of competency and competence

The concept of competency is defined by the National Centre for Learning and Statistics in Washington as the combination of skills, abilities and knowledge required to perform a specific task (Jones et al. 2002). Competency is defined as a goal, as a predetermined normative requirement for the student’s educational preparation, and competence as an achieved result, an acquired personal quality, i.e., already mastered competency (Vasileva-Ivanova 2015).

In the European Qualification Framework \({ }^{1}\) and in the relevant National Qualification Framework of the Republic of Bulgaria, learning outcomes are defined as indicators of what the learner knows, understands and can do at the end of the learning process. Digital competence is manifested through the ability to use the digital technologies for learning, work and participation in society confidently, critically and responsibly. It includes information, media, communication literacy and digital content creation, safe Internet browsing, intellectual property compliance and problem-solving skills. The European Commission issues a new version of the Digital Competence Framework 2.0 (Carretero Gomez et al. 2017) with eight levels of proficiency, according to the revised taxonomy of educational objectives (Anderson & Krathwohl 2001), with examples of use. Secondary school students should be able to search, select, retrieve, process, according to several criteria, information from various sources in order to complete a specific task, read, interpret and evaluate information presented in graphs, tables or diagrams \({ }^{2}\). In order to build competencies among students, their teachers must first possess it and create appropriate conditions for its formation and development (Kanchev et al. 2021).

In the project Competencies and the learning of mathematics the authors (Niss & Hojgaard 2011; Niss & Hojgaard 2015) define the mathematical and professional competencies of future teachers as composed of eight components: mathematical thinking; problem tackling; modelling; reasoning; representing; symbol and formalism competency; communicating; aids and tools competency.

Georgieva (2012) has considered professional competences as a set of knowledge, skills and attitudes related to mastering and practicing a certain profession. In this regard, future math teachers must acquire mathematical, digital and pedagogical competence.

The professional competences of students as future teachers is a leading characteristic of their professionalism and is a multi-level, integrative formation of the personality, the set of systemic knowledge, reflective activity, a culture of dialogue, which is manifested in the readiness of the teacher to effectively solve educational tasks (Omarov et al. 2016).

Pedagogical competence goes beyond scientific knowledge and includes instructional strategies, classroom management, assessment methods, communication skills and the ability to foster a positive and inclusive learning environment. Teacher education institutions should adopt comprehensive and holistic approaches that promote the multifaceted development of future teachers.

Integrating technology into teacher education plays an important role in preparing future teachers for the digital age. Educators must be proficient in using educational technology, digital resources and online platforms to enhance teaching and learning. This includes using multimedia tools, interactive platforms and virtual learning environments to engage students and encourage active participation. The formation of the professional competences of students as future teachers becomes one of the most important problems of pedagogical education.

Possibilities of software products for application in education

In the early days of the pandemic, educators were looking for continuing education options based on their experience using software products. Skype, a pioneer in online live communication, is now part of Microsoft 365. It is regularly updated and enhanced so that it has more functionality, can share the screen and anyone easily use it in his/her preferred language. The sound and video are perfect quality. The user can install or use it through a browser and easily create an online meeting. From the shared link, learners instantly and seamlessly log into the online meeting without installing or creating an account. When the trainer uses the same link multiple times for one academic discipline, all written communication and video recordings are saved and accessible through that link to all participants.

When the user starts a meeting, even if there are no other participants in the conversation, the record video button appears. In this way, the trainer can easily create a video lesson, even if he/she does not have any software installed on his/ her computer. Users can share their screen where they show and explain. The future teachers recorded videos this way.

Compared to the BigBlueButton platform, where recordings are in a specific file format, Skype recordings are in .mp4 format, so users do not need special software to play them.

A large number of educators use Google Classroom to publish learning resources, assign and check the students’ independent work, and Facebook’s Messenger to communicate instantly with parents and students at any time.

