Математика и Информатика

2015/6, стр. 567 - 581

ERRORS RELATED TO TOPICS IN GEOMETRY, DATA REPRESENTATION AND ANALYSIS MADE BY FIFTH GRADE STUDENTS IN THE REPUBLIC OF MACEDONIA

Metodi Glavche
Faculty of Pedagogy
Ss. Cyril and Methodius University
Skopje, Macedonia
Risto Malčeski
E-mail: risto.malceski@gmail.com
Faculty of Informatics
FON University
Skopje, Macedonia
Katerina Anevska
E-mail: anevskak@gmail.com
Faculty of Informatics
FON University
Skopje, Macedonia

Резюме: In the learning process it is natural for omissions to occur and if they are not identified and eliminated in a timely manner, they are multiplied further on in the course of education. Therefore, one of the tasks of the mathematics instruction is to detect the errors made by the students and to eliminate them on time. Errors that have made students from fifth grade in arithmetic and algebra are processed in (Glavche, Malčeski & Anevska, 2015). In this paper the results of the research are presented about some of the most prominent errors that fifth grade students in the Republic of Macedonia make. Additionally, the paper offers a systematic overview of the identified errors and the reasons for their occurrence. It also offers procedures for elimination of the identified errors.

Ключови думи: data, error, fifth grade, geometry, student

1. Introduction

It is expected and natural that students might make errors when learning certain areas of the material envisioned. The detection of these errors and their timely correction is an ongoing and continuing process carried out by the teacher, which is crucial for acquiring permanent and applicable knowledge and skills. Consequently, the subject of the present paper is the detection and correction of the errors related to topics in geometry, data representation and analysis, that fifth grade students in the initial education make. In order to detect the errors, we have carried out a research which is based on a sample of 500 students. We also have used information gathered from the teaching observation of the subject Methodology of teaching mathematics, carried out with the students from the Faculty of Pedagogy in Skopje. Taking into consideration that different mathematics textbooks are used in the schools in the Republic of Macedonia, we have used tests of knowledge prepared by the teachers in order to render the research objective. Although they implement the same syllabus, the results of the instruction are, among other things, influenced directly by the textual didactic means, i.e. the textbook used in a particular school.

Further on, we identify the causes for the occurrence of each group of errors, and we offer a method and a procedure for their correction, which can be used to prevent the occurrence of these and similar errors that students of the future generations may make. We can have an extensive discussion about the need for a timely detection and correction of the errors made by students in mathematics instruction. However, without scrutinizing this matter, we feel that it is enough to emphasize that the timely detection and correction of the omissions in the mathematical knowledge is important because of:

– the concentric circles, which mathematics instruction is realized in, meaning that the errors, which are not corrected on time, are multiplied when learning new material, and

– the gaps in the mathematical knowledge are a great obstacle in the integration of the overall instruction in primary education, and especially the integration of the technical and the scientific instructional disciplines.

2. Research Design

The above stated defines the subject of the research, which is quite complex and covers:

– detecting errors made by the fifth grade students concerning topics in data representation, analysis and geometry,

– categorization of the errors,

– detecting the reasons for the errors and

– suggesting methods and procedures for elimination of the errors that students make.

Taking into consideration the subject of the research we formulate one main and three auxiliary hypotheses, which we think are the result of the education process nature:

a) Main hypothesis: The errors that students make are accidental.

b) First auxiliary hypothesis: The errors are the result of the mathematics syllabus. c) Second auxiliary hypothesis: The errors are the result of the development and presentation of the syllabus in the textbooks.

d) Third auxiliary hypothesis: The errors are the result of the realization of the syllabus by the teachers.

In the course of the research, which was carried out on a random sample of 500 students from 23 primary schools, we used the following scientific methods to test the main and auxiliary hypotheses:

– the statistical method for testing the main hypothesis,

– comparative analysis for testing the auxiliary hypotheses and

– systematization and analytic-synthetic method, which is used in the process of systematization of the errors made by the students, as well as developing procedures for their elimination.

We used a Questionnaire for the Teachers to acquire information about the used textbooks and the teachers’opinions about the quality of the textbooks. The questionnaire also provided us with information concerning the teachers’ engagement in the detection and correction of the students’ knowledge gaps. We used Tests prepared by the teachers to detect the gaps in the students’ knowledge and skills. Another insight came from the teaching observation of the students of the Faculty of Pedagogy “St. Kliment Ohridski” in Skopje. Since different schools use different textbooks, which cover the syllabus in different ways and through different methodological approaches, we have not used unified tests.

3. Research Results

The mathematics syllabus for fi fth grade in the initial education includes four topics from the areas of geometry, data representation and analysis. The testing of the main hypothesis was carried out by applying the statistical method, whereas the testing of the first and second auxiliary hypotheses was conducted by making a comparative analysis, systematization and the use of the analytic-synthetic method. We used the statistical method combined with a comparative analysis, systema tization and the analyticsynthetic method to test the third auxiliary hypothesis.

3.1. Testing the Main Hypothesis

The analysis of the tests taken by the students yielded the following results about the number of students who made three or more errors regarding a specific topic:

1) Data Representation and Analysis – 98 students,

2) Measurement – 102 students,

3) Space Figures – 99 students, and

4) Plane Figures – 97 students.

In order to examine the main hypothesis at the specific level of significance \(\alpha=0,01\), we test the hypothesis H0 : p othesis \(H_{0}: p \leq p_{0}=0,15\) against the alternative hypothesis \(H_{1}: p \gt p_{0}\), which means that we have allowed a maximum of \(15 \%\) of the students to make a negative result in each topic. For example, in terms of the topic Plane Figures we have \(n=500\) and \(s_{n}=97\),thus \(\cfrac{s_{n}-n p_{0}}{\sqrt{n p_{0} q_{0}}}=2,75\). Further on, at the level of significance \(\alpha=0,01\), from the table of normal distribution \(\mathrm{N}(0,1)\), we get the quantile \(z_{1-\alpha}\), to be \(P_{H_{0}}\left\{\cfrac{S_{n}-n p_{0}}{\sqrt{n p_{0} q_{0}}} \geq z_{1-\alpha}\right\}=0,01\),i.e.\(z_{1-\alpha}=2,33\).Since the calculated value \(\cfrac{s_{n}-n p_{0}}{\sqrt{n p_{0} q_{0}}}=2,75\) is greater than the critical value \(z_{1-\alpha}=2,33\), the hypothesis \(H_{0}: p \leq p_{0}=0,15\) is rejected i.e. the errors made by the students regarding the topic Plane Figures are not coincidental. The number \(s_{n}\) is greater than 97 for the other three topics, and all the remaining parameters are the same as for the topic Plane Figures, which leads us to the conclusion that also in these cases with a level of significance \(\alpha=0,01\), we should reject the hypothesis \(H_{0}: p \leq p_{0}=0,15\),i.e. we come to the conclusion that the errors made by the students regarding the other three topics are not coincidental as well. Subsequently, the results indicate that we should reject the main hypothesis and test the auxiliary hypotheses.

3.2. Testing the First Auxiliary Hypothesis

The syllabus for fifth grade (BRO, 2008) has the following structure:

– instructional goals;

– specific goals; for each topic with specified: goals, instructional content, terms that need to be learned, as well as activities and methods recommended for achieving a specific goal;

– didactic recommendations for the realization of the syllabus and

– methods and procedures for evaluating the achievements, i.e. testing the knowledge and skills of the students.

The syllabus is consistent for every topic. The activities and methods recommended for achieving specific goals, i.e. for learning the planned instructional content are completely adapted to the abilities of the students and certain contents are even under the level. The didactic recommendations for teaching certain topics are completely in tune with the general and specific goals of the syllabus, and this is also true for the recommended methods and procedures for evaluating the achievements of the students. Taking into account the previ ously mentioned, we reject the first auxiliary hypothesis: The errors are a result of the mathematics syllabus.

3.3. Testing the Second Auxiliary Hypothesis

In order to test the second auxiliary hypothesis we analyze some errors made by the fifth grade students regarding the topics discussed in Testing the Main Hipothesis.

3.3.1. Errors Regarding the Topic Data Representation and Analysis

Regarding the topic: data representation and analysis we came across a characteristic error in representing the data using a line graph, which is identified in the following problem and in problems of the same type:

Example 1. When solving the problem:

The table contains information about the daily sales of bikes in a department store during 80 consecutive work days:

Number of bikes12345678Number of days158691254

Show the data using the both graphs: bar and line graph.

Asked to represent the information using a bar graph and a line graph, most of the students represented correctly the data given in the above table using a bar graph (Figure 1). However, when they represented the data using line graph, some of them did it as in Figure 2, which was incorrect, and some of them only set the axes in the line graph.

This error is a direct consequence of pattern thinking, which is imposed by the authors of the textbooks in use. Namely, although the third grade students have adopted the term broken line, when learning how to represent data by using line graph, all the textbooks (with no exception ) in use present a fi xed image that line graphs are used for only to present data with linear dependence (Stefanovski & Achovski, 2010, p. 154; Dimovski, Krsteska, Jordanovska, Dimitrievska & Paunoska, 2009, p. 143 – 153). The authors have not taken into account that: ”...Pattern thinking is also related to the effect of the so-called “functional stability” accor ding to which, the object is used only in the given form, and a new property, which cannot be seen clearly from the conditions that define the problem, is not required... (Malčeski, 2010, p. 31).”

Naturally, the latter also applies to the learning of terms, especially if the same fixed image is consecutively repeated throughout two or more school years. In this case, it is important to mention that the incorrect adopting of the term line graph, even in cases when it is in a hidden form, will require additional instructional time to correct the fixed image of the students in the upper grades. This will definitely influence the attaining of new knowledge and skills in a negative way. It is nece ssary that the teachers timely correct this oversight, and give more examples of a line graph with a broken line, together with the examples presented in the text books in use, as in this case (Figure 3).

3.3.2. Errors Regarding the Topic Measurement

Regarding this topic, the research shows that the students make several types of errors. One of the most common errors is related to the conversion of the area measurement units, which can be seen from the following example.

Example 1. a) When converting square centimeters, the students frequently wrote: i) 2dm2 = 20cm2 ii) 4dm2 = 40cm2 iii) 10dm2 = 100cm2 iv) 2m2 = 2000cm2 v) 7m2 = 7000cm2 vi) 10m2 = 10000cm2 b) When converting square decimeters, the students frequently wrote:

i) 3m2 = 30dm2 ii) 8m2 = 80dm2 iii) 6m2 = 60dm2

It is safe to say that the basic reason for the errors in \(i\) ), \(i i\) ) and \(i i i\) ) in a) and the examples in b) is the fixed image about the relations between the length measurement units and the incorrect analogy made by the students. However, we cannot find a valid explanation for the errors to be made in \(i v), v\) ) and \(v i\) ) in а). The latter leaves us to conclude that the only reason for these errors is the inadequate methodological approach given in the textbooks in use when adopting the area measurement units, and which is non-critically accepted by teachers. Teachers accept the textbooks in a noncritical way. Namely, when expressing the same area in different measurement units not all textbooks offer solved examples, but they immediately present equations of the following type: i) 2dm2 = __ cm2 ii) 4dm2 = __ cm2 iii) 10dm2 = __ cm2 iv) 2m2 = __ cm2 v) 7m2 = __ cm2 vi) 10m2 = __ cm2 vii) 3m2 = __ dm2 viii) 8m2 = __ dm2 xi) 6m2 = __ dm2

Clearly, this methodological oversight can be corrected if the authors of the textbooks, and the teachers as well, present completely solved examples to the students, such as:

\[ \begin{aligned} & 2 \mathrm{dm}^{2}=2 \cdot 1 \mathrm{dm}^{2}=2 \cdot 100 \mathrm{~cm}^{2}=200 \mathrm{~cm}^{2} \\ & 3 \mathrm{~m}^{2}=3 \cdot 1 \mathrm{~m}^{2}=3 \cdot 100 \mathrm{dm}^{2}=300 \mathrm{dm}^{2} \\ & 2 \mathrm{~m}^{2}=2 \cdot 1 \mathrm{~m}^{2}=2 \cdot 100 \mathrm{dm}^{2}=200 \mathrm{dm}^{2}=200 \cdot 1 \mathrm{dm}^{2}=200 \cdot 100 \mathrm{~cm}^{2}=20000 \mathrm{~cm}^{2} \end{aligned} \]

At the end of this example, we should mention that one of the reasons for the occurrence of errors of this type, among other things, is the inadequate methodological education of the elementary school teachers. The analysis of the literature used at the faculties of pedagogy in our country, shows that the students learn only general methodology of teaching mathematics, not specialized methodology of teaching mathematics for elementary education. It is also worth mentioning that almost no attention is dedicated to the mathematical problems. All future teachers should know the following about mathematical problems: the concept of a mathematical problem, types of mathematical problems (classifica tion of the mathematical problems), the functions of the problems, the metho dology of solving problems, methods for solving problems (synthetic and analytic method) and the role of the counterexamples in mathematics instruction.

In order to attain the instructional goal: use of formulae for calculating the area of a rectangle, a square, a cuboid and a cube, during the teaching observation some of the teachers use tasks like one in the following example.

Example 2. When one side of the square is multiplied by three and the other one by two, we get a rectangle with an area of \(96 \mathrm{~cm}^{2}\). Calculate how larger is the perimeter of the rectangle when compared to the perimeter of the square?

When solving this and similar tasks, the students should remember that when the multi pliers change, the product changes as well, a principle used indirectly in Task 7, p. 149 in (Stefanovski et al., 2010), or they could also use the already learned algorithm for the value of a rectangle area (Stefanovski et al., 2010, p. 146 – 147). Instead of using this knowledge, some students transforme the area of the rectangle in multipliers, i.e. they write: \(96=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3\), and then try to determine all the possible rectangles with an area of \(96 \mathrm{~cm}^{2}\), and to find the side of the square by trial and error in order to get finally the required answer.

Clearly, this approach is wrong, it requires a lot of instructional time and does not allow inter-subject integration of the instruction, which is the primary task of every school subject. In order to correct this error, it is necessary for the mathe matics textbooks to offer real integration of the instruction, which the teachers will try to put in practice. It is desirable that the teachers solve a similar example com pletely, before instructing the students to do individual work. The solution of the example can be presented in a short version, i.e. the teachers do not have to highlight every stage of the methodology of solving problems. For example, the solution of the task can be presented as:

A rectangle with an area of \(96 \mathrm{~cm}^{2}\) consists of six squares which are the same as the square given in Figure 4. So the area of the given square is \(96: 6=16 \mathrm{~cm}^{2}\). Since, the area of the given square is \(P=a \cdot a\), and furthermore since \(a \cdot a=16 \mathrm{~cm}^{2}\),we get that \(a=4 \mathrm{~cm}\). The perimeter of the rectangle is \(O=10 a=40 c m\), and the perimeter of the square is \(L^{\prime}=4 a=16 c m\). Hence, the perimeter of the rectangle is 24 cm larger than the perimeter of the square.

3.3.3. Errors Regarding the Topic Space Figures

In terms of this topic, the basic errors refer to the spatial images, i.e. representations of three-dimensional forms using two-dimensional drawings, as well as “reading” the drawings where three-dimensional forms are shown.

Example 1. When solving the task:

Which of the cubes is the same as the unfolded cube in Figure 5? less than a third of the students answer that it iss cube a), which is the correct answer, whereas over two thirds of the students give an incorrect answer. One of the basic reasons for this type of errors is due to the fact that most people have problems with images in three-dimensional space, which has been confirmed with a great number of experi ments. Hence, the “battle” with this type of errors should be fought by learning a great number of examples. This will enable students to re present three-dimensional forms in a plane, and to use the representations corre ctly. Several such examples are presen ted in the following tasks in (Gogovska & Malčeski, 2012).

а) The students are handed worksheets with Figure 6 and are asked the following question: How many cubes are needed to fi ll out the cuboid container? Further on, the students are additionally asked to elaborate the process they have come up to the solution.

We believe that apart from improving the spatial concepts, these and similar tasks can be a good introduction to the term volume of a square. The latter is great reason that tasks of this type should be used in school practice.

b) Similar goals as in the previous example are attained if the students are asked analogous questions regarding Figure 7. However, taking into consideration that in this case the cuboid is not visibly marked as in example a), the practice shows that even the students who have developed advanced spatial concepts, should use Figures 6 and 7, consequently c) An analogous result, as in the two previous examples, can be attained if the students are asked the same question referring to Figure 8, where instead of a cuboid the question will refer to a cube. In this case, we can also ask how many cubes cannot be seen.

3.3.4. Errors Regarding the Topic Plane Figures

Taking into account that while learning this topic, the students do not attain a great amount of operational knowledge, which is crucial for the testing carried out by the teachers, we did not come across a great amount of errors. Nevertheless, we might say that when it comes to a drawing of an equilateral triangle with sides of \(6 c m\), which needs to be classified according to the angles and according to the sides, a certain number of students answer that it the triangle isequilateral in both cases, or equilateral with respect to the angles, and isosceles with respect to the sides. In order to correct these and similar mistakes, the students need pre senting by drawings of:

a) an acute, obtuse and right scalene triangle, b) an acute, obtuse and right isosceles triangle and c) an equilateral triangle, which the authors need emphasizing, is acute.

Naturally, this should be carried out during revision classes, and the students should be trained to use the scientifi c method of classifi cation from their earlyt age.

We have to note that errors of this type occurred while solving a) of the following example.

Example 1. Draw triangles with the given dimensions and determine their type according to the angles and according to the sides:

a) triangle \(A O B: A O=3 c m, O B=3 c m, B A=3 c m\).

b) triangle \(A B C\) : \(A B=5 c m, B C=3 c m, C A=3 c m\).

c) triangle \(C E T\) : \(C E=5 c m, E T=7 c m, T C=4 c m\).

3.3.5. Evaluation of the Currently Used Textbooks by the Teachers

The previous discussion related to the analysis of the errors made by the students indicates that we should accept the second auxiliary hypothesis.

Nevertheless, before deciding whether to accept or reject the second auxiliary hypothesis, we will analyze the results of the survey conducted on a sample of

105 elementary school teachers. The results of the survey bring us to the following conclusions:

a) only 9 teachers, or \(8.57 \%\) believe that the currently used textbooks cover the syllabus completely,whereas \(91.43 \%\) or 96 teachers do not share this opinion; b) only 12 teachers,or \(11.43 \%\) believe that the currently used textbooks encourage students to learn independently,whereas 93 teachers,or \(88.57 \%\) believe that the currently used textbooks do not encourage students to learn independently;

c) only 15 teachers, or \(14.29 \%\) believe that the textbooks are adapted to the psychophysical abilities of the students, whereas \(85.71 \%\) believe that they are partially or not adapted at all to the psycho-physical abilities of the students;

d) a significant percentage, i.e. \(51.43 \%\) of the surveyed teachers believe that the material in the textbook is divided into complete topics, and the language, style and presentation of the material are adapted to the needs of the students, something which \(34.28 \%\) of the teachers partially agree with, whereas \(14.29 \%\) of the teachers believe that the textbooks do not meet this criterion as well;

e) \(42.86 \%\) of the teachers believe that there is a complete correlation of the material to the other school subjects, \(39.05 \%\) of the teachers believe that there is a partial correlation, and \(18.09 \%\) of the teachers believe that the textbooks do not correlate to the other school subjects.

f) \(34.28 \%\) of the teachers think that the illustrations in the textbooks are good, \(42.86 \%\) are partially satisfied with this component, and only \(22.86 \%\) of the teachers believe that the textbooks fail to meet the demands in terms of this parameter;

g) the vast majority of the teachers, i.e. \(82.86 \%\) partially agree that the textbooks have an adequate didactic apparatus (questions, tasks, simple experiments, etc.) which allows guidance and encourages independent learning, evaluation, generalization, revision and practical use of the acquired knowledge and skills.

Taking into consideration the analysis of the errors made by the students, presented in Errors Regarding the Topic Data Representation and Analysis, Errors Regarding the Topic Measurement, Errors Regarding the Topic Space Figures and Errors Regarding the Topic Plane Figures, the reasons for the occurrence of these errors, as well as the results of the survey, we conclude that we should accept the second auxiliary hypothesis, i.e. we accept that: The errors are the result of the incorrect development and presentation of the syllabus in the textbooks.

3.4. Testing the Third Auxiliary Hypothesis

The third auxiliary hypothesis is tested on the base on the results of the survey, i.e. based on the analysis of the answers of the teachers. Namely, the survey allows us to conclude that:

a) only 24 teachers, or \(22.86 \%\) correct the errors made by the students when learning new material regularly. The same number of teachers do not correct the errors of their students at all,while 57 teachers,or \(54.28 \%\) do this occasionally;

b) when using previously acquired knowledge, 40 teachers, or \(38.10 \%\) correct the errors of the students regularly, 49 teachers, or \(46.67 \%\) do this occasionally, whereas \(15.23 \%\) do not correct the errors of the students at all;

c) unbelievably high percentage 72.38% of the surveyed teachers do not systematize the errors of the students and do not engage in activities for their elimination, while only \(27.62 \%\) do this occasionally.

d) all teachers allow the parents and the students to see the results of the tests. Thus, they actually realize only their formal legal obligation for transparent evaluation; e) not a single teacher provides the parents and the students with complete feedback about the identified gaps in the knowledge with adequate comments about the errors and directions for their elimination. \(49.52 \%\) of the teachers have stated that they do this occasionally;

f) only \(15.23 \%\) of the teachers exchange opinions and experiences about the errors made by the students and develop methods and procedures for their elimination through collaboration.

The discussion above allows us to conclude that we should accept the third auxiliary hypothesis, i.e. we should accept that: The errors are the result of the realization of the syllabus by the teachers.

Taking into consideration the previously stated, we might conclude that the teachers are the only reason why the students make certain errors. However, this conclusion is wrong because, as we have already said, the textbooks are an important factor, as well. We should also look into the training of the students at the faculties of pedagogy in the Republic of Macedonia. Namely, the analysis of the study programs regarding the methodology of teaching mathematics indicates that the training is incomplete and inadequate. To be exact, the analysis of the textbook (Ачовски, 1998), which is the basic recommended literature for the students at the faculties of pedagogy regarding the subject Methodology of Teaching Mathematics for Grades I-IV (V), indicates that:

a) no attention has been devoted to mathematical thinking and its properties. Hence the future teachers have not been trained to encourage and develop thinking elasticity, depth, rationality, extent, as well as critical thinking. They have also not been trained to encourage the development of positive thinking patterns, i.e. in the process of adopting the technical procedures

b) the scientific methods observation and experiment are almost nonexistent, whereas the following scientific methods: comparison, analysis, synthesis, generalization, systematization and abstraction are inadequately presented and there is a tendency to render them subjective, treating them as mental activities;

c) the different types of conclusions, especially analogy, are inadequately and incompletely explored. There is no instance where the authors state that conclusions based on an analogy must be subject to an absolute proof. The same applies to induction as a scientific method. Regarding this matter, no differentiation has been made between the complete and incomplete induction; d) the mathematical terms and statements are incompletely and inadequately explained. No attention has been devoted to their teaching methodology at all; e) the didactic principles of mathematical instruction are incompletely elaborated. No attention has been devoted to the principle of learning, which is crucial for the mathematical instruction in the elementary education;

f) when learning mathematical problems, the functions of the problems are not sufficiently elaborated. As far as the methodology and the problem solving methods are concerned and elaborated, only the so-called arithmetic tasks. No counter exam ples have been included;

g) in terms of the monitoring, testing and evaluation of the knowledge of the students, very little attention is given to the types and forms of testing. Sufficient attention has not been devoted to the principles, functions and goals of testing. The feedback, which is crucial for detecting the gaps in the knowledge of the students and their elimination, is completely neglected.

h) almost no attention is given to the evaluation and assessment, as well as to the instruments for assessing the achievements of the students. As far as the analysis of the results of the monitoring and evaluation of the achievements of the is concerned, we may conclude that the future teachers do not have even the slightest idea that it is necessary for successful monitoring of the of their students.

4. Conclusion

This paper focuses on the gaps in the knowledge and skills related to geometry, data representation and analysis of the fifth grade students. We listed the reasons behind the identifi ed errors occur as well as suggested procedures to correct and overcome them. As we have seen, there are many objective reasons for the occurrence of the errors which need to be located outside the classroom. The analysis of the position of the educational system at all and the mathematics course within the system shows that:

- although the syllabus for the fifth grade has been reduced in order to “unburden” the students, there are no visible effects of this action. The above is a result of the constant changes of the syllabi, without prior ana lysis and answer to the questions what, why and how to change the syllabi, as well as how these changes should be implemented in the textbooks,

- the so created syllabi, and the effort to make a universal concept for a textbook, which applies both for Mathematics and Pedagogy, and is also a result of the so-called pedagogization of the educational process, have an extremely negative impact on the mathematics textbooks which are currently used in the Macedonian educational system. Even some of them do not cover important content of the syllabus, and

- there is a tendency to compensate the shortcomings of the textbooks with workbooks, an action that results in decreased use of the textbooks and goes in favor of the wrong popular opinion that mathematics is solving tasks and nothing more.

Consequently, we can conclude that the reasons for the gaps in the knowledge and skills of the students are not just a result of the work of the teachers and the students, which is why it is not fair to hold the teachers responsible for the poor results and their so-called permanent mathematical specialization, which is carried out through various seminars and training. The latter is especially indicative, since in the past two decades there have been numerous seminars for modernizing education (step by step, interactive instruction – active learning, using standards for assessment, etc.), without a comprehensive evaluation of the syllabi and the textbooks, as well as an evaluation whether they are adequate to the syllabus.

Taking into consideration the previously stated, before proceeding to any further changes, it is necessary to conduct a thorough analysis of the syllabi and the textbooks, as well as the segments of the educational system where the future teachers are trained. This means that any future changes need to correspond to the results from the mentioned analyses.

REFERENCES

Ачовски, Д. (1998). Методика на наставата по математика од I – IV одделение. Скопје: Педагошки факултет „Св. Климент Охридски“. [Achovski, D. (1998). Methodology of the Mathematical Education I – IV. Skopje: Faculty of Pedagogy St. Kliment Ohridski.]

Grozdev, S. (2007) For High Achievements in Mathematics. The Bulgarian Experience (Theory and Practice). Sofia: ADE. (ISBN 978-954-92139-1-1)

Димовски, Д., Крстеска, Б., Јордановска, Р., Димитриевска, С. & Пауноска, В. (2009). Математика за V одделение во деветгодишното основно образование. Скопје: МОН. [Dimovski, D., Krsteska, B., Jordanovska, R., Dimitrievska, S. & Paunoska, V. (2009). Skopje: Mathematics for fifth grade in the nine year primary education. Skopje: MON.]

Князева, Е., Гроздев, С., Георгиева, М. & Гълъбова, Д. (2013). Синергетичният подход във висшето педагогическо образование (Върху примери от дидактиката на математиката). В. Търново: СЛОВО. (ISBN 978-954-439-986-3)

Glavche, M., Malčeski, R. & Anevska, K. (2015). Errors made by students from fifth grade in Macedonia while studying mathematics (pp. 265-274). Varna: Proceedings of the Forty Fourth Spring Conference of the Union of Bulgarian Mathematicians.

Gogovska, V., & Malčeski, R. (2012). The creative teacher, factor for improving mathema tics instruction. Busan: Proceedings of the 7-th MCG Conference.

Малчески, Р. (2010). Методика на наставата по математика. Скопје: ФОН Универзи тет. [Malčeski, R. (2010). Methodology of the mathematical education. Skopje: FON University.]

БРО (2008). Наставна програма за \(V\) одделение во деветгодишното основно образование. Скопје: МОН. [BRO (2008). Mathematics Syllabus for V Grade in the nine year primary education, Skopje: MON.]

Стефановски, Ј. & Ачовски, Д. (2010). Математика за \(V\) одделение во деветгодишното основно образование. Скопје: МОН. [Stefanovski, J. & Achovski, D. (2010). Mathematics for fifth grade in the nine year primary education, Skopje: MON.]

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева