Математика и Информатика

2019/3, стр. 352 - 363

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova
E-mail: n_sofr@mail.ru
Dr. Anatoliy Belchusov
Department of Informatics and Information & Communication Technologies
Chuvash State Pedagogical University
Anatoliy Belchusov
E-mail: belchusov@mail.ru
Chuvashia, 428009 Russia

Резюме: A remote contest is a form of extracurricular students’ activity. Using the example of “Infoznaika”, a remote contest in computer science, the article discovers the didactic potential of such events, which includes monitoring the progress of computer science acquisition, improving the arrangement of extracurricular students’ activity, increasing the motivation and cognitive activity in computer science, making interdisciplinary relationships, forming meta-disciplinary competences of junior students and disciplinary competences of middle and senior students.

Ключови думи: extracurricular activity; remote contest; monitoring; cognitive activity; meta-disciplinary competence; disciplinary competence

Introduction

A global reach of information and communication technologies (ICT) brought crucial changes to the system of education. Namely, remote contests became widespread. However, the didactic potential of such events has not been revealed, and there are no papers on the didactic significance of remote contests

A remote contest is an extracurricular competitive event, in which the participant and organizers can be distantly separated from each other (Belchusov & Sofronova, 2011). The growth of remote contests is based on the requirements to the teachers’ assessment and the demand to make a student’s portfolio, which includes the certificates and diplomas as results of participation in contests. One of the criteria of the teachers’ assessment is the number of students, who have participated in subject Olympiads and contests and who have taken winning places (Markelova, Akhayan & Kizik, 2006). Due to these facts, teachers and students take an active part in various remote contests.

Literature Review

Pedagogical Assumptions

A remote contest is a form of extracurricular students’ activity. The analysis of the current literature on pedagogics shows that there are several approaches to the definition of “extracurricular activity (work)”. Kodzhaspirova G. and Kodzhaspirov A. (2005) define the extracurricular activity as an integral part of the educational and nurturing process at school, a form of organization of students’ free time. They notice that the directions, forms and methods of extracurricular activity significantly overlaps the supplementary education of children.

N. V. Sofronova specifies that the performance of extracurricular activity in computer science contributes to the development of cognitive interest of students, the advanced study of computer science (in elective courses), the propaedeutic of computer science lessons (in study clubs for junior students), the personal enrichment and making new connections (with the help of communication networks) (Sofronova N., 2004).

Suleimanov R. (2010) classifies the forms of extracurricular activity according to various features, namely the scope and range of students, the time of performance, the systematic nature, the didactic purpose etc. According to the systematic nature, the author defines occasional extracurricular events and regular extracurricular events (which are performed within one academic year at least).

Online Learning

As long as the Internet goes forward, and more and more students obtain their own personal computers, many special contests, which were traditionally held at school and at the regional and federal levels, are now organized remotely. Remote contests have their own specific functions (Bratitsis & Ziannas, 2015). For example, O. N. Volik (2005) defines the following functions, which are of higher priority for a computer creative activity contest as a form of extracurricular students’ activity.

An educational function, i.e. a contest, aimed to form an information culture, motivates students to self-education and positive interest to new knowledge. Contestants show the understanding and introduction of facts, concepts, rules, laws and theories of science. Such type of contest as a preparation and presentation of a project allows participants to acquire new knowledge (when they see or hear something new from their rivals) and skills (when they solved a task in the contest). The requirements to the design of contests, the presentation of the project to the judges, rivals and guests, form general educational skills: oral and written communication skills, abstracting, working with printed and electronic media etc. (Marchuk, 2013).

Adevelopmental function means that within the competitive activity a contestant develops in all the directions, such as communication, personal sensory and kinetic capabilities, emotional-volitional and demand-motivational sphere.

A formative function means that within the competitive activity ethical and moral standards of behavior are formed, as well as the sense of the world, managed by information, the ability to follow the rules of behavior in the informational environment and to exercise the laws of this environment. During the competitive activity a student masters the personal demands, the motive of social behavior and activity, values and values-based orientations.

An integrative function means that due to the organizational form, the purposes, the contents, the methods and the means of the contest have the features of systemacity, which is why the contest is perceived as an integral unit of interaction for the subjects of the contest.