Creating educational mathematical video with MS Word Equation

Asynchronously presented, pre-recorded video lessons in a controlled environment interact many times more qualitatively and effectively with the physiological sensory analysers of the individual, which naturally leads to a more trouble-free perception and processing of information (Karagyozova 2022). To make it easier to remember the Sarrus rule for calculating determinants of the \(3^{\text {rd }}\) order (fig. 1), in 2019 a free available educational video \({ }^{3}\) was created, which received positive feedback from students. They comment that it is much easier, and they quickly understand and remember the algorithm.

Figure 1. The video Rule of Sarrus for calculating determinants

When the goal is to make a short and precise video, more time is needed for its preliminary preparation. Repeated recordings are made until the desired quality of the record is obtained.

The technology for creating a mathematical video includes the following steps:

1. A detailed solution to a problem is written using the tools for writing mathematical symbols – Microsoft Words Equation.

2. Sequentially is deleted individual blocks of the solution, starting from the end to the beginning of the document.

3. Arrows can be added to direct attention to important parts.

4. Start recording a video with the free Open Broadcaster Software \({ }^{4}\) (OBS studio).

5. With the Undo button, the deleted is restored and the rules are explained verbally.

Normatively regulation of online learning

In March 2020 year, the Rector of Veliko Tarnovo University decreed that students’ access to electronic learning resources should be done through the implemented university system "E-student", and Microsoft Teams, Microsoft Outlook, One drive, et al.

MS Teams can be used online through a browser or installed as an app. The buttons make it easy to start a conversation (Chat) and create a classroom (Teams) for collaboration. The presenter can share his/her entire screen or a separate window so that he/she can simultaneously see user reactions while showing a specific application. Another advantage is that several participants can write simultaneously in one common environment – Microsoft Whiteboard replaces the class board. For attendance control, MS Teams generates a file with all participants and the time they joined and left the event.

With one click, the lecturer can start recording of the synchronous lecture or exercises, so that student who could not to participate in the fixed classes has the opportunity to learn from this video through the browser. After the seminar exercise, the student can listen again and stop where he/she needs more time, go back and listen several times to the parts that are not clear to him/her. There are options to set the playback speed. The days before the exam he/she can recall the teacher’s explanations. Thus, learners work at a pace suitable for them.

MS Teams’ developers have made it easier the saving process so that videos are automatically stored to the OneDrive account of the person who started them. From his/her profile, the owner can control the expiration period of the files and set different access rights.

University lecturers can reuse the video lectures. In this way, the saved time can be used to search for the latest educational resources, learn new software, assign different activities to learners and control the quality of performance.

Other handy tools are cloud spaces. Thanks to them, all files are always with the owner when he/she is connected to the Internet. He/she does not need external data carriers that he/she may forget or break, or that the available device cannot make contact with them. To store and share files, teachers use OneDrive, DOX.bgand Google Drive. OneDrive provides three convenient sharing options: anyone with the link can open and copy; only people in the organization; certain people in the organization have access. The owner decides whether colleagues can only download or collaborate by editing shared documents directly online. The lecturer can create a shared folder where students can quickly add their folders/files so that from the moment they are copied, the teacher can review and check completed assignments. The files in this folder are accessible to all students and thus they can collaborate.

Building a model for online synchronous seminar exercises

The advantages of synchronous distance learning in promoting valuable educational experiences are thoroughly reviewed and explored in Karagyozova’s (2022) analysis.

Figure 2. Competency-based model for conducting online synchronous education

Based on in-depth observations, detailed comparisons and extensive analyses of the use of various innovative educational technologies and software, a comprehensive competency model for conducting online synchronous seminar exercises has been developed. The purpose of this model is to improve the effectiveness of online synchronous learning. Although, different disciplines may use partially different approaches, the global model consists of the following basic blocks (fig. 2):

1. Connection: At the beginning of the online synchronous seminar, both the students and the teacher can access a conversation platform by clicking on a previously created and shared link in the university’s electronic system.

2. Questions: Once the connection is established, students have the opportunity to ask questions related to the studied topics. The trainer who facilitates the workshop answers these questions, clarifying any uncertainties, concepts and filling gaps in understanding.

3. Verification: The trainer conducts a review process to assess the students’ knowledge and skills acquired from the previous lessons. This helps ensure that everyone has a solid foundation before moving forward with new knowledge and gives students the opportunity to reinforce their understanding of already learned content.

4. Screen sharing: To enhance the learning experience, the lecturer shares the screen of his/her computer with the participants. This allows everyone to have a clear view of the resources or presentations used during the workshop. A teacher can effectively visualize key concepts or demonstrate the use of specific software or tools.

5. Recording: Initiating the recording of the event allow the presenter to control the sharing options and expiry period. The videos provide flexibility for subsequent asynchronous learning and deeper reflection, as students can review the recorded at their own tempo.

6. Recall: Through verbally based methods, the instructor prompts students to recall specific theories or concepts that will be used during the current lesson. This step serves as an updating and ensuring that participants have the necessary knowledge to effectively absorb the new educational theory, notion and skills.

7. Motivation: The trainer emphasizes the importance of learning the upcoming knowledge and skills in order to arouse the interest and enthusiasm of the participants. Students are convinced of the need for the new knowledge and its practical application in order to increase their learning motivation, personal commitment and active involvement in the learning process.

8. Example: The lecturer provides examples or practical demonstrations to illustrate how to work with new software or solve a given task or a methodological problem. Through detailed explanation and interaction, the lecturer encourages critical thinking and requires participants to apply the necessary knowledge to understand and address the presented challenges.

9. Analogous activity according to the sample: To reinforce understanding and encourage active learning, students are assigned similar tasks for individual or group solutions. They work on these assignments, applying the knowledge and skills acquired during the workshop. This approach allows the participants to engage in practical application of the learned.

10. Personalization through visualization: Students are selected by name to verbally explain and dictate parts of their solution to the task. This encourages active participation and reduces potential hesitation among students who may be afraid to share their ideas. During this time, the presenter writes the suggested steps in the file containing the text of the problem. Through the shared screen, all participants immediately see the individual steps taken to solve the problem, promoting a collaborative and interactive learning environment.

11. Discussion: The accuracy of the recorded solution is assessed through group discussion. Participants evaluate and analyse the steps provided by their peers, identifying the strengths and weaknesses of the taken approaches. This discussion also serves as an opportunity to explore alternative solutions or recording options. Critical thinking and in-depth understanding of the subject is encouraged.

12. Encouragement: In a short time, the teacher provides feedback to the students to assess their competences and activity; stimulates personal reflection with positive evaluations of active participation, correct decisions, original methodological ideas. Assessment also takes place here, with the instructor noting active participation on the seminar attendance list, ensuring that students receive credit for their engagement.

13. Looking back: The trainer reviews the solution process and summarizes the key steps taken during the workshop. By pointing out specific points or highlighting important aspects, the trainer reinforces understanding of the solution methodology. This step helps to consolidate the knowledge gained and ensures that participants have a clear understanding of the problem-solving approach.

14. Eliminating ambiguities: At this stage, students have the opportunity to ask specific questions related to the studied topic. The discussion goes through an active disputation between the students, asking provocative questions by the teacher and clarifying the answers. The aim is to address any remaining uncertainties and remove ambiguities in understanding, ensuring that all participants have a solid understanding of the topic.

Transition: Steps 8 through 14 are repeated several times as part of a cyclical process that provides opportunities for students to encounter different scenarios, apply their knowledge to different tasks, and hone their problem-solving skills.

15. Test: Short tests are conducted to assess the level of understanding and mastery of the learning activities. These tests assess participants’ memorization, understanding, and application of the workshop content. They serve as checkpoints to measure individual progress and identify areas that may require further attention or clarification.

16. Summary: Participants are given the opportunity to summarize and articulate what they have learned during the specific seminar exercise. Visual flowcharts are presented for summarizing. This step encourages reflection and active engagement as students express their understanding of the concepts. The summary also helps to reinforce the key points and improves the consolidation of the learning content studied.

17. Questions: Participants are given the opportunity to ask new questions related to the seminar topic or other areas, which will gradually eliminate gaps in knowledge and skills and ensure stable preparation for the exam session. This step ensures that any remaining doubts or queries are addressed before the session ends.

18. Reflection: Both the trainer and the trainees participate in a self-critical and retrospective analysis of the actions and learning processes undertaken during the workshop. Reflective practice involves evaluating one’s own performance, identifying strengths and weaknesses, considering alternative approaches or strategies for future improvement. Metacognitive skills are encouraged, and the overall learning experience is enhanced.

19. Sharing: The finished text file containing the summary solutions and a link to the recording of the seminar are saved in the electronic system of the university. This step ensures that workshop materials and resources are available to participants for future reference. The shared files are available for self-study by students absent from the synchronous online session.

20. Termination: The trainer ends the seminar by thanking the trainees for their active participation. Students are encouraged to continue studying the relevant topic and the instructor offers strategies for independent work and further research. At the end of the workshop, all participants expressed positive wishes, ensuring a positive learning environment and enhancing feelings of friendship, proven achievements and a positive outlook.

Depending on the specific disciplines and software tools used, steps 8 through 10 of the general model may vary to meet unique requirements.

From the competence model for online trainingdescribed in the theoretical part, in the experimental stage, three technologies were identified as the main ones and were tested. This adaptability ensures that the model remains relevant and applicable across subject areas, enabling teachers to tailor their teaching strategies accordingly. Their characteristics and learning opportunities are presented below in the exposition.

Technology №1. Using Microsoft Word’s Equation instruments

The main features and capabilities of these tools are:

• The Equation Editor provides a wide range of mathematical symbols, operators and structures that can be selected and inserted directly into the document.

• Unlike LaTeX, where the user must type individual characters from the keyboard to render a mathematical expression, MS Equation has a graphical interface.

• These math symbols can be easily copied and pasted into other MS Office applications, such as PowerPoint and Excel, providing seamless integration into different files.

The steps from the basic model are transformed as follows:

In step 8, from the general model, a prepared Word file with the conditions of the mathematical tasks is opened. The teacher uses the Equation’s tools to record the solution to the problem (fig. 3). To save time, he/she can copy part of the solution and change the numbers in the next step of the solution. While writing, he/she simultaneously explains the steps and concepts involved. This allows students to follow and grasp the concepts being taught. As students acquire the necessary knowledge, the teacher engages them by asking questions to ensure their understanding.

\[ \begin{aligned} & X \cdot\left(\begin{array}{lll} 3 & 4 & 5 \\ 7 & 2 & 0 \\ 1 & 3 & 4 \end{array}\right)=\underbrace{\left(\begin{array}{ccc} 30 & 27 & 29 \\ 25 & 13 & 9 \\ 35 & 19 & 14 \end{array}\right)}_{\mathrm{A}} \\ &\left|\begin{array}{lll} 3 & 4 & 5 \\ 7 & 2 & 0 \\ 1 & 3 & 4 \end{array}\right|=\left|\begin{array}{ccc} 3 & -5 & -7 \\ 7 & -19 & -28 \\ 1 & 0 & 0 \end{array}\right|=1 \cdot(-1)^{3+1} \cdot\left|\begin{array}{cc} -5 & -7 \\ -19 & -28 \end{array}\right|+0+1 \\ &=140-133=7 \end{aligned} \]

Figure 3. Using Microsoft Word Equation instruments (a part of the video)

In step 9, the trainer poses a similar problem for the students to solve independently. They record the decision on a piece of paper.

Moving on to step 10, an individual student is chosen to dictate parts of the solution. The trainer records the dictated decision in the Word file that is displayed on the shared screen. This immediate visibility allows participants to observe and understand the individual steps taken to arrive at the answer. Also, if the learner captured his/her written solution on a piece of paper using a smartphone, he/she can share the image in the chat for quick reference. The teacher can open the picture on the shared screen and ask the student to explain orally, thus making sure that the person understands and can explain the solution.

Technology №2. Using Microsoft Word, GeoGebra and graphical tablet

After testing and comparing different ways of conducting online seminar exercises, it turned out that when solving a geometric problem, technology №2. proved to be more effective. It introduces additional steps to the basic model.

In step 8.1 a file containing a previously written text of a methodical task is opened. The teacher copies the condition of the geometry problem into GeoGebra.

Moving on to step 8.2, the trainer demonstrates and explains step by step the process of constructing a drawing in GeoGebra. Students are taught how to effectively use the tools of the software (fig. 4).

Figure 4. Synchronous construction of a drawing in GeoGebra

In step 8.3, the finished drawing is captured using various methods such as a keyboard button or the applications Lightshot or Snip & Sketch or the builtin Windows "Snip Tool". The drawing is inserted as a picture in Microsoft Word and any further reasoning or annotations can be done with the digital graphic tablet using a stylus. This allows for further explanation and illustration of the solution process (fig. 5).

Figure 5. The finished drawing is transferred to MS Word

Step 8.4 involves doing methodical work on the task. Reflections, discussions and additional annotations are recorded using the tablet and pen tool from MS Word. This collaborative approach facilitates active participation and improves students’ understanding of the methodological problem-solving process (fig. 6).

Technology №3. Using OpenBoard and a digital graphic tablet

This technology is also applied to geometric tasks, but when the task does not require a complex geometric drawing. It is more convenient to use the free software OpenBoard, which provides the ability to write with a digital graphic tablet on separate white sheets. They are reordered and automatically saved to a new file. The user can quickly switch to other open windows on the computer (a small toolbar remains from the program) and write on them or cut part of them.

Figure 6. Co-build the solution and record with a digital graphic tablet

With this tool, the sub-steps of step 8 are as follows:

8.1. The text of a pre-recorded methodical or math task is copied to OpenBoard. Text can be cut with the Scissors tool from an e-textbook at the time of construction of the assignment.

8.2. A schematic model of the task is drawn up with OpenBoard’s drawing tools.

8.3. Methodical or mathematical work on the relevant task follows, using the tablet and the OpenBoard writing tool. The reasoning carried out is recorded on the sheets.

8.4. The teacher can quickly switch and show other open windows, write on them and make explanations.

A greater number of tasks can be solved in this time-saving way. The teacher shows various sources and new techniques of work that future teachers can use in their teaching practice.

Monitoring the results of the implementation of the model

The model has undergone repeated testing and continuous improvement through practical application in a pedagogical context. A comparative analysis of the results of online learning from the first year of the pandemic – the academic year 2019/2020 and the application of the model in the academic years 2020/2021, 2021/2022 and the winter semester of 2022/2023 (in the summer semester, fulltime studies have been resumed). There are three criteria for evaluating the effectiveness of the conducted experiment: Degree of development of mathematical competence; Level of development of digital competence; Degree of formation and development of pedagogical competence.

At the beginning of each semester, in each discipline, online tests were conducted to check and evaluate the mathematical competence of the students and surveys about the digital and pedagogical competences. Statistically insignificant differences were reported between the observed groups.

At the end of each semester, the mathematical competence was assessed through an online test, and the digital and pedagogical competence were established in the methodical developments of the lessons presented online. Achievement of results is observed for each of the criteria, with the increase being more significant for digital and pedagogical competence. The presented online lessons meet to a greater extent the methodological requirements for development (Galabova, 2008). Future educators use and apply traditional methods, supplementing and enriching them with modern technologies and teaching aids.

As a result of the research, students from the "Preschool and primary school pedagogy" specialty. created didactic games in educational environments: LearningApps, Wordwall, Kahoot, puzzles from jigsawplanet.com, etc. They were able to write pieces of code in LiveWorksheets to create engaging interactive worksheets that students can use to immediately check the accuracy of solved problems. Colourful, engaging and above all valuable educational presentations and videos were developed.

The students studying “Pedagogy of mathematics and informatics” in secondary school develop the skills of drawing geometric drawings with Word’s tools and dynamic drawings with GeoGebra. For the period of the study, educational presentations were developed with PowerPoint, Microsoft Sway and Prezi and recorded videos with Skype, MS Teams, OBS studio.

The formation of the mathematical, pedagogical and digital competences of the students-future teachers is also developed through learning tasks for extracurricular activity, also carried out in an online environment. Technologies tested in a number of learning activities can be summarized:

Solving mathematical and methodological problems with electronic tools and mathematical educational software in theoretical and practical disciplines.

Development of individual and team learning projects on didactics of mathematics; elaboration of computer lesson presentation, research and use of computer educational games, interactive worksheets and e-tests; analysis of electronic textbooks; recording with a digital camera of pedagogical objects and phenomena.

Internet research to enrich competences on the studied topics: search for additional information in electronic journals and libraries (analysis e-article, writing essay, abstract, project, etc.).

Online class observation: remote observation of school lessons in an online environment, video recording of the lesson, analysis of the protocol of the observed lesson, development of an electronic learning portfolio for pedagogical internship, etc.

Online practices and internships with electronic documents: criteria maps for evaluating the pedagogical and methodical competence of the teacher intern; lesson plans and lesson computer presentations; educational electronic games, tests and software teaching resources.

The author’s competence model for online training of the students who are studying to be teachers has been shared and applied by other professors at the University of Veliko Tarnovo. According to the method of expert evaluation, they give a positive opinion about the model and share about increasing the results in all criteria.

The conducted survey of students’ satisfaction shows that they appreciate the positive influence of the model used for conducting the seminar classes. They share that continuous visualization is useful for them, they are satisfied that they learned in a short time how to use new software products to make their lessons modern, interesting and exciting. They express gratitude for recorded videos, which they also watch asynchronously depending on their individual needs.

The application of the Competence model for conducting online synchronous classes raises the level of mathematical, pedagogical and digital competence of future teachers. Competencies are developed for: analysis, synthesis, critical thinking, application of specific methods of mathematics, reflective thinking, for written and oral communication with the language of mathematics. Through teamwork, qualities such as tolerance, confidence, persistence, precision, adaptability and initiative are improved.

By applying this model, the teacher motivates and provokes the students to be active participants in their studies and self-learning.

Conclusion

The crisis in the education system (2020 – 2022) created by the COVID19 pandemic has accelerated the process of digitalization of education and the search for innovative technologies for learning in all its degrees. The university has a responsibility to prepare highly qualified mathematics teachers ready to teach and educate students belonging to the digital generation. In addition to basic mathematical and pedagogical-methodical competence, the modern mathematics teacher must have digital competence.

The conducted three-year research confirmed the hypothesis that if innovative technologies for online synchronous learning (Skype, Microsoft Teams, Open Broad Caster Software and specialized mathematical software) are applied in the training of the students who are studying to be teachers of mathematics, it will increase the level of their competence.

The general conclusions of the study are:

• Today, we cannot train the students who are studying to be teachers in mathematics as we used to train them in the past with informative conversations and demonstration methods. The reasons are that once they experience the possibilities of electronic resources and learning software and applications, they show more interest in learning and show higher learning results. On the other hand, the university prepares teachers to teach school students – digital explorers who live and learn entirely in the digital world.

• Through the systematic application of the competency-based model, students not only learn its components, but also develop the ability to use it in their own teaching practice. Using different work techniques promotes flexibility and skills to deal with different situations that may arise in the classroom.

• The tested digital technologies in the Didactics of mathematics training prove their educational and developmental functions. The learning resources and learning videos recorded by the computer applications are very useful for learners in relation to multimodal learning (information flows through different channels and activates several senses) as well as self-learning (repetitive, self-paced learning).

• The competency model provides future teachers with the knowledge and skills needed for digital education. This holistic approach not only enhances their pedagogical competence, but also enables them to effectively engage and inspire their students in the learning process.

The proposed model for conducting online synchronous classes is suitable for both university and school education, and the teacher can specify and diversify the individual steps and experiment with other software. This flexibility allows the application of innovative approaches and practices in the teaching and learning process, which is a fundamental aspect of the competence approach.

ACKNOWLEDGEMENTS: I sincerely thank Prof. Dr. Darinka Galabova for her continuous support in my pedagogical practice and in conducting this research, for her patience, motivation and shared valuable knowledge.

NOTES

1. The European Qualifications Framework: supporting learning, work and crossborder mobility, 2018. Luxembourg: Publications Office of the European Union. ISBN 978-92-79-80382-6. doi:10.2767/385613.

2. Ministry of Education and Science, Republic of Bulgaria, 2019. Competency-based approach in teaching (mon.bg).

3. https://youtu.be/aB7jLEX1xP4

4. https://obsproject.com/download

5. https://youtu.be/46a8qL4Wud4

6. https://www.jigsawplanet.com/

REFERENCES

ANDERSON, L., KRATHWOHL, D., 2001. A Taxonomy for Learning, Teaching, and Assessing. A Revision of Blooms Taxonomy of Educational Objectives. Longman. ISBN 978-0801319037

CARRETERO GOMEZ, S., VUORIKARI, R., PUNIE, Y., 2017. The Digital Competence Framework for Citizens with eight proficiency levels and examples of use. Luxembourg: Publications Office of the European Union. ISBN 9789279-68006-9. doi:10.2760/38842.

GALABOVA, D., 2008. Rakovodstvo za stazhant-uchiteli po matematika. V. Tarnovo: University Publishing House "St. St. Cyril and Methodius", ISBN 978-954-524-648-7 [in Bulgarian].

GEORGIEVA, M. 2012. Problemat za kompetentnostite v prodalzhavashtoto obuchenie – uchene prez tseliya zhivot v konteksta na bolonskiya protses. Nauchni trudove Pedagogicheski kolezh Dobrich, University “Episkop Konstantin Preslavski”, vol. 5, 26 – 29. ISSN 1312-2347 [in Bulgarian].

JONES, E., VOORHEES, R., PAULSON, K., 2002. Defining and Assessing Learning: Exploring Competency-Based Initiatives. Washington: U.S. Department of Education, National Center for Education Statistics.

KANCHEV, P., VASILEVA, A., ALEKSIEVA, YA., 2021. Uchilishten model za izgrazhdane na klyuchov ite kompetentnosti. Proekt „ Kholistichen uchilishtno baziran model za izgrazhdane na digitalna gramotnost“, sŭfinansiran ot Fondatsiya OАK. [viewed 30 November 2022] Available from: Holistic_model_handbook-FINAL.pdf (safenet.bg) [in Bulgarian]

KARAGYOZOVA, S., 2022. Sinkhronno vs. asinkhronno, ili zashto „onlain lektsiya“ ne e sinonim na „distan tsionno obuch enie“, Pedagogika-Pedagogy, 94(1), 65-78 https://doi.org/10.53656/ped2022-1.06. [in Bulgarian]

NISS, M., HOJGAARD, Т., 2011. Competencies and Mathematical Learning Ideas and inspiration for the development of mathematics teaching and learning in Denmark, English edition. Roskilde, Denmark: Roskilde University, Department of Science, Systems and Models, IMFUFA. ISSN 0106-6242.

NISS, M., HOJGAARD, Т., 2015. Mathematical Competencies and the Learning of Mathematics: The Danish KOM Project In: Stasey, K. & Turner, R. (Eds.) Assessing Mathematical Literacy the PISA Experience, pp. 35 – 55.

OMAROV, Y., TOKTARBAYEV, D., RYBIN, I., SALIYEVAA, A., ZHUMABEKOVA, F., HAMZINA, S., BAITLESSOVA, N., SAKENOV, J., 2016. Methods of forming professional competence of students as future teachers. International journal of environmental and science education, vol. 11 (14), pp. 6651 – 6662, EISSN-1306-3065, https://eric.ed.gov/?id=EJ1116067

VASILEVA-IVANOVA, R., 2014. Kompetentnostniyat podkhod v obuchenieto po matematika. Ruse: Rusenski universitet „Angel Kаnchev“, vol. 53 (6.2) pp. 180-185. [viewed 30 November 2022] Available from: ISSN 2603-4123 (on-line) [in Bulgarian].

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева