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Abstract. The definition and some of the properties of the Apollonian
circle in the plane find their analogies in the Euclidean three-dimensional
space. Thus, we manage to introduce a new concept in solid geometry that
we call an “Apollonian sphere”. It appears that the Apollonian sphere not
only possesses classical properties similar to the Apollonian circle such as
orthogonality and coaxiality, but also analogies of its lesser-known connec-
tion with the Lemoine point and the circumcenter. We also discover two
notable properties of stereographic projection that we prove with an Apol-
lonian sphere. They include collinearity of the projection point with the
Lemoine points of the projection and the projected triangles or with the
centers of their Apollonian circles. Moreover, we connect the newly intro-
duced concepts and the rich configurations they generate with Olympiad
geometry.
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1. Introduction
The first goal of the paper is to look for and investigate the properties of

the 3D space version of the Apollonian circle that we name an “Apollonian
sphere”. The second goal of the article is to search for applications of the
Apollonian sphere in 3D space, which brings us to the discovery of two notable
properties of stereographic projection. The third goal of the paper is to find
applications of the Apollonian sphere and the newly discovered properties of
stereographic projection in Olympiad geometry.

In Section 2, we define the Apollonian sphere, and we look at its properties.
In Section 3, we prove two new properties of stereographic projection via an
Apollonian sphere, constituting of collinearity of notable points (Lemoine
points/centers of Apollonian circles) from the projection and the projected
triangles with the projection point. Finally, in Section 4, we examine the
applications of the new concepts and configurations in Olympiad geometry.
We formulate an Olympiad problem based on the discovered properties of
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stereographic projection, and we provide an original solution to another one
via an Apollonian sphere1.

2. Apollonian Sphere
The familiar properties of the Apollonian circle in the plane such as or-

thogonality and coaxiality, (Andreescu et al. 2016, pp. 275 – 279), find their
analogies in 3D space. We call the resulting figure an “Apollonian sphere”. In
stereometry, however, we investigate more in-depth connections with notable
points, lines, and planes, which we discuss in Section 2.

Theorem 2.1. Let △ABC be a scalene triangle. Then the locus of points X,
satisfying XA

XB = CA
CB , is a sphere ΣC , which we will call the Apollonian sphere

for the triangle corresponding to the vertex C.

Figure 1

Proof. 1) Existence. Let CL1

and CL2 be the interior and the
exterior angle bisector of ∠ACB
in △ABC (see fig. 1). Let M
be the midpoint of L1L2, and let
us construct the sphere ΣC(M, r)
where

r = MC = ML1 = ML2.

Let point X ∈ ΣC , and let
us construct the plane passing
through point X and the line
AB. We note that

BL1

L1A
:
BL2

L2A
=

BC

CA
:
BC

CA
= 1 ⇒ (B,L1, A, L2) = 1.

But ∠L2XL1 = 90◦ (L1L2 – diameter in ΣC). From the properties of the
harmonic division, (Boev 2010, p. 80), it follows that XL1 is an angle bisector

of ∠AXB ⇒ XA

XB
=

AL1

L1B
=

AC

BC
.

2) Uniqueness. Let point Y satisfy
Y A

Y B
=

AC

BC
. Point Y and the line AB

form a plane. But
AC

BC
=

AL1

BL1
⇒ Y A

Y B
=

AL1

BL1
⇒ Y L1 is an angle bisector of

∠AY B, and (B,L1, A, L2) = 1. From the properties of the harmonic division,
(Boev 2010, p. 80), it follows that ∠L1Y L2 = 90◦ ⇒ Y ∈ ΣC(M, r = ML1).
□
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We will prove an analogue in 3D space of the coaxiality of the Apollonian
circle.

Theorem 2.2. The three Apollonian spheres for a given scalene △ABC
intersect at a circle.

Figure 2

Proof. Let us construct the
spheres ΣC and ΣB (see fig. 2).
They are intersecting since the
corresponding Apollonian circles
are intersecting, and they are
great circles in the Apollonian
spheres. Let ΣC ∩ ΣB = σ, and
let point X ∈ σ

2.1.
==⇒

XA

XB
=

CA

CB
∩ XC

XA
=

BC

BA
.

If we multiply the two equa-

tions, we get that
XC

XB
=

AC

AB
. By Theorem 2.1., it follows that point X ∈ ΣA.

The same applies for each point on σ.
Note. As the centers of the three Apollonian spheres coincide with the

centers of the three Apollonian circles, we know from planimetry that the
centers lie on a line (the Lemoine axis).

The next statement is the stereometric equivalent of the orthogonality of
the Apollonian circle.

Theorem 2.3. The Apollonian spheres for a given scalene △ABC are
orthogonal to every sphere passing through points A,B, and C.

Proof. Firstly, we will introduce the following fundamental Lemma:
Lemma: Let point M lie on a circle k that lies on a sphere Σ. Let t be

the tangent line to k at M , and let πM be the tangent plane to Σ at M . Then
the line t lies on the plane πM .

Back to our main problem: let us take an arbitrary sphere Σ passing
through points A,B, and C (see fig. 3). We will prove that ΣC ⊥ Σ (analo-
gously for the other two Apollonian spheres). It is clear that the spheres ΣC

and Σ are intersecting. Let ΣC ∩ Σ = ω, and let us arbitrarily take point

X ∈ ω. As X ∈ ΣC , by Theorem 2.1.,
XA

XB
=

CA

CB
(∗).

Let us define the points as in Theorem 2.1. Point X and the line AB
determine a plane ⇒
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Figure 3

XA

XB

(∗)
=

CA

CB
=

AL1

L1B
⇒ XL1 is an angle bisector of ∠AXB.

Let us denote ∠ABX by φ, and ∠AXB by 2ψ. It is clear that we have
the equalities ∠AXL1 = ∠BXL1 = ψ. Therefore,

∠MXL1 = ∠MXA+ ∠AXL1 = ∠MXA+ ψ.

But as an exterior angle for △XBL1,

∠ML1X = ∠L1XB + ∠L1BX = ψ + φ.

It remains to be considered that since MX = ML1, then we have the
equality ∠MXL1 = ∠ML1X ⇒

∠MXA+ ψ = ψ + φ ⇔ ∠MXA = φ.

Therefore, MX is the tangent line for the circle k[ABX], and k[ABX] ∈ Σ.
Applying the Lemma, it follows that the tangent plane πX to Σ at point X
passes through the center of ΣC , point M . Similarly, the result applies for
every point Y ∈ ω: the tangent plane πY to Σ at point Y passes through the
center of ΣC , point M ⇒ ΣC ⊥ Σ.

The next theorem is a 3D equivalent of the connection of the Apollonian
circle with the notable points of the triangle. In this stereometric configura-
tion, we prove the existence of new notable elements, and we examine their
interconnection.
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Theorem 2.4. Let △ABC be a scalene triangle with circumcenter O,
Lemoine point L, and Apollonian spheres ΣA(M),ΣB(N), and ΣC(P ). Let
the sphere Σ pass through points A,B, and C. Let Σ intersect ΣA,ΣB, and
ΣC at the circles k′, k′′, and k′′′, lying on the planes α, β, and γ, respectively.
Let us denote the line through the points M,N , and P by s. Then the
following facts apply:

a) α ∩ β ∩ γ = line q; b) L ∈ q; c) s ⊥ q;
d) The orthogonal projection of line q onto the plane through △ABC

passes through O.
Proof.
a) The orthogonality in Theorem 2.3. leads to the polar reciprocation,

(Prasolov 2010b, pp. 51 – 53), between the centers of the Apollonian spheres
and their radical planes with Σ with respect to Σ (see fig. 4). Therefore,
πΣ(M) = α, πΣ(N) = β, and πΣ(P ) = γ. But points M,N , and P are
collinear. Thus, α ∩ β ∩ γ = line q.

Figure 4
Corollary. The lines s and q are polar (Smith 1893, p. 40).
b) Without loss of generality, let us take the circles k′ and k′′ (fig. 5).
Circles k′ and k (the circumcircle of △ABC) lie on a sphere (Σ) and have

a common point (A), and as it is clear that they do not coincide, then they
have a second common point, point A1. But A1 ∈ k′ ∈ ΣA, and A1 lies
on the plane through △ABC. Therefore, A1 lies on the Apollonian circle
corresponding to the vertex A. Therefore, from planimetry, (Andreescu et al.
2016, p. 277), we know that AA1 is a symmedian in △ABC.

Circles k′′ and k lie on a sphere (Σ) and have a common point (B), and as
it is clear that they do not coincide, then they have a second common point,
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Figure 5
point B1. But B1 ∈ k′′ ∈ ΣB, and B1 lies on the plane through △ABC.
Therefore, B1 lies on the Apollonian circle corresponding to the vertex B.
Therefore, from planimetry, we know that BB1 is a symmedian in △ABC.

Therefore, AA1 ∩BB1 = L.
It remains to be considered that as L ∈ α, and L ∈ β, then L ∈ q (the

intersection of the two planes).
Note. Another approach to proving the geometric fact is via properties of

polar reciprocation. From planimetry, (Andreescu et al. 2016, p. 279), we
know that L is the pole of the line s, and from a), we know that the lines s
and q are polar, meaning that L ∈ q.

Figure 6

c) Let k′∩k′′ = {K,T} (fig.
6). Then we know that K ∈
(α∩β), and T ∈ (α∩β), from
where it follows that KT ≡ q.
We note that q ∈ γ, that
is, KT ∈ γ. But {K,T} ∈
Σ ⇒ {K,T} ∈ (γ ∩ Σ) ≡ k′′′.
Also {K,T} ∈ k′, k′′, k′′′ ∈
ΣA,ΣB,ΣC ⇒ {K,T} ∈ ΣA∩
ΣB ∩ ΣC , which by Theorem
2.2., is a circle, which we will
denote by Ω, and the plane
passing through it – by µ.
Therefore, KT ∈ µ. KT ≡ q ⇒ q ∈ µ.
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But µ is the radical plane of the three Apollonian spheres. Therefore, the
line through their centers (s) is perpendicular to µ. Thus, it is perpendicular
to every line in it, and q is a line in it. Therefore, s ⊥ q.

Note. The statement could also be proved via the property of the polar
reciprocation in 3D space that two polar lines with respect to a given sphere
are perpendicular, as we know from a) that the lines s and q are polar.

Figure 7
d) Let us denote the orthogonal projection of the line q onto the plane

passing through △ABC, δABC , by t (fig. 7). From planimetry, we know that
the Lemoine axis is perpendicular to the Brocard axis: s ⊥ OL. We notice
that s ⊥ µ, and s ∈ δABC , from where it follows that δABC ⊥ µ. From
the orthogonality of the two planes, we deduce that t ∈ µ since t is their
intersection. From s ⊥ µ, it follows that s ⊥ t. As L ∈ δABC and L ∈ q, it is
clear that L ∈ t. But there is a single line in δABC , perpendicular to s and
passing through L, and OL is such. Therefore, OL ≡ t ⇔ O ∈ t.

Note. The statement that s ⊥ t could also be derived by the three-
perpendiculars theorem since s ⊥ q.

3. Two Notable Properties of Stereographic Projection
Alongside the analogies from the plane in 3D space, the Apollonian sphere

finds additional applications in proving new notable properties of stereo-
graphic projection. Stereographic projection is a projection of a sphere upon
a plane such that the center of the projection lies on the sphere, and the plane
is perpendicular to the diameter of the sphere through the given point. For
stereographic projection, it is well known that the center of projection, the
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centroid of the projection triangle, and the centroid of the projected trian-
gle are not collinear, as well as for their orthocenters and circumcenters, but
it appears that the centers of the Apollonian circles and the Lemoine point
fulfill this property.

Theorem 3.1. Let under stereographic projection with a projection point
O, a reference sphere Σ, and a projection plane µ, △ABC map to △A′B′C ′.
Then point O, the center of an Apollonian circle for △ABC, and the center
of the corresponding Apollonian circle for △A′B′C ′ are collinear.

Proof. Firstly, we will introduce the following Lemma (Prasolov 2010,
p. 313):

Lemma: Let under inversion with a point of inversion O, the circle k map
to the circle k′. Let the sphere Σ pass through point O and the circle k. Then
point O, the pole of the plane passing through the circle k with respect to
the sphere Σ, and the center of k′ are collinear.

Back to our main problem: as by condition, Σ is a reference sphere, and µ
– a projection plane, then, by definition of stereographic projection, it follows
that the plane µ is perpendicular to the diameter in Σ through O. Therefore,
there exists a single sphere i(O, r) with a center point O such that the plane µ
is the radical plane of the spheres Σ and i. Therefore, under inversion p with
an inversion sphere i(O, r), Σ p−→ µ (and so A

p−→ A′, B p−→ B′, and C
p−→ C ′).

Figure 8
Let point M be the center of an Apollonian circle for △ABC, and let

OM ∩ µ = S (see Fig. 8). We will prove that point S is a center of an
Apollonian circle for △A′B′C ′.
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Let us denote an Apollonian circle for △ABC by kC , and the correspond-
ing Apollonian circle for △A′B′C ′ by Γ. Let us also construct the Apollonian
sphere ΣC for △ABC. As we have taken kC with a ratio CA

CB , then, ΣC

and Γ will refer to the ratios CA
CB and C′A′

C′B′ , respectively. We note that point
M is also the center of ΣC (the Apollonian circles are great circles in the
Apollonian spheres). Let Σ ∩ ΣC = k0.

Firstly, we will prove that k0
p−→ Γ (∗).

Figure 9
Let us take an arbitrary point X from k0, and let X

p−→ X ′ (see fig. 9). It
suffices to show that X ′ ∈ Γ.

X ∈ k0 ∈ Σ ⇒ X ′ ∈ µ ≡ Σ′ ⇒ OX ∩ µ = X ′

X ∈ k0 ∈ ΣC
2.1.
==⇒

XA

XB
=

CA

CB
(1)

Without loss of generality, let r = 1.
The lines A′O and X ′O form a plane. We have that OA ·OA′ = r2 = 1 =

OX ·OX ′ ⇒ OA

OX
=

OX ′

OA′ and ∠AOX = ∠X ′OA′ ⇒ △OAX ∼ △OX ′A′ ⇒

AX

X ′A′ =
OA

OX ′ ⇔ X ′A′ =
AX ·OX ′

OA
(2).

The lines B′O and X ′O form a plane. We have that OB ·OB′ = r2 = 1 =

OX ·OX ′ ⇒ OB

OX
=

OX ′

OB′ and ∠BOX = ∠X ′OB′ ⇒ △OBX ∼ △OX ′B′ ⇒
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BX

X ′B′ =
OB

OX ′ ⇔ X ′B′ =
BX ·OX ′

OB
(3).

By (2) and (3) ⇒

X ′A′

X ′B′ =
AX

BX
· OB

OA

(1)
=

CA

CB
· OB

OA
.

But point C ′ ∈ Γ, and by applying the metric property of inversion, (John-
son 1960, p. 48), it follows that:

C ′A′

C ′B′ =
CA

OC·OA
CB

OC·OB

=
CA

CB
· OB

OA
.

⇒ X ′A′

X ′B′ =
C ′A′

C ′B′

It remains to be considered that X ′ ∈ µ. Therefore, from planimetry, we
know that point X ′ lies on the Apollonian circle in the plane µ with a ratio
C′A′

C′B′ ≡ Γ. ⇒ X ′ ∈ Γ that we wanted to prove.
Secondly, we will prove that point M is the pole of the plane passing

through the circle k0 with respect to Σ. (∗∗)
By Theorem 2.3., we know that ΣC ⊥ Σ, and by construction, k0 = ΣC∩Σ.

This, combined with the fact that point M is the center of ΣC , proves the
statement.

By (∗) and (∗∗) Lemma
=====⇒ The points O,M , and the center of Γ are collinear.

Therefore, the line OM intersects the plane through the circle Γ at its center.
But Γ and △A′B′C ′ lie on a plane (µ). Consequently, OM intersects µ at the
center of the Apollonian circle for △A′B′C ′, and by construction, OM∩µ = S
⇒ point S is the center of Γ that we wanted to show.

Note. Point M does not project onto point S.
Let us prove the following notable fact as well, which resembles and is

partly based on the previous one.
Theorem 3.2. Let under stereographic projection with a projection point

O, a reference sphere Σ, and a projection plane µ, △ABC map to △A′B′C ′.
Then point O, the Lemoine point for △ABC, and the Lemoine point for
△A′B′C ′ are collinear.

Proof. Firstly, we will introduce and prove the following Lemma.
Lemma: Let p be an inversion with an inversion circle i(O,R), and let k

be a circle not passing through O, on which lie the points A,B,C,D,E, and
F such that AD∩BE ∩CF = Q. Let under p, the points A,B,C,D,E, and
F map to the points A′, B′, C ′, D′, E′, and F ′. Then the lines A′D′, B′E′,
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C ′F ′, and OQ concur at one point.
Proof. Let us denote the inverse point of Q by Q′ (see fig. 10).
By condition, the circle k does not pass through the center of inversion,

point O. Therefore, it will be mapped again to a circle. And so the points
lying on k will be sent to points lying on k′ – the image of k. Thus, the points
A′, B′, C ′, D′, E′, and F ′ lie on a circle, k′.

We know that under inversion p, the line AD will be sent to a circle,
passing through O. Therefore, the points A′, Q′, D′, and O lie on a circle,
which we will denote by k1. Analogously, the points B′, Q′, E′, and O lie on
the circle k2, and the points C ′, Q′, F ′, and O lie on the circle k3.

Let us consider the circles k′, k1, and k2. As the three are intersecting at
three pairs of points, then their common chords are intersecting at one point
(Prasolov 2010a, p. 269). Therefore, Q′O ∩B′E′ ∩A′D′ = S.

Analogously, we consider the circles k′, k2, and k3, which also intersect at
three pairs of points, meaning that their common chords are intersecting at
one point. Thus, Q′O ∩ C ′F ′ ∩B′E′ = S′.

But S′ = Q′O ∩ B′E′ = S ⇒ S′ ≡ S ⇒ As OQ ≡ OQ′, OQ ∩ A′D′ ∩
B′E′ ∩ C ′F ′ = S, which we wanted to show.

Figure 10 Figure 11
Back to our main proof: as by condition, Σ is a reference sphere, and µ -

a projection plane, then, by definition of stereographic projection, it follows
that the plane µ is perpendicular to the diameter in Σ through O. Therefore,
there exists a single sphere i(O, r) with a center point O such that the plane µ
is the radical plane of the spheres Σ and i. Therefore, under inversion p with
an inversion sphere i(O, r), Σ p−→ µ (and so A

p−→ A′, B p−→ B′, and C
p−→ C ′).

Let point L be the Lemoine point for △ABC, and let OL ∩ µ = T (see
fig. 11). We will prove that point T is the Lemoine point for △A′B′C ′.

Let us define kC , Γ, ΣC , and k0 as in Theorem 3.1. Let us denote the
circumcircles of △ABC and △A′B′C ′ by kABC and kA′B′C′ , respectively.
Since a circle not passing through the center of inversion is sent to a circle,
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and the points A,B, and C are sent to the points A′, B′, and C ′, then,
kABC

p−→ kA′B′C′ .
Let kABC ∩ kC = {C,X}. Point X ∈ kC ⇒ X ∈ ΣC . But point

X ∈ kABC ⇒ X ∈ Σ. Therefore, point X ∈ (ΣC ∩ Σ) = k0. Hence, as
kABC

p−→ kA′B′C′ , and X ∈ kABC , then X ′ (the inverse point of X) ∈ kA′B′C′ .
However, since by Theorem 3.1., k0

p−→ Γ, and X ∈ k0, then X ′ ∈ Γ. Conse-
quently, X ′ ∈ (kA′B′C′ ∩ Γ), and so kA′B′C′ ∩ Γ = {C ′, X ′}.

It remains to be considered that from planimetry, we know that CX and
C ′X ′ are symmedians in △ABC and △A′B′C ′, respectively. Analogously,
we define the points Y and Z, from which it follows that BY and AZ are
symmedians in △ABC, and B′Y ′ and A′Z ′ – in △A′B′C ′. Furthermore,
this means that CX ∩ BY ∩ AZ = L, and C ′X ′ ∩ B′Y ′ ∩ A′Z ′ = T ′, which
are Lemoine points for △ABC и △A′B′C ′, respectively, and we also know
that the points A,B,C,X, Y, Z lying on a circle are mapped to the points
A′, B′, C ′, X ′, Y ′, Z ′, and the lines formed by the opposite points concur at
one point (L and T ′, respectively) Lemma

=====⇒ T ′ ∈ OL. But T ′ ∈ µ, and the line
OL intersects the plane µ at a single point, which by construction is point T .
Therefore, T ′ ≡ T , which we wanted to prove.

Note. Point L does not project onto point T .

4. Applications in Olympiad Geometry
The Apollonian sphere and its key results seen in Section 3 connect with

Olympiad geometry. Firstly, we discover a configuration of Olympiad-level
complexity by finding the planimetric equivalent of the aforementioned no-
table facts around stereographic projection. Secondly, we provide an original
solution to another Olympiad problem using the Apollonian sphere.

We could reformulate the statements in Theorems 3.1. and 3.2. by the
following way: “Let us take in 3D space the intersecting circles k1, k2, and
k3 such that k1 ∩ k2 = {A,D}, k2 ∩ k3 = {B,E}, and k1 ∩ k3 = {C,F}.
Let AD ∩ BE ∩ CF = O. Then point O, the center of an Apollonian cir-
cle/Lemoine point for △ABC, and the center of the corresponding Apollonian
circle/Lemoine point for △DEF are collinear.” Point O lies on the radical
line of the three circles, and so it will have the same power with respect to
them, S. Therefore, we can take an inversion with an inversion sphere with a
center point O and a radius

√
S, at which △ABC will map to △DEF . It is

clear that there exists a stereographic projection with a projection point O, a
reference sphere passing through the points A,B,C, and O, and a projection
plane passing through the points D,E, and F . As a result, the restatement
is valid.
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As a consequence, for the particular case when the three circles lie on a
plane, we will get the following problem:

Problem 4.1. Let us take in the plane the intersecting circles k1, k2, and
k3 such that k1 ∩ k2 = {A,D}, k2 ∩ k3 = {B,E}, and k1 ∩ k3 = {C,F}. Let
AD ∩ BE ∩ CF = O. Prove that point O, the Lemoine point for △ABC,
and the Lemoine point for △DEF are collinear (fig. 12).

Figure 12 Figure 13
Using Apollonian sphere, we give an authentic solution to the following

Olympiad problem.
Problem 4.2. (30-th Bulgarian Mathematical Olympiad 1981,

Fourth Round, Second Day, Sixth Problem) Planes α, β, γ, δ are tan-
gent to the circumsphere of a tetrahedron ABCD at points A,B,C,D, re-
spectively. Line p is the intersection of α and β, and line q is the intersection
of γ and δ. Prove that if lines p and CD meet, then lines q and AB lie on a
plane.

Proof. Let Σ denote the circumsphere of ABCD. Let us take △BCD with
interior and exterior angle bisectors of ∠CBD BL1 and BL2, respectively
(see fig. 13). Let point M be the midpoint of L1L2. It is clear that we
have ΣB(M, r = MB = ML1 = ML2). Since by condition, the points
B,C,D ∈ Σ and by construction, ΣB is an Apollonian sphere for △BCD,
then by Theorem 2.3., it follows that ΣB ⊥ Σ. Therefore, M ∈ β. But point
M ∈ CD, and CD ∩ β at a single point ⇒ as by condition, CD ∩ β ∩α, then

M ∈ α ⇒ A ∈ ΣB
2.1.
==⇒ AC

AD
=

BC

BD
⇔ AC

BC
=

AD

BD
= ζ.

If ζ = 1, γ ∥ AB, and δ ∥ AB, meaning that q ∥ AB, and so q and AB lie
on a plane.
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If ζ ̸= 1, by Theorem 2.1., point C lies on the Apollonian sphere for △BAD
with a ratio DA

DB , ΣD. Let us take △BAD with interior and exterior angle
bisectors of ∠BDA DJ1 and DJ2, respectively. Let point N be the midpoint
of J1J2. It is clear that ΣD(N, r = ND = NJ1 = NJ2). By Theorem 2.3.,
ΣD ⊥ Σ ⇒ N ∈ δ, and N ∈ γ ⇒ N ∈ (δ ∩ γ) ≡ q ⇒ N ∈ q. But by
construction, N ∈ AB ⇒ AB ∩ q = N ⇒ AB and q lie on a plane.

Note: This tetrahedron is the 3D equivalent of the harmonic quadrilateral,
(Boev 2010, pp. 76 – 87), due to its distinctive connection between tangency
and metric relation, and so we can call it a harmonic tetrahedron.

5. Conclusion
As we see, the Apollonian sphere is the equivalent of the Apollonian circle

in 3D space due to the similarity of their definitions and some of their proper-
ties, namely orthogonality and coaxiality. Additionally, we find a stereomet-
ric parallel of the connection between the Apollonian circle and the notable
points of the triangle. We examine the intersecting planes of the Apollonian
spheres with a sphere through the given triangle, which helps us establish
the connection between the Apollonian sphere, the Lemoine point, and the
circumcenter of the triangle. The planes intersect at a line, q, that we prove
is polar and thus, perpendicular to the central axis of the spheres, and its
orthogonal projection coincides with the Brocard axis.

The Apollonian sphere holds significant applicability in solid geometry.
Using it, we prove the two newly discovered notable properties of stereo-
graphic projection illustrated in Section 3. We prove collinearity between the
two centers of corresponding Apollonian circles or two Lemoine points with
the projection center. We note that under stereographic projection the two
Lemoine points and the two centers of corresponding Apollonian circles are
not image and preimage. That is why we call their properties notable. In the
proof of the given stereometric construction, we use the Apollonian sphere
both to prove that its common circle with the reference sphere projects onto
the second Apollonian circle (in Theorem 3.1 and 3.2) and to prove that
the center of the first Apollonian circle is the pole of the plane through the
common circle between the Apollonian sphere and the reference sphere with
respect to the reference sphere (in Theorem 3.1).

We establish the connection of these new geometric constructions with
Olympiad geometry, as seen in Section 4. First, we reformulate the two
theorems from Section 3 such that we include the particular case when the
configuration is planimetric, which we separate as an Olympiad problem.
Second, we apply the Apollonian sphere to another Olympiad problem, which
gives us an authentic proof of it.

Consequently, in this paper, we managed to: define the concept Apollonian
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sphere (Theorem 2.1), discover and prove its properties (Theorems 2.2, 2.3,
and 2.4), find the geometric configurations around the two notable properties
of stereographic projection, (Theorems 3.1 and 3.2), prove them via an Apol-
lonian sphere, formulate an Olympiad problem derived from those properties
(Problem 4.1), and an original solution to another Olympiad problem via an
Apollonian sphere (Problem 4.2).

In conclusion, we define a new concept, and after revealing its properties,
we show its significance in geometry through the revelation of new configura-
tions. We also formulate an Olympiad problem and solve another one using
the newly discovered concepts. The aforementioned configurations would also
be crucial both for the development of Olympiad geometry and for stimulating
others to develop further on the topic.
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NOTES
1. All statements in this paper refer to the Euclidean three-dimensional

space unless otherwise stated.
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