A communicative function of the contest means that the communication between the subjects is organized.

An administrative function means that the contest focuses its pedagogically necessary elements (purposes, contents, structure, methods, supporting means) and makes the subjects of the contest form their own information culture.

As for subject Olympiads, Sharapkov A. (2003) and Podlesnyi, D. (2001) define such functions, as motivational, educational, supervisory, representative and adaptational functions.

The motivational function solves the following tasks:

– contributes to the personal self-assertion of students, develops self-respect, forms the drive to achieve results;

– helps the teacher to reveal students’ capacities and show these capacities to the students themselves;

– enhances creative thinking and creative approaches in problem solving;

– brings students to the scientific inquiry and its emotional component;

– develops interest and love for the subject;

– motivates knowledge acquisition;

The educational function is implemented due to the following:

– the enhancement of the important feedback between the teacher and the student;

– the upgrading of teachers’ professional skills;

The supervisory function allows:

– summarizing and systematizing the performed activity;

– estimating the quality of the educational and nurturing process at school;

– using the results of subject Olympiads for the comparative estimation both of students and teachers.

The representative function defines the reputation of school, city, region, republic etc. In the view of many participants of subject Olympiads, the reputation of the school is one of the motivations to participate.

The adaptational function is not about defining the winners and awarding the achievers but increasing the general culture of the subject and improving the intellectual level of students, fostering self-sufficiency, diligence, drive for competitive activity.

All the above-mentioned functions of remote subject Olympiads and contests are designed to form important personal traits, necessary for responsible life. The experience of a successful performance at subject Olympiads is initially achieved through the participation in them; consequently, we must stimulate a student’s wish to participate at subject Olympiads of a higher level. For this, we must arrange the conditions of the full interaction in such subject Olympiads. The involvement of students into subject Olympiads is one of the components used to create the system of extended knowledge acquisition.

Let us discuss the didactic potential of remote contests using the example of “Infoznaika”, an international contest in computer science. The didactic potential here means the possible pedagogical functions, which are not always implemented.

Since 2005, at the initiative of the noncommercial association named “Chuvash Regional Branch of Academy of Information Support for Education” the remote contest computer science “Infoznaika” has been organized for 1 – 11-graders and students of secondary technical schools. Since 2013 the contest has become international. Such countries as Kazakhstan, Moldavia, South Korea, Ukraine, Latvia, Belarus etc. participate in the contest. The remote contest “Infoznaika” is popular enough amount Russian schools. The participants are from all over the Russian Federation.

To implement the remote contest “Infoznaika” there is a portal http://www. infoznaika.ru. For information, the tasks for 2005 – 2017 are uploaded, as well as a part of the contest is written in JavaScript with the possibility to upload the answers and to get the results. A contest logo was developed, which is used in the contest diplomas, certificates, posters and other documentation by the authors.

Research Method

The didactic potential of the remote contest “Infoznaika” is as follows:

– monitoring the educational process of students;

– improvement of extracurricular students’ activity;

– increasing the motivation and cognitive activity in computer science;

– setting inter-subject communications during education;

– forming meta-disciplinary competences in junior students;

– forming disciplinary competences in computer science of middle and senior students.

The statistical indicators of solvability of the tasks, detected in the results of the contest, can be considered from the point of view of monitoring the quality of education in computer science at the regional and school level. Since 2016 every student, participating in the contest, can see the results in the profile.

Moreover, the level of formation of universal learning activities in 1 – 6 graders is calculated based on the expertise. School teachers are interested in this information to correct the educational process, to determine the educational level in computer science as compared with other educational institutions, including those beyond the territorial entity.

A teacher can use the tasks of the contest in extracurricular activity. There are tests of previous years on-line and off-line in the site infoznaika.ru. You can also download the tasks to discuss the salvation in the clubs and elective courses. It is rewarding that teachers highly appreciate the level and the contents of the tasks (see the comments by the participants below):

– We participate in many subject Olympiads and contests, but the tasks of Infoznaika are more professional;

– Thank you, the tasks are very interesting, exciting;

– Interesting, informative tasks;

– The tasks for -11 graders this year are very interesting, keep on;

– The tasks are interesting, there are more tasks this year for the school course, I think;

– The structure of the tasks greatly matches the contents.

Many teachers say that remote contests increase the interest to the subject in students.

Inter-subject communications are revealed in the contents of the tasks. The contents of the tasks in the contest “Infoznaika” are the integration of almost all the school subjects. The main purpose of the tasks is the social adaptation of students in the information society.

Meta-disciplinary competences are defined by the Federal State Educational Standard of Primary General Education (2009); they include universal learning activities (cognitive, regulatory and communicative), providing the acquisition of the basic competences, forming the base of learning skills”, and inter-subject notions. The above-mentioned scientists (O. Volik, D. Podlesnyi, A.Sharapkov & al.) proved the inter-subject nature of contests and subject Olympiads. Let us demonstrate that during the organization and performance of the remote contest “Infoznaika” meta-disciplinary competences are formed.

Setting

Let us take the types of the tasks, designed to form regulatory universal learning activities:

1. To decompose the task into the sub-tasks, the interdependence of sub-tasks, to prioritize the sub-tasks and to estimate them;

2. To determine the correct sequence of actions, making the plan drawing up a plan and its recording (including a tabular form), e.g., we plan our work in the editor (graphic, text, database, etc.);

3. Tasks that teach step-by-step and final control over the results, the restoration of missed actions, the identification of erroneous actions, e.g., the task to find and correct errors in the text of the program;

4. To transform information according to the specified rules (coding algorithm);

5. The executives and their management, types of algorithms and forms of their recording;

6. To organize the educational process with an electronic diary, Google Calendar etc.

Among the cognitive universal learning activities, the following types of tasks have been identified:

– general educational universal learning activities:

1. the ability to formalize the results of their activities using information technology;

2. the selection of software products, which solve the task most effectively solving;

3. the selection of computer characteristics and peripheral devices according to the task;

4. the ability to work with reference books, instructions, electronic dictionaries.

– symbolic cognitive universal learning activities:

1. coding;

2. visual forms of presenting information: charts and diagrams, schemes, tables, infographics, graphs, trees, animation, slide shows, their design and study;

3. creation and study of information models: verbal, tabular, graphic;

4. making flowcharts, writing programs.

– logical cognitive universal learning activities:

1. the relationship of objects: compare, find differences, eliminate unnecessary ones; make an order;

2. the classification of objects, the selection of objects falling under the concept;

3. the transformation of information by means of reasoning;

4. the tabular solution of logical tasks.

In the nomenclature of universal learning activities there are two similar sections: cognitive universal learning activities related to the formulation and solution of problems, and regulatory universal learning activities. To give examples of tasks for them, it is necessary to clearly separate these concepts. We assume that regulatory universal learning activities are required when the task has already been assigned to a student by a teacher from outside. In this case, a student only needs to properly organize their work to solving the task, which has already been clearly formulated and correctly set.

The cognitive universal learning activities, associated with the formulation and solution of problems, are necessary for a student in the case when they do some research, as a result of which they face a problem that they must formulate and then find ways to solve it. However, this will already be an unusual task, but an intellectual one. An intellectual task can be understood as a task for which the algorithm for solving the problem is unknown. Such a situation arises in the case of solving non-standard problems. Now we are ready to give the types of tasks designed to form cognitive universal learning activities related to the formulation and solution of problems:

1. solving extra-difficult tasks;

2. solving non-standard tasks;

3. performing research projects;

4. studying the material going beyond the school curriculum;

5. using the elements of the Theory of Inventive Problem Solving.

To form the communicative universal learning activities the following types of tasks can be distinguished:

1. solving riddles, crosswords, rebuses;

2. understanding of the principles the interface construction; working with dialog boxes, setting environment parameters;

3. understanding formal languages, including coding systems and programming languages;

4. electronic record-keeping, creation of textual documents under a template, shared work on documents in the network

5. mastering telecommunications to organize communication with remote interlocutors, asking them for help, etc. (skype, viber, email, translators, social networks and communities, forums, online support services);

The formation of subject competencies in computer science of middle and high school students is carried out in the process of solving tasks by the participants of the contest, since the tasks are made in accordance with the main areas of study of the school course of computer science.

Participants

The experimental check of the didactic effectiveness of the remote contest “Infoznaika” was carried out by comparing the results of the universal learning activities formation among the participants of the competition with students who did not participate in the contests. The experts were computer science teachers of primary classes. In the 10-years experiment the organization of the remote contest “Infoznaika”, about 1.5 million 1-11 graders of secondary schools in Russia and foreign countries took part in the contest. An experimental sample was over 200 thousand schoolchildren.

Teachers, whose students take part in the contest “Infoznaika”, were invited to act as experts and estimate the level of formation of the regulatory universal learning activities among those who participated in remote contests (experimental group - “E”) and those who refused to participate in them (control group – “K”). After averaging-out, the results were summarized in Table 1, from which the level of formation of the regulatory universal learning activities in the experimental group is 38.71% higher.

Table 1. The increase of the formation level of the regulatory universal learning activities in the experimental group as compared with the control group

ElementEKIncrease in %goal setting7.485.4038Planning7.315.2539Prediction6.914.9738Control7.365.2938Correction6.985.0534Estimation7.455.5345volitional self-regulation7.465.1139Regulatory universal learning activities(overall index)7.285.2338.71

Let us check the statistical significance of the obtained result by Student’s t-test (Sofronova N., 2015) Samples are taken from general populations with a normal distribution. Let us find out whether the statistical dispersion of the samples differ. For this, we apply the Fisher’s ratio test (see Table 2).

Table 2.Two-sample Fisher’s ratio test for dispersion

ElementVariable 1Variable 2Average7.2785714295.228571429Dispersion0.0559142860.039547619Observations77Df66F1.41384708P(F<=f) one-tailed0.342390279F critical one-tailed4.283865714

As 1.41<4,28, we make a conclusion that the dispersions are not statistically different. Let us calculate the t-test for the similar dispersions (see Table 3).

Table 3. Two-sample t-test with the similar dispersions

ElementVariable 1Variable 2Average7.2785714295.228571429Dispersion0.0559142860.039547619Observations77Pooled variance0.047730952Df12
t-statistics17.5544745P(T<=t) one-tailed3.17881E-10t critical one-tailed1.782287548P(T<=t) two-tailed6.35763E-10t critical two-tailed2.178812827

As 3.17> 1.78, the sample averages differ significantly at the specified level of significance of 0.05, that is, it is proved that the level of formation of the regulatory universal learning activities among students who participated in the contest “Infoznaika” is higher than among those students who did not participate in the contest.

Next, let us check the formation of cognitive universal learning activities. Teachers, whose students take part in the remote contest “Infoznaika”, were invited to become experts and assess the level of formation of the cognitive universal learning activities among those who participated in the remote contests (experimental group - “E”) and those who refused to participate in them (control group – “K”). After averaging-put, the results were summarized in Table 4, from which the level of formation of cognitive universal learning activities in the experimental group is 37.25% higher.

Table 4. The increase of the level of the cognitive universal learning activities in the experimental group as compared with the control group

ElementEKIncreasein %General educational universal learning activities:Independent determination and formulation of a cognitivepurpose7.255.2039Search and selection of necessary information7.785.5540Modeling and model conversion7.025.0539Structuring the knowledge7.165.1738Aconscious and free construction of speech utterance7.115.3134Selection of the most e󰀨ective ways to solve tasks dependingon specic conditions7.305.2140Reection of the methods and conditions of action, monitoringand evaluating the process and results of activities7.185.3035Notional reading as understanding the purpose of reading andchoosing the type of reading depending on the purpose7.335.3737Extracting the necessary information from the listened texts ofvarious genres7.335.4435Denition of primary and secondary information7.405.4536Free orientation and perception of texts of literary, scientic,journalistic and o󰀩cial style7.085.2834
Understanding and proper estimation of the language of themass media7.185.4332Setting and forming the problem7.115.1937Independent creation of activity algorithms for solving prob-lems of a creative and exploratory nature7.195.0842Logical universal learning activities:Analysis of objects in order to highlight the signs (essential,non-essential)7.345.4235Synthesis as the construction of the whole from the parts,including independent completing of the missing components7.095.1937Generalization, analogy, comparison, serialization, classica-tion7.365.4236Summing up7.075.1437Causation7.145.2137Making a logical chain of reasoning7.315.2838Evidencing7.045.1038Making hypotheses and their justication6.884.8641Statement and solution of the problem:Formulation of the problem7.025.1337Independent creation of ways to solve problems of a creativeand exploratory nature.6.964.9840Cognitive universal learning activities(overall index)37.25

Let us check the statistical significance of the obtained result by Student’s t-test (Sofronova N., 2015). Samples are taken from general populations with a normal distribution. Let us find out whether the statistical dispersion of the samples differ. For this, we apply the Fisher’s ratio test (see Table 5).

Table 5. Two-sample Fisher’s ratio test for dispersion

ElementVariable 1Variable 2Average7.1929166675.24Dispersion0.0345606880.027756522Observations2424Df2323F1.245137584P(F<=f) one-tailed0.301692772F critical one-tailed2.014424842

As 1.24<2.01, we make a conclusion that the dispersions are not statistically different. Let us calculate the t-test for the similar dispersions (see Table 6).

Table 6. Two-sample t-test with the similar dispersions

ElementVariable 1Variable 2Average7.1929166675.24Dispersion0.0345606880.027756522Observations2424Pooled variance0.031158605Df46t-statistics38.32527956P(T<=t) one-tailed7.39034E-37t critical one-tailed1.678660414P(T<=t) two-tailed1.47807E-36t critical two-tailed2.012895567

As 7.39> 1.67, the sample averages differ significantly at the specified level of significance of 0.05, that is, it is proved that the level of formation of the cognitive universal learning activities among students who participated in the contest “Infoznaika” is higher than among those students who did not participate in the contest.

Conclusion

The performed study shows that the didactic potential of the remote contest “Infoznaika” is as follows:

– monitoring the progress of mastering the subject;

– arrangement of extracurricular students’ activity;

– increasing the motivation and cognitive activity in computer science;

– making interdisciplinary relationships;

– forming meta-disciplinary competences of junior students;

– forming disciplinary competences of middle and senior students.

The comprehensive study of the didactic potential of the remote contest “Infoznaika” was conducted for the first time. Considering the intensive spread of remote contests, it can be argued that remote contests have become a new object of pedagogical research. For ten years, the organizers of the contest have developed more than one and a half thousand tasks, and over 1.5 million schoolchildren took part in the international remote contest “Infoznaika”, more than 5 thousand teachers regularly participate in this competition. The organization and holding of distance competitions is a great work of many people, which is important in the process of teaching schoolchildren and which has great didactic importance.

NOTES

1. Federal State Educational Standard of Primary General Education (2009). Order of the Ministry of education and science of the Russian Federation, 373

REFERENCES

Belchusov A. & Sofronova N. (2011). Theory and practice of distance competitions in informatics. Saarbrücken: LAP LAMBERT Academic Publishing.

Bratitsis, T. & Ziannas, P. (2015). From early childhood to special education: Interactive digital storytelling as a coaching approach for fostering social empathy, Journal Procedia Computer Science, vol.67, 231 – 240.

Kodzhaspirova G. & Kodzhaspirov A. (2005). Dictionary of pedagogy. Moscow, Rostov-on-Don: MarT Publishing.

Podlesnyi, D. (2001). Methods of preparation and conduct physical competitions in the primary school of Russia. RSL Publishing.

Markelova S., Akhayan, A. & Kizik, O. (2006). Information competence of distance learning teacher and his/her readiness for distance learning activities. What is the difference? The Emissia Oine Letters, vol. 12 (available at the web).

Marchuk N. (2013). Psychological and pedagogical features of distance learning, Journal of Pedagogical Education in Russia, vol. 4, 78 – 85.

Sharapkov A. (2003). Pedagogicheskie usloviya gumanizacii reshchima ispytaniya shkolnikov na predmetnyh olimpiadah. Diss. (Pedagogical conditions of humanization of predictive testing of schoolchildren for Olympiads. Diss). Ryazan.

Sofronova N. (2004). Theory and methodology of teaching computer science: textbook for pedagogical institutes. Moscow: Higher school.

Sofronova N. (2015) Introduction in pedagogical research: textbook for students of pedagogy. Cheboksary: Perfectum.

Suleymanov R. (2010). Organization of extracurricular activities in the school club of programmers. Moscow: BINOM.

Volik O. (2005). Projection and implementation of computer competition for art students. Moscow: RGB Publishing.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева