Математика и Информатика

https://doi.org/10.53656/math2024-3-4-imp

2024/3, стр. 289 - 304

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov
OrcID: 0000-0001-7971-8434
E-mail: gcholakov@uni-plovdiv.bg
Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria
Asya Stoyanova-Doycheva
OrcID: 0000-0002-0129-5002
E-mail: astoyanova@uni-plovdiv.bg
Faculty of Mathematics and Informatics
University of Plovdiv “Paisii Hilendarski”
Plovdiv Bulgaria

Резюме: The objective of the research is to enhance the functionality of the Evaluator software agent within the Distributed eLearning Center (DeLC), a platform providing extensive support for e-learning activities. This paper is focused on presenting the latest step in the evolution of one software agent (Evaluator Agent), which helps teachers during evaluating students’ exams, being responsible for evaluation of short free text answers, provided by the students. To accomplish its job, the agent has its own dictionary, created from a set of words and expressions, provided by test creators for each question of that type, and from the words of each student’s answer, marked as successful by the teacher. Now this agent’s effectiveness could be increased by extending its dictionary with much larger knowledge base or so-called Large Language Models, made accessible through third party AI, as ChatGPT. Experiments and results are provided to compare the change in agent’s behavior after the integration with the AI system. The results presented in this work are from first experiments and are deliberately limited in number to enable manual verification.

Ключови думи: e-learning; software agents; automated evaluation; LLMs; ChatGPT

1. Introduction

With the widespread adoption of e-learning as a standard for distance education, nearly every school and university endeavors to enhance their educational processes through various platforms. Popular choices include Google Classroom1, Moodle2, Blackboard Learn3, and others. Selecting the right platform involves considering a multitude of factors such as price, functionalities, support efforts, interface user-friendliness, and more. However, when the desire for partial or overall control over developed components arises, investing in a custom solution becomes increasingly appealing. Opting for a custom solution provides the flexibility to implement only the necessary functionality in a way that aligns with the institution’s specific needs, without requiring the institution to adapt its processes to fit the business logic of a third party provided system. These considerations played a significant role in the decision-making process for many institutions, including the Faculty of Mathematics and Informatics at Plovdiv University “Paisii Hilendarski”, Bulgaria.

The concept was developed years ago, and the established system has been fulfilling our needs for over a decade. Originating as the Distributed e-Learning Center4 (Doychev 2013), it commenced as a research initiative focused on crafting a novel, context-oriented, and adaptive architecture. Its primary objectives revolved around meeting our requirements for distance learning, exams conduction, and various educational and organizational activities. A significant emphasis was placed on delving into the development and experimentation of diverse prototypes within the e-learning domain.

Through a series of iterations, a hybrid service and an agent-oriented environment were fashioned to deliver educational materials and electronic services. Creating an in-house customized solution provided the added advantage of granting access to the code base for researchers within the institution. This accessibility facilitated the continuous development, reengineering, and enhancement of many features. It allowed internal exploration of the system’s workflows, stored data, and the execution of analytical processes to extract valuable information and knowledge.

The main goal of this system was to elevate the educational process’s quality by offering personalized and interactive services that encourage creative thinking among students. This initiative was prompted by the increasing standards in university education, advancements in technology, and the heightened expectations of students regarding the excellence of their education. The system aimed to involve students in a self-education approach that is personalized, creative, and adaptable, thereby fostering their activity and collaboration. Additionally, the system was intentionally designed to be open for extensions and experimentation with prototypes, such as service and agent-oriented architectures. This aligns it with the interactive, reactive, and proactive educational processes observed in other systems (Goyal & Krishnamurthi 2019; Farzaneh et al. 2012; Rani & Vyas 2015).

Throughout its life cycle, the architecture experienced expansion through the incorporation of various subsystems, including IntelliDeLC. This addition ensures the establishment of a personalized e-learning environment characterized by both reactive and proactive behavior. Proactivity, which enhances usability and friendliness, is accomplished by reinforcing the service-oriented architecture with intelligent components – essentially, software agents. This extension based on agent-oriented principles establishes an environment housing these continually developed and improved software agents. Details regarding their functionalities, behavior, and the latest advancements can be found in (Cholakov 2020). Recently, amid the era of pervasive artificial intelligence (AI), an exploration was initiated to assess how these agents could benefit from the integration of AI systems, already provided by third parties. For the current study’s purpose, such system would be useful to provide easy access to underlying large language models (LLMs), so the idea is not primarily using AI methods for adding new intelligence to our agents but use it as a mediator to essentially get structured and narrowed data from its LLMs, avoiding direct interaction with these large models, which would introduce new unwanted complexity in the agents.

2. Related works

The latest advancements indicate that incorporating AI in education, especially in e-learning, has emerged as a prevailing trend – a contemporary and essential approach. It has become a must-have solution for institutions that aim to stay abreast of new developments. This approach seems to be widely adopted, with various fields seeking to leverage its benefits. While precise statistics are lacking, a general assumption suggests that AI is primarily employed to assist learners on their educational journey, although its applications extend beyond this singular focus. Amongst the areas where AI is used in e-learning are:

• in the context of enhancing the learning process, such as enabling adaptability (Benkhalfallah & Laouar 2023);

• utilizing chatbots to expedite the learning process (Benachouret al.

2023) and subsequently assessing the efficacy of each functionality (Raghavendrachar et al. 2023);

• enhancing the accessibility of e-learning and fostering academic connectivity (Sinha et al. 2021);

• customized learning trajectories (Tapalova et al. 2022) and adaptive evaluation methods (Tanjga 2023);

• for employing conversational agents in a classroom setting (Alfehaid & Hammami 2023);

• developing virtual assistants/educators, even exploring the possibility of substituting teachers in instances of shortages (Muzurura et al. 2023);

• and more, including the automation of educational processes through the generation of teaching materials, curriculum development, training, and the assessment of student performance (Udayakumar et al. 2022), among other aspects.

Direct usage of LLMs for educational purposes and estimation/evaluation also seems a popular idea. Since the creation of tests and quizzes for students could be time-consuming, cognitively exhausting, and complex, in help comes automatic generation of such self-assessment quizzes based on lecture material using a large language model (LLM) to reduce lecturers’ workload (Meißner et al. 2024).

Fagbohun et al. 2024 present a potential use of LLMs in assessment to achieve consistency in grading – as variability may occur not only across different evaluators but also within the assessments of a single instructor over time, undermining the reliability and fairness of the grading system; to avoid bias – it could come from preconceived notions about student capabilities or unconscious preferences; get personalized feedback – it plays a crucial role in the educational process by providing students with specific guidance tailored to their individual needs.

Application of automated evaluation with the help of LLMs is presented in (Kostic et al. 2024) for the automated evaluation of student essays, exploring the effectiveness of LLMs in assessing German-language student transfer assignments, presenting the difference in their performance with traditional evaluations by human lecturers. The research shows the gap between the capabilities of LLMs and the nuanced requirements of student essay evaluation, pointing out the necessity for ongoing research and development in the area of LLM technology to improve the accuracy, reliability, and consistency of automated essay assessments in educational contexts.

Kashi et al. have emphasized the potential of using large language models (LLMs) like ChatGPT, enhanced with domain-specific expertise, to achieve more precise scoring. LLMs distinguish themselves from traditional AI models through their extensive knowledge base, adaptability, and context awareness. They have shown exceptional potential in evaluating and scoring complex text-based responses, a task that has historically been difficult for automated systems due to the richness and variability of human expression.

Certainly, some features listed above may seamlessly integrate into one system, but may not align well with another. This holds true for the DeLC portal as well. While some of the mentioned areas are under consideration for integration into DeLC, the current study is directed to a potentially valuable application of AI’s access to LLMs, thus enhancing automated assessment functionality of students’ exams. Automated systems for assessment are not rarely seen among e-learning systems and infrastructures. Consequently, DeLC boasts an internal implementation tailored to its requirements, developed in the form of a software agent, whose improvement is described in this article.

3. Materials and methods

The experiment is focused on enriching the existing functionality for automated evaluation – that’s the job Evaluator agent is currently doing. This agent relies on its own knowledge base or dictionary, formed by keywords (also synonyms) and expressions, provided by the test creator for each question – detailed description of its algorithms is presented in (Cholakov 2013). By utilizing third party AI, we leverage from extensive knowledge base and capabilities, enhancing the skill set of this agent and evaluating its performance thereafter. Anticipated outcomes include a more precise evaluation of the answers – since students often use words and phrases that are not quite technical, yet true, if the test creator of the question has provided only technical keywords and expressions, the evaluation value tends to be under the one that a human would give. Comparing student’s answer with the one generated by AI, such as ChatGPT5 , could improve the quality of evaluation for technically non-precise answers.

The Evaluator Agent (EA) is intended to assist teachers in evaluating students’ electronic tests. DeLC’s test engine has a built-in system service for automated assessment of "multiple choice questions", e.g., answers with radio buttons and checkboxes. EA specializes in analyzing responses to short freetext questions. It assigns a rating to each answer (integer points), deferring the final decision to the teacher – this rating is in the range from 0 to maximum points that are given for a particular question’s answer (every question has a maximum number of points that could bring to the student and is set by the test creator, usually depending on the complexity of the question).

The workflow goes in the following manner - when external assessment for short free-text answers is required, the test engine sends a request for expert assistance to EA, which then utilizes its knowledge base to search for matches generated from keywords and phrases associated with each test question, typically provided by the test creator. The precision of these keywords directly impacts the quality of the agent’s results, underscoring the importance of effectively "educating" the agent. We rely on the competence of the test creator (usually the teacher) to set the appropriate keywords and phrases for each question, currently there is no automated mechanism for validating this data. In the knowledge base, keywords carry no priorities; they are treated equally in searches.

Currently, EA employs two distinct algorithms for calculating points, as mentioned above. Throughout the evaluation process, EA also takes into consideration the points previously assigned by the teacher for the answers to that specific question in prior exam runs. This approach allows EA to refine its estimation based on the teacher’s style and approach. After evaluation, EA stores data about each answer, including the awarded points. Recent details on the work of this agent can be found in (Cholakov 2020).

Now the idea and the goal of this study is to try to benefit from using third-party AI and utilizing its much larger data dictionary for comparing answers to the results from it. It would help enriching the knowledge base of Evaluator Agent and make it more “educated”.

4. Enhancement of functionality for estimation in Evaluator Agent

The quality of estimation in EA depends currently on the keywords/synonyms and phrases, provided by the test creator for each question. But it turns out that this approach is far from perfection. Well, it was a good start at the beginning years ago, but now we are looking for something more sophisticated and precise. The main reason is that a human couldn’t easily cover all potential words and terms used by the students in their answers – of course, it’s common case that one question maps to more than one correct answer. And which terms the student will use to answer is hard to predict, as our experience found out.

Trying to find a generic approach our research came to the idea to compare the answers with such provided by third-party AI, e.g., ChatGPT which is our current choice, searching for matches. Generally, the idea is to extend EA’s functionality in a way to be able to ask ChatGPT the same question, answered by the student, and compare result with the answer for similarities – based on this comparison EA could estimate final points. For the sake of clarity, we must state here that in the current implementation the comparison is only lexical rather than semantical; this is one of the reasons the final score to be set by a human (teacher). The comparison between student’s answer and ChatGPT’s answer is done using the same two algorithms already implemented in Evaluator Agent’s functionality. Expanding this agent in such a manner would provide indirect entry to a vast knowledge repository. This is due to the large volume of data utilized by ChatGPT, which is significantly incomparable to the current data scale used by the agent.

As a result, the anticipated precision of estimation would see a notable increase. In more details, EA agent will have to send request to AI for each question and store the response. Every student’s answer to this question will be searched for similarities with the response from AI, apart from current matching with keywords and phrases added by the test creator. Storing the response helps to avoid negative impact on the estimation performance. Furthermore, the correct answer from AI is relatively static, at least it seems so for couple of months, and making request for each question on every estimation would bring a significant overhead. The AI response for each question is planned to be refreshed on configurable interval of time – e.g., three months, which is approximately the duration of one semester in our university.

During research phase not only ChatGPT was considered as a potential solution. Among the most popular solutions tested were also Perplexity6 and Google Gemini7 (known as Bard) – many comparisons are present in Internet, among good ones are (Horsey 2023; Java 2023). Here are some arguments supporting our choice:

• Google Gemini is currently undergoing development, and in the foreseeable future, it has the potential to serve as a compelling alternative. It generates additional information, although at present, this doesn’t contribute extra value to our experiment. Nevertheless, we will monitor its progress closely, especially since it excels in providing answers with real-time access to Google. In contrast, ChatGPT (with GPT 3.x) occasionally provides outdated information. Additionally, Gemini is currently free, whereas the new version of GPT 4 comes with a cost. Another noteworthy feature is Gemini’s ability to produce multiple answers or variations for a single question. This feature is particularly intriguing for experiments in our field, as it allows us to explore various responses in a single roundtrip, potentially enhancing performance and yielding more results for further analysis.

• Perplexity stands out as an excellent option, boasting an advanced answer engine that considers the entire conversation history. Leveraging predictive text algorithms, it efficiently produces concise responses from various sources. This approach proves beneficial for generating answers that are closely tied to a specific context. Similar to Gemini, Perplexity offers real-time information from multiple sources, distinguishing itself from ChatGPT in this aspect. Opting for Perplexity as our second choice in the experiment is likely to yield more topic-oriented results, aligning with our objectives;

• ChatGPT endeavors to emulate human conversation, with its training methodology centered on learning from human feedback. Engaging with ChatGPT provides the opportunity to tailor the search for answers, allowing for a spectrum ranging from more deterministic to more creative responses. This adaptability proved particularly intriguing for our experiment, leading us to prioritize ChatGPT due to its simple communication interface, strong overall support, and recent advancements. A drawback is that the new version requires a paid subscription, unlike Gemini and Perplexity. However, considering the affordability of the subscription and our primary focus on result accuracy, this factor does not significantly impact our decision.

Integration architecture is depicted on fig. 1. The communication between Evaluator Agent and ChatGPT relies on REST calls, since the existing ChatGPT API exposes its functions in this way. Trying to minimize the changes in already working components in the architecture, and thus avoid new bugs, the communication was implemented in a new software component, which plays the role of adapter – it’s responsible for all details in communication between EA and the third-party solution, ChatGPT. Hence, any modifications to technical details in REST calls or the replacement of ChatGPT with another AI provider will not impact the EA. The adapter is designed to seamlessly accommodate such implementation changes, ensuring the continued functionality of the agent despite alterations to the underlying technical components. Moreover, this decoupling would enable the utilization of more than one AI provider as a source for answers comparison in the future, making the implementation transparent to EA, as illustrated in fig. 1.

Figure 1. Improved architecture with access to AI providers, e.g. ChatGPT, Gemini, Perplexity

Currently, the integration with multiple systems is not in focus, the implementation is specifically concentrated on integrating with ChatGPT only. Given the need to fine-tune numerous parameters for achieving reliable results, the possible process of adding multiple integrations will be carried out iteratively. This approach allows for maintaining control over the incremental complexity of the system.

Fig. 2 illustrates that both the request and response are straightforward and even human readable. The results generated are indeed precise. We could pay more attention to temperature attribute of the request. This attribute varies from 0 to 2, with higher temperatures leading to more random outcomes and lower temperatures yielding more predictable results. For more targeted and consistent answers, we figured out empirically that keeping the temperature below 0.7 generates results with more terms, which is applicable for the goal of estimation; otherwise, the responses might become too verbose, and this could lead to distraction of our agent – it works best with smaller set of keywords. On the other hand, lowest values of this attribute are producing sometimes formulas, which most of the time is not applicable for test questions requiring short, free-text answers.

Figure 2. Raw result from ChatGPT API to a particular question

Ultimately, the optimal temperature setting is context-dependent and requires extensive experimentation and statistical analysis, which is an ongoing process. The results on fig. 3 summarize the tests for choosing the appropriate value of temperature parameter, iterating over 89 questions, sending each one to ChatGPT with all possible values for the temperature with step of 0.1. As indicated by the graph, the most accurate results for our purposes were achieved around the middle of the range, leading us to set the temperature parameter to 0.7. This value may be adjusted in the future, based on real-world results, to empirically compare different behaviors and outcomes.

Figure 3. Results accuracy of the answers by ChatGPT

5. Results

The results of the simulation would provide clarity on whether it is worth it or not to go ahead with the implementation of the enhancement in production environment. The experiments and testing of this enhancement were conducted using a dataset from previous exams runs from the past academic years for the subject “Database Management Systems”, which contains questions that were answered with short free text by students, the answers, the points estimated by EA, and the points given by the teacher. The number of questions was 89, answered by 235 students, with 864 answers in total (up to 4 answers per student). The amount of answers was limited to minimize the manual checking of responses generated by ChatGPT, because we needed to analyze what is returned and is it related to the question, and eventually reliable. On the other hand, it should be enough to provide evidence whether this implementation would increase the correctness of final estimation provided by the Evaluator Agent. For each tuple of the dataset, we added the response of the question from ChatGPT, and that response was used as an input of the EA’s algorithm for searching matches between student’s answer and response from ChatGPT. Example of how these tuples look like is the following (used data from fig. 2):

{
“test_question”: “What are the properties of transactions?”,
“answer”: “Transactions should be atomic – it means it’s a
logical unit of work...”,
“keywords”: “atomicity, consistency, isolation, durability”,
“points1”: 3.1,
“points2”: 3.7,
“points_given”: 4,
“max_points”: 4,
“ai_response”: “The properties of transactions in the context
of databases are...”,
“ai_points”: 3.3
}

To make it clear, answer element contains the student’s input; keywords element contains the lexemes, provided by test creator for EA; points1 and points2 are the estimated points by the two algorithms in EA (these algorithms are explained in (Cholakov 2013), but in short they are inspired by the popular ones Soundex8 and Metaphone9); points_given is the final estimation from the teacher; max_points is the maximum number of points for the answer to this question; ai_response contains the response from ChatGPT. For the sake of truth, we must admit that this is simplified demonstration, usually in keywords there are more terms with synonyms, and expressions, other system attributes that contain details regarding estimation methods are also omitted for simplicity. Finally, ai_points attribute contains the estimated points using AI response as a base for matching the answer – these points are calculated based on the matching ratio from EA algorithms. Fig. 4 shows approximate comparison between the estimations using keywords and AI response. It presents the points estimated for selected four typical questions with equal maximum points of 4 each. The questions on the graphics are only a representative sample for visualization, a subset of all such used for the experiment.

Elements points1 and points2 show the estimation from the two algorithms using keywords as knowledge base, ai_points attribute is the estimation from the second (most used) algorithm using AI response as knowledge base (red line), and points_given are the finally given points from the teacher. As the lines show, the estimations are pretty close in the chart, but the expected differences are when the answers are not verbose and not correct entirely – the simulation tests are still ongoing and at least at the beginning that’s what they reveal. Still there is much work to be done and EA will need a tuning to produce finally expected results.

To complete the estimation comparison, we have to add that when the answer is entirely correct or entirely wrong, all estimations are similar and exact – the limit values of the interval seem to be easily estimated and are not a challenge.

On the other hand, the correctness of the ChatGPT’s answer is another topic that needs attention. All aforementioned questions participating in the experiment were tested empirically with ChatGPT, Gemini and Perplexity, and returned answers were manually validated. At first glance, all those did it very well, but this manual approach is applicable when the number of questions is relatively low – as it grows it would put an additional load on the test creators, but initially it was the only reliable approach to test that answers’ correctness.

Figure 4. Estimation comparison between algorithms using keywords and AI response for matching

6. Conclusions

Maintaining a high standard of education quality depends on numerous factors that extend beyond the teaching abilities of staff. It also relies on students recognizing the importance of dedication and self-motivation in skillbuilding. As technology advances, the entire university education process must align with current standards and trends. This isn’t solely to capture students’ attention but also to create a conducive environment for cultivating professionals. This encompasses various aspects, including the quality of examinations, a key component of which is ensuring a fair and accurate assessment process – whose automation improvement is the subject of the study. Significantly, enhancing the software components that operate in the background, supporting the overall educational process, constitutes a crucial aspect of building the foundation of modern education.

Improving automated assessment through the usage of LLMs is expected to introduce contemporary functionalities to the responsibilities of the Evaluator Agent. Expanding its own knowledge base poses a considerable challenge, that’s why integration with external systems is preferred. This strategic approach allows for a concentration on refining precision in estimation methods rather than dedicating resources to the construction and expansion of own knowledge base.

But there are still many unclear points as the experiment goes that need to be addressed and tested to assess what exactly the benefits of the described implementation will be.

Acknowledgments

This study was made possible thanks to the project European Union – NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BGRRP-2.004-0001-C01.

NOTES

1. Google Classroom, Google for Education. https://edu.google.com/ workspace-for-education/classroom [accessed 16 January 2024].

2. Moodle. https://moodle.com/ [accessed 8 February 2024].

3. Blackboard. https://blackboard.com/en-mea/teaching-learning [accessed 5 March 2024].

4. DeLC, Distibuted e-Learning Center. http://delc.fmi.uni-plovdiv.bg/ [accessed 13 January 2024].

5. ChatGPT. https://chat.openai.com [accessed 13 November 2023].

6. Perplexity. https://www.perplexity.ai/ [accessed 13 February 2024].

7. Gemini (chatbot) https://en.wikipedia.org/w/index.php?title=Gemini_(chatbot)&oldid=1206112332 [accessed 11 February 2024].

8. Soundex. https://en.wikipedia.org/wiki/Soundex.

9. Metaphone. https://en.wikipedia.org/wiki/Metaphone.

REFERENCES

ALFEHAID, A., HAMMAMI, M., 2023. Artificial Intelligence in Education: Literature Review on The Role of Conversational Agents in Improving Learning Experience. International Journal of Membrane Science and Technology, vol. 10, pp. 3121 – 3129. DOI 10.15379/ijmst.v10i3.3045.

BENACHOUR, P., EMRAN, M., ALSHAFLUT, A., 2023. Assistive Technology and Secure Communication for AI-Based E-Learning. ISBN 978-1-66848-938-3. DOI 10.4018/978-1-6684-8938-3.ch001.

BENKHALFALLAH, F., LAOUAR, M., 2023. Artificial Intelligence-Based Adaptive E-learning Environments. In: Novel & Intelligent Digital Systems, Proceedings of the 3rd International Conference (NiDS 2023), pp. 62 – 66. ISBN 978-3-031-44096-0. DOI 10.1007/978-3-031-440977_6.

CHOLAKOV, G., 2013. Hybrid Architecture for Building Distributed Center for e-Learning. PhD. Thesis, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria.

CHOLAKOV, G., 2020. Approbation of software agent Evaluator in a nonspecific environment for extension of its purpose. In: 2020 International Conference Automatics and Informatics (ICAI), pp. 1 – 5. DOI:10.1109/ICAI50593.2020.9311346.

DOYCHEV, E., 2013. Environment for Provision of eLearning Services. PhD. Thesis, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria.

FAGBOHUN, O., IDUWE, N.P., ABBDULLAHI, M., IFATUROTI, A., NWANNA, O.M., 2024. Beyond Traditional Assessment: Exploring the Impact of Large Language Models on Grading Practices. Journal of Artificial Intelligence, Machine Learning and Data Science. vol. 2, no. 1. DOI:10.51219/JAIMLD/oluwole-fagbohun/19.

FARZANEH, M., VANANI, I.R., SOHRABI, B., 2012. Utilization of Intelligent Software Agent Features for Improving E-Learning Efforts. International Journal of Virtual and Personal Learning Environments, vol. 3, no. 1, pp. 55 – 68. DOI 10.4018/jvple.2012010104.

GOYAL, M., KRISHNAMURTHI, R., 2019. Pedagogical Software Agents for Personalized E-Learning Using Soft Computing Techniques. In: Nature-Inspired Algorithms for Big Data Frameworks. IGI Global. ISBN 978-1-5225-5852-1. [accessed online 16 February 2024].

HORSEY, J., 2023. Perplexity vs Bard vs ChatGPT. Geeky Gadgets https://geeky-gadgets.com/perplexity-vs-bard-vs-chatgpt [accessed 29 February 2024].

JAVA, Words at Work by, 2023. Battle of the AI’s: Chat GPT vs. Perplexity AI vs. Google Bard. Medium https://medium.com/@jamva/battleof-the-ais-chat-gpt-vs-perplexity-ai-vs-google-bard-bca76474a30d [accessed 19 February 2024].

KASHI, A., SHASTRI, S., DESHPANDE, A.R., DORESWAMI, J., SRINIVASA. G., 2016. A Score Recommendation System Towards Automating Assessment In Professional Courses. IEEE Eighth International Conference on Technology for Education (T4E), pp. 140 – 143. DOI 10.1109/T4E.2016.036.

KOSTIC, M., WITSCHEL, H.F., HINKELMANN, K., SPAHIC-BOGDANOVIC, M., 2024. LLMs in Automated Essay Evaluation: A Case Study. Proceedings of the AAAI 2004 Spring Symposium Series, vol. 3, no. 1, pp. 143 — 147. DOI 10.1609/aaaiss.v3i1.31193.

MUZURURA, O., MZIKAMWI, T., REBANOVAKO, T.G., MPINI, D., 2023. Application of Artifical Intelligence for Virtual Teaching Assistance (Case study: Introduction to Information Technology). International Research Journal of Engineering and Technology, vol. 10, no. 9, pp. 276 – 283. https://issuu.com/irjet/docs/irjet-v10i938

MEISSNER, N., SPETH, S., KIESLINGER, J., BECKER, S. 2024. EvalQuiz – LLM-based Automated Generation of Self-Assessment Quizzes in Software Engineering Education. Software Engineering im Unterricht der Hochschulen 2024. Gesellschaft f¨ur Informatik, pp. 53 – 64. ISBN 978-3-88579-255-0. DOI 10.18420/seuh2024_04.

RAGHAVENDRACHAR, S., ANAND, V.S., ANUSHREE, H., MANJUNATAN, R., 2023. E-Learning Management System with AI Assistance. International Journal for Research in Applied Science and Engineering Technology, vol. 11, pp. 1233 – 1238. DOI 10.22214/ijraset. 2023.56730.

RANI, M., VYAS, O., 2015. An Ontology-based Adaptive Personalized E-learning System, Assisted by Software Agents on Cloud Storage. Knowledge-Based Systems, vol. 90, pp. 33 – 48. DOI 10.1016/j.knosys. 2015.10.002.

SINHA, M., FUKEY, L., SINHA, A., 2021. AI in e-learning. In: E-learning Methodologies: Fundamentals, technologies and applications, pp. 126 – 150. ISBN 978-1-83953-120-0. DOI 10.1049/PBPC040E_ch5.

TANJGA, M., 2023. E-learning and the Use of AI: A Review of Current Practices and Future Directions. Qeios. DOI 10.32388/AP0208.2.

TAPALOVA, O., ZHIYENBAYEVA, N., GURA, D., 2022. Artificial Intelligence in Education: AIEd for Personalised Learning Pathways. Electronic Journal of e-Learning, vol. 20, pp. 639 – 653. DOI 10.34190/ejel. 20.5.2597.

UDAYAKUMAR, A., GANESAN, M., GOBHINATH, S., 2022. A Review on Artificial Intelligence Based E-Learning System. In: Pervasive Computing and Social Networking, pp. 659 – 671. ISBN 978-981-19283-9-0. DOI 10.1007/978-981-19-2840-6_50.

2025 година
Книжка 6
ENHANCING STUDENT MOTIVATION AND ACHIEVEMENT THROUGH DIGITAL MIND MAPPING

Mikloš Kovač, Mirjana Brdar, Goran Radojev, Radivoje Stojković

OPTIMIZATION VS BOOSTING: COMPARISON OF STRATEGIES ON EDUCATIONAL DATASETS TO EXPLORE LOW-PERFORMING AT-RISK AND DROPOUT STUDENTS

Ranjit Paul, Asmaa Mohamed, Peren Jerfi Canatalay, Ashima Kukkar, Sadiq Hussain, Arun K. Baruah, Jiten Hazarika, Silvia Gaftandzhieva, Esraa A. Mahareek, Abeer S. Desuky, Rositsa Doneva

ARTIFICIAL INTELLIGENCE AS A TOOL FOR PEDAGOGICAL INNOVATIONS IN MATHEMATICS EDUCATION

Stanka Hadzhikoleva, Maria Borisova, , Borislava Kirilova

Книжка 4
Книжка 3
МОДЕЛИ НА ВЕРОЯТНОСТНИ ПРОСТРАНСТВА В ОЛИМПИАДНИ ЗАДАЧИ

Драгомир Грозев, Станислав Харизанов

Книжка 1
A NOTE ON A GENERALIZED DYNAMICAL SYSTEM OCCURS IN MODELLING “THE BATTLE OF THE SEXES”: CHAOS IN SOCIOBIOLOGY

Nikolay Kyurkchiev, Anton Iliev, Vesselin Kyurkchiev, Angel Golev, Todorka Terzieva, Asen Rahnev

EDUCATIONAL RESOURCES FOR STUDYING MIDSEGMENTS OF TRIANGLE AND TRAPEZOID

Toni Chehlarova1), Neda Chehlarova2), Georgi Gachev

2024 година
Книжка 6
ВЪЗМОЖНОСТИ ЗА ИЗГРАЖДАНЕ НА МЕЖДУПРЕДМЕТНИ ВРЪЗКИ МАТЕМАТИКА – ИНФОРМАТИКА

Елена Каращранова, Ирена Атанасова, Надежда Борисова

Книжка 5
FRAMEWORK FOR DESIGNING VISUALLY ORIENTATED TOOLS TO SUPPORT PROJECT MANAGEMENT

Dalibor Milev, Nadezhda Borisova, Elena Karashtranova

3D ОБРАЗОВАТЕЛЕН ПОДХОД В ОБУЧЕНИЕТО ПО СТЕРЕОМЕТРИЯ

Пеньо Лебамовски, Марияна Николова

Книжка 4
DYNAMICS OF A NEW CLASS OF OSCILLATORS: MELNIKOV’S APPROACH, POSSIBLE APPLICATION TO ANTENNA ARRAY THEORY

Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, Asen Rahnev

Книжка 3
РАЗСТОЯНИЯ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ И НЕРАВЕНСТВА В ИЗПЪКНАЛ ЧЕТИРИЪГЪЛНИК

Йордан Табов, Станислав Стефанов, Красимир Кънчев, Хаим Хаимов

USING AI TO IMPROVE ANSWER EVALUATION IN AUTOMATED EXAMS

Georgi Cholakov, Asya Stoyanova-Doycheva

Книжка 2
ON INTEGRATION OF STEM MODULES IN MATHEMATICS EDUCATION

Elena Karashtranova, Aharon Goldreich, Nadezhda Borisova

Книжка 1
STUDENT SATISFACTION WITH THE QUALITY OF A BLENDED LEARNING COURSE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

MODERN ROAD SAFETY TRAINING USING GAME-BASED TOOLS

Stefan Stavrev, Ivelina Velcheva

ARTIFICIAL INTELLIGENCE FOR GOOD AND BAD IN CYBER AND INFORMATION SECURITY

Nikolay Kasakliev, Elena Somova, Margarita Gocheva

2023 година
Книжка 6
QUALITY OF BLENDED LEARNING COURSES: STUDENTS’ PERSPECTIVE

Silvia Gaftandzhieva, Rositsa Doneva, Sadiq Hussain, Ashis Talukder, Gunadeep Chetia, Nisha Gohain

МОДЕЛ НА ЛЕОНТИЕВ С MS EXCEL

Велика Кунева, Мариян Милев

Книжка 5
AREAS ASSOCIATED TO A QUADRILATERAL

Oleg Mushkarov, Nikolai Nikolov

ON THE DYNAMICS OF A ClASS OF THIRD-ORDER POLYNOMIAL DIFFERENCE EQUATIONS WITH INFINITE NUMBER OF PERIOD-THREE SOLUTIONS

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

СИСТЕМА ЗА ИЗВЛИЧАНЕ И ВИЗУАЛИЗАЦИЯ НА ДАННИ ОТ ИНТЕРНЕТ

Георги Чолаков, Емил Дойчев, Светла Коева

Книжка 4
MULTIPLE REPRESENTATIONS OF FUNCTIONS IN THE FRAME OF DISTANCE LEARNING

Radoslav Božić, Hajnalka Peics, Aleksandar Milenković

INTEGRATED LESSONS IN CALCULUS USING SOFTWARE

Pohoriliak Oleksandr, Olga Syniavska, Anna Slyvka-Tylyshchak, Antonina Tegza, Alexander Tylyshchak

Книжка 3
ПРИЛОЖЕНИЕ НА ЕЛЕМЕНТИ ОТ ГЕОМЕТРИЯТА НА ЧЕТИРИЪГЪЛНИКА ЗА РЕШАВАНЕ НА НЕСТАНДАРТНИ ЗАДАЧИ

Йордан Табов, Веселин Ненков, Асен Велчев, Станислав Стефанов

Книжка 2
Книжка 1
НОВА ФОРМУЛА ЗА ЛИЦЕ НА ЧЕТИРИЪГЪЛНИК (ЧЕТИВО ЗА VII КЛАС)

Йордан Табов, Асен Велчев, Станислав Стефанов, Хаим Хаимов

2022 година
Книжка 6
MOBILE GAME-BASED MATH LEARNING FOR PRIMARY SCHOOL

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
SECURITY ANALYSIS ON CONTENT MANAGEMENT SYSTEMS

Lilyana Petkova, Vasilisa Pavlova

MONITORING OF STUDENT ENROLMENT CAMPAIGN THROUGH DATA ANALYTICS TOOLS

Silvia Gaftandzhieva, Rositsa Doneva, Milen Bliznakov

TYPES OF SOLUTIONS IN THE DIDACTIC GAME “LOGIC MONSTERS”

Nataliya Hristova Pavlova, Michaela Savova Toncheva

Книжка 4
PERSONAL DATA PROCESSING IN A DIGITAL EDUCATIONAL ENVIRONMENT

Evgeniya Nikolova, Mariya Monova-Zheleva, Yanislav Zhelev

Книжка 3
Книжка 2
STEM ROBOTICS IN PRIMARY SCHOOL

Tsanko Mihov, Gencho Stoitsov, Ivan Dimitrov

A METAGRAPH MODEL OF CYBER PROTECTION OF AN INFORMATION SYSTEM

Emiliya Koleva, Evgeni Andreev, Mariya Nikolova

Книжка 1
CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

INNOVATIVE PROPOSALS FOR DATABASE STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

APPLICATION OF MATHEMATICAL MODELS IN GRAPHIC DESIGN

Ivaylo Staribratov, Nikol Manolova

РЕШЕНИЯ НА КОНКУРСНИ ЗАДАЧИ БРОЙ 6, 2021 Г.

Задача 1. Дадени са различни естествени числа, всяко от които има прос- ти делители, не по-големи от . Докажете, че произведението на някои три от тези числа е точен куб. Решение: числата са представим във вида . Нека разгледаме квадрат

2021 година
Книжка 6
E-LEARNING DURING COVID-19 PANDEMIC: AN EMPIRICAL RESEARCH

Margarita Gocheva, Nikolay Kasakliev, Elena Somova

Книжка 5
ПОДГОТОВКА ЗА XXV МЛАДЕЖКА БАЛКАНИАДА ПО МАТЕМАТИКА 2021

Ивайло Кортезов, Емил Карлов, Мирослав Маринов

EXCEL’S CALCULATION OF BASIC ASSETS AMORTISATION VALUES

Vehbi Ramaj, Sead Rešić, Anes Z. Hadžiomerović

EDUCATIONAL ENVIRONMENT AS A FORM FOR DEVELOPMENT OF MATH TEACHERS METHODOLOGICAL COMPETENCE

Olha Matiash, Liubov Mykhailenko, Vasyl Shvets, Oleksandr Shkolnyi

Книжка 4
LEARNING ANALYTICS TOOL FOR BULGARIAN SCHOOL EDUCATION

Silvia Gaftandzhieva, Rositsa Doneva, George Pashev, Mariya Docheva

Книжка 3
THE PROBLEM OF IMAGES’ CLASSIFICATION: NEURAL NETWORKS

Larisa Zelenina, Liudmila Khaimina, Evgenii Khaimin, D. Khripunov, Inga Zashikhina

MIDLINES OF QUADRILATERAL

Sead Rešić, Maid Omerović, Anes Z. Hadžiomerović, Ahmed Palić

ВИРТУАЛЕН ЧАС ПО МАТЕМАТИКА

Севдалина Георгиева

Книжка 2
MOBILE MATH GAME PROTOTYPE ON THE BASE OF TEMPLATES FOR PRIMARY SCHOOL

Margarita Gocheva, Elena Somova, Nikolay Kasakliev, Vladimira Angelova

КОНКУРСНИ ЗАДАЧИ БРОЙ 2/2021 Г.

Краен срок за изпращане на решения: 0 юни 0 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2021

Краен срок за изпращане на решения: 0 юни 0 г.

Книжка 1
СЕДЕМНАДЕСЕТА ЖАУТИКОВСКА ОЛИМПИАДА ПО МАТЕМАТИКА, ИНФОРМАТИКА И ФИЗИКА АЛМАТИ, 7-12 ЯНУАРИ 2021

Диян Димитров, Светлин Лалов, Стефан Хаджистойков, Елена Киселова

ОНЛАЙН СЪСТЕЗАНИЕ „VIVA МАТЕМАТИКА С КОМПЮТЪР“

Петър Кендеров, Тони Чехларова, Георги Гачев

2020 година
Книжка 6
ABSTRACT DATA TYPES

Lasko M. Laskov

Книжка 5
GAMIFICATION IN CLOUD-BASED COLLABORATIVE LEARNING

Denitza Charkova, Elena Somova, Maria Gachkova

NEURAL NETWORKS IN A CHARACTER RECOGNITION MOBILE APPLICATION

L.I. Zelenina, L.E. Khaimina, E.S. Khaimin, D.I. Antufiev, I.M. Zashikhina

APPLICATIONS OF ANAGLIFIC IMAGES IN MATHEMATICAL TRAINING

Krasimir Harizanov, Stanislava Ivanova

МЕТОД НА ДЕЦАТА В БЛОКА

Ивайло Кортезов

Книжка 4
TECHNOLOGIES AND TOOLS FOR CREATING ADAPTIVE E-LEARNING CONTENT

Todorka Terzieva, Valya Arnaudova, Asen Rahnev, Vanya Ivanova

Книжка 3
MATHEMATICAL MODELLING IN LEARNING OUTCOMES ASSESSMENT (BINARY MODEL FOR THE ASSESSMMENT OF STUDENT’S COMPETENCES FORMATION)

L. E. Khaimina, E. A. Demenkova, M. E. Demenkov, E. S. Khaimin, L. I. Zelenina, I. M. Zashikhina

PROBLEMS 2 AND 5 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 2
ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ ТРЕТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА)

Здравко Лалчев, Маргарита Върбанова, Мирослав Стоимиров, Ирина Вутова

КОНКУРЕНТНИ ПЕРПЕНДИКУЛЯРИ, ОПРЕДЕЛЕНИ ОТ ПРАВИЛНИ МНОГОЪГЪЛНИЦИ

Йоана Христова, Геновева Маринова, Никола Кушев, Светослав Апостолов, Цветомир Иванов

A NEW PROOF OF THE FEUERBACH THEOREM

Sava Grozdev, Hiroshi Okumura, Deko Dekov

PROBLEM 3 ON THE IMO’2019 PAPER

Sava Grozdev, Veselin Nenkov

Книжка 1
GENDER ISSUES IN VIRTUAL TRAINING FOR MATHEMATICAL KANGAROO CONTEST

Mark Applebaum, Erga Heller, Lior Solomovich, Judith Zamir

KLAMKIN’S INEQUALITY AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović

НЯКОЛКО ПРИЛОЖЕНИЯ НА ВЪРТЯЩАТА ХОМОТЕТИЯ

Сава Гроздев, Веселин Ненков

2019 година
Книжка 6
DISCRETE MATHEMATICS AND PROGRAMMING – TEACHING AND LEARNING APPROACHES

Mariyana Raykova, Hristina Kostadinova, Stoyan Boev

CONVERTER FROM MOODLE LESSONS TO INTERACTIVE EPUB EBOOKS

Martin Takev, Elena Somova, Miguel Rodríguez-Artacho

ЦИКЛОИДА

Аяпбергенов Азамат, Бокаева Молдир, Чурымбаев Бекнур, Калдыбек Жансуйген

КАРДИОИДА

Евгений Воронцов, Никита Платонов

БОЛГАРСКАЯ ОЛИМПИАДА ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ В РОССИИ

Росен Николаев, Сава Гроздев, Богдана Конева, Нина Патронова, Мария Шабанова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички полиноми, които за всяка реална стойност на удовлетворяват равенството Татяна Маджарова, Варна Задача 2. Правоъгълният триъгълник има остри ъгли и , а центърът на вписаната му окръжност е . Точката , лежаща в , е такава, че и . Симетралите

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1, 2019

Задача 1. Да се намерят всички цели числа , за които

Книжка 5
ДЪЛБОКО КОПИЕ В C++ И JAVA

Христина Костадинова, Марияна Райкова

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намери безкрайно множество от двойки положителни ра- ционални числа Милен Найденов, Варна

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2018

Задача 1. Точката е левият долен връх на безкрайна шахматна дъска. Една муха тръгва от и се движи само по страните на квадратчетата. Нека е общ връх на някои квадратчета. Казва- ме, че мухата изминава пътя между и , ако се движи само надясно и нагоре. Ако точките и са противоположни върхове на правоъгълник , да се намери броят на пътищата, свърз- ващи точките и , по които мухата може да мине, когато: а) и ; б) и ; в) и

Книжка 4
THE REARRANGEMENT INEQUALITY

Šefket Arslanagić

АСТРОИДА

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

COMPUTER PROGRAMMING IN MATHEMATICS EDUCATION

Marin Marinov, Lasko Laskov

CREATING INTERACTIVE AND TRACEABLE EPUB LEARNING CONTENT FROM MOODLE COURSES

Martin Takev, Miguel Rodríguez-Artacho, Elena Somova

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се реши уравнението . Христо Лесов, Казанлък Задача 2. Да се докаже, че в четириъгълник с перпендикулярни диагонали съществува точка , за която са изпълнени равенствата , , , . Хаим Хаимов, Варна Задача 3. В правилен 13-ъгълник по произволен начин са избрани два диа- гонала. Каква е вероятността избраните диагонали да не се пресичат? Сава Гроздев, София, и Веселин Ненков, Бели Осъм

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2018

Задача 1. Ако и са съвършени числа, за които целите части на числата и са равни и различни от нула, да се намери .

Книжка 3
RESULTS OF THE FIRST WEEK OF CYBERSECURITY IN ARKHANGELSK REGION

Olga Troitskaya, Olga Bezumova, Elena Lytkina, Tatyana Shirikova

DIDACTIC POTENTIAL OF REMOTE CONTESTS IN COMPUTER SCIENCE

Natalia Sofronova, Anatoliy Belchusov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Краен срок за изпращане на решения 30 ноември 2019 г.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 4, 2018

Задача 1. Да се намерят всички тройки естествени числа е изпълнено равенството: а)

Книжка 2
ЕЛЕКТРОНЕН УЧЕБНИК ПО ОБЗОРНИ ЛЕКЦИИ ЗА ДЪРЖАВЕН ИЗПИТ В СРЕДАТА DISPEL

Асен Рахнев, Боян Златанов, Евгения Ангелова, Ивайло Старибратов, Валя Арнаудова, Слав Чолаков

ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

ЕКСТРЕМАЛНИ СВОЙСТВА НА ТОЧКАТА НА ЛЕМОАН В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

A TRIANGLE AND A TRAPEZOID WITH A COMMON CONIC

Sava Grozdev, Veselin Nenkov

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Христо Лесов, Казанлък Задача 2. Окръжност с диаметър и правоъгълник с диагонал имат общ център. Да се докаже, че за произволна точка M от е изпълне- но равенството . Милен Найденов, Варна Задача 3. В изпъкналия четириъгълник са изпълнени равенства- та и . Точката е средата на диагонала , а , , и са ортоганалните проекции на съответно върху правите , , и . Ако и са средите съответно на отсечките и , да се докаже, че точките , и лежат на една права.

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 3, 2018

Задача 1. Да се реши уравнението . Росен Николаев, Дико Суружон, Варна Решение. Въвеждаме означението , където . Съгласно това означение разлежданото уравнение придобива вида не е решение на уравнението. Затова са възможни само случаите 1) и 2) . Разглеж- даме двата случая поотделно. Случай 1): при е изпълнено равенството . Тогава имаме:

Книжка 1
PROBLEM 6. FROM IMO’2018

Sava Grozdev, Veselin Nenkov

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число , при което куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, рав- на на Христо Лесов, Казанлък Решение: тъй като , то не е куб на ес- тествено число и затова . Разглеждаме последователно случаите за . 1) При разглеждаме естествени числа и , за които са изпълнени релациите и . Тогава то , т.е. . Освен това откъдето , т.е. .Така получихме, че . Лесно се проверява, че при и няма естествен

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 1. Да се намерят всички цели числа , за които

2018 година
Книжка 6
„ЭНЦИКЛОПЕДИЯ ЗАМЕЧАТЕЛЬНЫХ ПЛОСКИХ КРИВЫХ“ – МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ В РАМКАХ MITE

Роза Атамуратова, Михаил Алфёров, Марина Белорукова, Веселин Ненков, Валерий Майер, Генадий Клековкин, Раиса Овчинникова, Мария Шабанова, Александр Ястребов

A NEW MEANING OF THE NOTION “EXPANSION OF A NUMBER”

Rosen Nikolaev, Tanka Milkova, Radan Miryanov

Книжка 5
ИТОГИ ПРОВЕДЕНИЯ ВТОРОЙ МЕЖДУНАРОДНОЙ ОЛИМПИАДЬI ПО ФИНАНСОВОЙ И АКТУАРНОЙ МАТЕМАТИКЕ СРЕДИ ШКОЛЬНИКОВ И СТУДЕНТОВ

Сава Гроздев, Росен Николаев, Мария Шабанова, Лариса Форкунова, Нина Патронова

LEARNING AND ASSESSMENT BASED ON GAMIFIED E-COURSE IN MOODLE

Mariya Gachkova, Martin Takev, Elena Somova

УЛИТКА ПАСКАЛЯ

Дарья Коптева, Ксения Горская

КОМБИНАТОРНИ ЗАДАЧИ, СВЪРЗАНИ С ТРИЪГЪЛНИК

Росен Николаев, Танка Милкова, Катя Чалъкова

Книжка 4
ЗА ПРОСТИТЕ ЧИСЛА

Сава Гроздев, Веселин Ненков

ИНЦЕНТЪР НА ЧЕТИРИЪГЪЛНИК

Станислав Стефанов

ЭПИЦИКЛОИДА

Инкар Аскар, Камила Сарсембаева

ГИПОЦИКЛОИДА

Борислав Борисов, Деян Димитров, Иван Стефанов, Николай Нинов, Теодор Христов

Книжка 3
ПОЛИНОМИ ОТ ТРЕТА СТЕПЕН С КОЛИНЕАРНИ КОРЕНИ

Сава Гроздев, Веселин Ненков

ЧЕТИРИДЕСЕТ И ПЕТА НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Станислава Стоилова, Веселин Ненков

Книжка 2
TWO INTERESTING INEQUALITIES FOR ACUTE TRIANGLES

Šefket Arslanagić, Amar Bašić

ПЕРФЕКТНА ИЗОГОНАЛНОСТ В ЧЕТИРИЪГЪЛНИК

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

НЯКОИ ТИПОВЕ ЗАДАЧИ СЪС СИМЕТРИЧНИ ЧИСЛА

Росен Николаев, Танка Милкова, Радан Мирянов

Книжка 1
Драги читатели,

където тези проценти са наполовина, в Източна Европа те са около 25%, в

COMPUTER DISCOVERED MATHEMATICS: CONSTRUCTIONS OF MALFATTI SQUARES

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ВРЪЗКИ МЕЖДУ ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Станислав Стефанов, Веселин Ненков

КОНКУРСНИ ЗАДАЧИ НА БРОЯ

Задача 2. Да се докаже, че всяка от симедианите в триъгълник с лице разделя триъгълника на два триъгълника, лицата на които са корени на урав- нението където и са дължините на прилежащите на симедианата страни на три- ъгълника. Милен Найденов, Варна Задача 3. Четириъгълникът е описан около окръжност с център , като продълженията на страните му и се пресичат в точка . Ако е втората пресечна точка на описаните окръжности на триъгълниците и , да се докаже, че Хаим Х

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2017

Задача 1. Да се определи дали съществуват естествени числа и , при които стойността на израза е: а) куб на естествено число; б) сбор от кубовете на две естествени числа; в) сбор от кубовете на три естествени числа. Христо Лесов, Казанлък Решение: при и имаме . Следова- телно случай а) има положителен отговор. Тъй като при число- то се дели на , то при и имаме е естестве- но число. Следователно всяко число от разглеждания вид при деление на дава ос

2017 година
Книжка 6
A SURVEY OF MATHEMATICS DISCOVERED BY COMPUTERS. PART 2

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ТРИ ИНВАРИАНТЫ В ОДНУ ЗАДА

Ксения Горская, Дарья Коптева, Асхат Ермекбаев, Арман Жетиру, Азат Бермухамедов, Салтанат Кошер, Лили Стефанова, Ирина Христова, Александра Йовкова

GAMES WITH

Aldiyar Zhumashov

SOME NUMERICAL SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

ЗАНИМАТЕЛНИ ЗАДАЧИ ПО ТЕМАТА „КАРТИННА ГАЛЕРИЯ“

Мирослав Стоимиров, Ирина Вутова

Книжка 5
ВТОРОЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART ONE)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

Книжка 4
ГЕНЕРАТОР НА ТЕСТОВЕ

Ангел Ангелов, Веселин Дзивев

INTERESTING PROOFS OF SOME ALGEBRAIC INEQUALITIES

Šefket Arslanagić, Faruk Zejnulahi

PROBLEMS ON THE BROCARD CIRCLE

Sava Grozdev, Hiroshi Okumura, Deko Dekov

ПРИЛОЖЕНИЕ НА ЛИНЕЙНАТА АЛГЕБРА В ИКОНОМИКАТА

Велика Кунева, Захаринка Ангелова

СКОРОСТТА НА СВЕТЛИНАТА

Сава Гроздев, Веселин Ненков

Книжка 3
НЯКОЛКО ПРИЛОЖЕНИЯ НА ТЕОРЕМАТА НА МЕНЕЛАЙ ЗА ВПИСАНИ ОКРЪЖНОСТИ

Александра Йовкова, Ирина Христова, Лили Стефанова

НАЦИОНАЛНА СТУДЕНТСКА ОЛИМПИАДА ПО МАТЕМАТИКА

Сава Гроздев, Росен Николаев, Веселин Ненков

СПОМЕН ЗА ПРОФЕСОР АНТОН ШОУРЕК

Александра Трифонова

Книжка 2
ИЗКУСТВЕНА ИМУННА СИСТЕМА

Йоанна Илиева, Селин Шемсиева, Светлана Вълчева, Сюзан Феимова

ВТОРИ КОЛЕДЕН ЛИНГВИСТИЧЕН ТУРНИР

Иван Держански, Веселин Златилов

Книжка 1
ГЕОМЕТРИЯ НА ЧЕТИРИЪГЪЛНИКА, ТОЧКА НА МИКЕЛ, ИНВЕРСНА ИЗОГОНАЛНОСТ

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

2016 година
Книжка 6
ПЕРВЫЙ МЕЖДУНАРОДНЫЙ СЕТЕВОЙ ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ УЧАЩИХСЯ В РАМКАХ MITE

Мария Шабанова, Марина Белорукова, Роза Атамуратова, Веселин Ненков

НЕКОТОРЫЕ ТРАЕКТОРИИ, КОТОРЫЕ ОПРЕДЕЛЕНЫ РАВНОБЕДРЕННЫМИ ТРЕУГОЛЬНИКАМИ

Ксения Горская, Дарья Коптева, Даниил Микуров, Еркен Мудебаев, Казбек Мухамбетов, Адилбек Темирханов, Лили Стефанова, Ирина Христова, Радина Иванова

ПСЕВДОЦЕНТЪР И ОРТОЦЕНТЪР – ЗАБЕЛЕЖИТЕЛНИ ТОЧКИ В ЧЕТИРИЪГЪЛНИКА

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

FUZZY LOGIC

Reinhard Magenreuter

GENETIC ALGORITHM

Reinhard Magenreuter

Книжка 5
NEURAL NETWORKS

Reinhard Magenreuter

Книжка 4
АКТИВНО, УЧАСТВАЩО НАБЛЮДЕНИЕ – ТИП ИНТЕРВЮ

Христо Христов, Христо Крушков

ХИПОТЕЗАТА В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Елена Тодорова

Книжка 3
ОБОБЩЕНИЕ НА ТЕОРЕМАТА НА ЧЕЗАР КОШНИЦА

Сава Гроздев, Веселин Ненков

Книжка 2
ОЙЛЕР-ВЕН ДИАГРАМИ ИЛИ MZ-КАРТИ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова, Иван Душков

ОБВЪРЗВАНЕ НА ОБУЧЕНИЕТО ПО АЛГЕБРА И ГЕОМЕТРИЯ

Румяна Маврова, Пенка Рангелова

Книжка 1
STATIONARY NUMBERS

Smaiyl Makyshov

МЕЖДУНАРОДНА ЖАУТИКОВСКА ОЛИМПИАДА

Сава Гроздев, Веселин Ненков

2015 година
Книжка 6
Книжка 5
Книжка 4
Книжка 3
МОТИВАЦИОННИТЕ ЗАДАЧИ В ОБУЧЕНИЕТО ПО МАТЕМАТИКА

Румяна Маврова, Пенка Рангелова, Зара Данаилова-Стойнова

Книжка 2
САМОСТОЯТЕЛНО РЕШАВАНЕ НА ЗАДАЧИ С EXCEL

Пламен Пенев, Диана Стефанова

Книжка 1
ГЕОМЕТРИЧНА КОНСТРУКЦИЯ НА КРИВА НА ЧЕВА

Сава Гроздев, Веселин Ненков

2014 година
Книжка 6
КОНКУРЕНТНОСТ, ПОРОДЕНА ОТ ТАНГЕНТИ

Сава Гроздев, Веселин Ненков

Книжка 5
ИНФОРМАТИКА В ШКОЛАХ РОССИИ

С. А. Бешенков, Э. В. Миндзаева

ОЩЕ ЕВРИСТИКИ С EXCEL

Пламен Пенев

ДВА ПОДХОДА ЗА ИЗУЧАВАНЕ НА УРАВНЕНИЯ В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова, Ирина Вутова

Книжка 4
ОБУЧЕНИЕ В СТИЛ EDUTAINMENT С ИЗПОЛЗВАНЕ НА КОМПЮТЪРНА ГРАФИКА

Христо Крушков, Асен Рахнев, Мариана Крушкова

Книжка 3
ИНВЕРСИЯТА – МЕТОД В НАЧАЛНАТА УЧИЛИЩНА МАТЕМАТИКА

Здравко Лалчев, Маргарита Върбанова

СТИМУЛИРАНЕ НА ТВОРЧЕСКА АКТИВНОСТ ПРИ БИЛИНГВИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Гроздев, Диана Стефанова, Калина Василева, Станислава Колева, Радка Тодорова

ПРОГРАМИРАНЕ НА ЧИСЛОВИ РЕДИЦИ

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ФРАКТАЛЬНЫЕ МЕТО

Валерий Секованов, Елена Селезнева, Светлана Шляхтина

Книжка 1
ЕВРИСТИКА С EXCEL

Пламен Пенев

SOME INEQUALITIES IN THE TRIANGLE

Šefket Arslanagić

2013 година
Книжка 6
Книжка 5
МАТЕМАТИЧЕСКИЕ РЕГАТЬI

Александр Блинков

Книжка 4
Книжка 3
АКАДЕМИК ПЕТЪР КЕНДЕРОВ НА 70 ГОДИНИ

чл. кор. Юлиан Ревалски

ОБЛАЧНИ ТЕХНОЛОГИИ И ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ В ОБРАЗОВАНИЕТО

Сава Гроздев, Иванка Марашева, Емил Делинов

СЪСТЕЗАТЕЛНИ ЗАДАЧИ ПО ИНФОРМАТИКА ЗА ГРУПА Е

Ивайло Старибратов, Цветана Димитрова

Книжка 2
ЕКСПЕРИМЕНТАЛНАТА МАТЕМАТИКА В УЧИЛИЩЕ

Сава Гроздев, Борислав Лазаров

МАТЕМАТИКА С КОМПЮТЪР

Сава Гроздев, Деко Деков

ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Книжка 1
ФРАГМЕНТИ ОТ ПАМЕТТА

Генчо Скордев

2012 година
Книжка 6
ДВЕ ДИДАКТИЧЕСКИ СТЪЛБИ

Сава Гроздев, Светлозар Дойчев

ТЕОРЕМА НА ПОНСЕЛЕ ЗА ЧЕТИРИЪГЪЛНИЦИ

Сава Гроздев, Веселин Ненков

ИЗЛИЧАНЕ НА ОБЕКТИВНИ ЗНАНИЯ ОТ ИНТЕРНЕТ

Ивайло Пенев, Пламен Пенев

Книжка 5
ДЕСЕТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ЛИНГВИСТИКА

д–р Иван А. Держански (ИМИ–БАН)

ТЕОРЕМА НА ВАН ОБЕЛ И ПРИЛОЖЕНИЯ

Тодорка Глушкова, Боян Златанов

МАТЕМАТИЧЕСКИ КЛУБ „СИГМА” В СВЕТЛИНАТА НА ПРОЕКТ УСПЕХ

Сава Гроздев, Иванка Марашева, Емил Делинов

I N M E M O R I A M

На 26 септември 2012 г. след продължително боледуване ни напусна проф. дпн Иван Ганчев Донев. Той е първият професор и първият доктор на науките в България по методика на обучението по математика. Роден е на 6 май 1935 г. в с. Страхилово, В. Търновско. След завършване на СУ “Св. Кл. Охридски” става учител по математика в гр. Свищов. Тук той организира първите кръжоци и със- тезания по математика. През 1960 г. Иван Ганчев печели конкурс за асистент в СУ и още през следващата година започ

Книжка 4
Книжка 3
СЛУЧАЙНО СЪРФИРАНЕ В ИНТЕРНЕТ

Евгения Стоименова

Книжка 2
SEEMOUS OLYMPIAD FOR UNIVERSITY STUDENTS

Sava Grozdev, Veselin Nenkov

EUROMATH SCIENTIFIC CONFERENCE

Sava Grozdev, Veselin Nenkov

FIVE WAYS TO SOLVE A PROBLEM FOR A TRIANGLE

Šefket Arslanagić, Dragoljub Milošević

ПРОПОРЦИИ

Валя Георгиева

ПЪТЕШЕСТВИЕ В СВЕТА НА КОМБИНАТОРИКАТА

Росица Керчева, Румяна Иванова

ПОЛЗОТВОРНА ПРОМЯНА

Ивайло Старибратов

Книжка 1
ЗА ЕЛЕКТРОННОТО ОБУЧЕНИЕ

Даниела Дурева (Тупарова)

МАТЕМАТИКАТА E ЗАБАВНА

Веселина Вълканова

СРАВНЯВАНЕ НА ИЗРАЗИ С КВАДРАТНИ КОРЕНИ

Гинка Бизова, Ваня Лалева