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1. Introduction 
Let 𝑓𝑓(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) = 𝑎𝑎𝑥𝑥𝑛𝑛𝑘𝑘 + 𝑎𝑎𝑥𝑥𝑛𝑛−1𝑘𝑘 + 𝑎𝑎𝑥𝑥𝑛𝑛−2𝑘𝑘 + 𝑏𝑏, where 𝑎𝑎, 𝑏𝑏 > 0 and 𝑘𝑘 ∈

ℕ. In this paper we study the local stability of equilibriums, the global stability 
character, the periodic behavior and the boundedness of solutions of polynomial 
third-order difference equation of type 

𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛−2 𝑓𝑓(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2)                                                      (1) 
with initial conditions 𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0 in the first octant. So our results will be more 
special, as well as more precise and hence easy to be applied. In our research of 
dynamics of (1) we develop a new method of proofs and omit the well-known 
theory of monotone maps (specially developed for planar maps applied to 
polynomial maps), and in particular competitive and cooperative maps, which 
guarantee the existence and uniqueness of the stable and unstable manifolds for the 
fixed and periodic points (Kulenović & Merino 2010). Furthermore, the difference 
equation (1) has infinitely many period-three solutions and we expose the explicit 
form of the surface that separates the first octant into two basins of attraction of a 
locally stable zero equilibrium and the point at infinity. The most investigated types 
of difference equations are polynomial difference equations and polynomial maps 
in the plane ℝ𝟐𝟐. Also, it is very important to mention that the polynomial difference 
equations with simple form but rich dynamic were observed in the complex domain 
(Milnor 2000; Morosawa et al. 2000).  
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The basins of attraction may have very complicated structures even for very 
simple-looking maps (the chaotic maps may have Cantor sets as a basin of 
attraction, (Kulenović & Merino 2002)). The first results on polynomial difference 
equations, based on elementary proofs, we can find in (Amleh et al. Part I 2008) 
and (Amleh et al. Part II 2008). More precisely, all obtained results described only 
a part (box) of the basins of attraction of equilibrium(s) and period-two solutions. 
The theory of monotone maps (cooperative and competitive maps) was developed 
(Brett & Kulenović 2009), (Kulenović & Merino 2010), which provided the 
existence and uniqueness of the stable, unstable, and central manifolds (one-
dimensional curve) for the equilibrium(s) and periodic points. All their results can 
be extended and generalized.  

From theorems proved in (Brett & Kulenović 2009), (Kulenović & Merino 
2010), applied on polynomial maps, follow the results of general second-order 
polynomial difference equations (Bektešević et al. 2014). All the solutions from the 
described in (Bektešević et al. 2014) regions of initial conditions (basins of 
attractions) in the first quadrant tend to equilibrium points, period-two solutions or 
at infinity, except for the case of infinitely many period-two solutions. In 
(Bektešević et al. 2018), the case of infinitely many period-two solutions is 
completely investigated and the corresponding difference equation is a special case 
of the equation 

𝑥𝑥𝑛𝑛+1 = 𝑎𝑎𝑥𝑥𝑛𝑛 𝑥𝑥𝑛𝑛−1 + 𝑎𝑎𝑥𝑥𝑛𝑛−12 + 𝑏𝑏𝑥𝑥𝑛𝑛−1. 
Further (Bektešević et al. 2021) we have extended and improved our research 

to the difference equation 
𝑥𝑥𝑛𝑛+1 = 𝑎𝑎𝑥𝑥𝑛𝑛𝑚𝑚 𝑥𝑥𝑛𝑛−1 + 𝑎𝑎𝑥𝑥𝑛𝑛−1𝑚𝑚+1 + 𝑏𝑏𝑥𝑥𝑛𝑛−1 

for 𝑚𝑚 > 1. Since the difference equation 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛−1𝑚𝑚+1 𝑥𝑥𝑛𝑛𝑚𝑚 can be solved explicitly 
(Elaydi 2005), in (Bektešević et al. 2022) we have considered the difference 
equation of type 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛−1𝑃𝑃(𝑥𝑥𝑛𝑛−1)𝑃𝑃(𝑥𝑥𝑛𝑛), 
where 𝑃𝑃(0) > 0 and 𝑃𝑃(𝑥𝑥) is polynomial with nonnegative coefficients and initial 
conditions 𝑥𝑥−1 and 𝑥𝑥0 are arbitrary nonnegative numbers. This difference equation 
represents an example of a difference equation for which the boundary of the region 
of initial conditions when all solutions tend to infinity can be found explicitly and 
represent a planar curve. 

In the planar case, all definitions of stability of equilibrium points and the main 
result for studying local stability of equilibrium(s) can be found in (Kulenović & 
Ladas 2001). The special case of rational difference equation, with linear terms in 
numerator and denominator, investigated by (Kulenović & Ladas 2001) is a 
polynomial difference equation that can be solved exactly. The monograph 
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(Kulenović & Ladas 2001) includes well-known difference equations such as 
Riccati difference equations (forbidden set problem), Pielou’s discrete delay 
logistic model, Lyness’s equation, and also contains a large number of open 
problems and conjectures. (Camouzis & Ladas 2008) is represented by the          
third-order rational difference equation with linear terms in numerator and 
denominator with nonnegative parameters and initial conditions. The book                         
(Kulenović & Ladas 2001) contains the basic results for the development of theory 
difference equations of order greater than two. All definitions of stability and 
known results for linearized stability analysis and global dynamics are obtained 
from (Agarwal 1992), (Alligood et al. 1997), (Devaney 1992), (Elaydi 2000),           
(Elaydi 2005), (Guckenheimer & Holmes 1983), (Hale & Kocak 1991).  

We first list some results needed for the proofs of our theorems.  
Suppose that the function 𝐹𝐹= 𝐹𝐹(𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑘𝑘) is continuously differentiable in 

some open neighborhood of an equilibrium point 𝑥̅𝑥. Denote by 𝑞𝑞𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖

( 𝑥̅𝑥, 𝑥̅𝑥,𝑥𝑥  ̅), 
𝑖𝑖 = 0,1, … ,𝑘𝑘, the partial derivative of 𝐹𝐹 with respect to 𝑢𝑢𝑖𝑖 , evaluated at the point 
𝑥̅𝑥 of the difference equation of order 𝑘𝑘 + 1  

𝑥𝑥𝑛𝑛+1 = 𝐹𝐹(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1, … , 𝑥𝑥𝑛𝑛−𝑘𝑘), 𝑛𝑛 = 0,1, …                                  (2) 
Then the equation  

𝑦𝑦𝑛𝑛+1 = 𝑞𝑞0𝑦𝑦𝑛𝑛 + 𝑞𝑞1𝑦𝑦𝑛𝑛−1 + ⋯+ 𝑞𝑞𝑘𝑘𝑦𝑦𝑛𝑛−𝑘𝑘, 𝑛𝑛 = 0,1, …                          (3) 
is called the linearized equation of (2) around the equilibrium point 𝑥̅𝑥, and the 
equation 

𝜆𝜆𝑘𝑘+1 − 𝑞𝑞0𝜆𝜆𝑘𝑘 − ⋯− 𝑞𝑞𝑘𝑘−1𝜆𝜆 − 𝑞𝑞𝑘𝑘 = 0                                          (4) 
is called the characteristic equation of (3).  

The following, known as Linearized Stability Theorem, is very useful in 
determining the local stability character of the equilibrium point 𝑥̅𝑥 of (2).  

Theorem 1.2.1 (see Camouzis & Ladas 2008): Assume that the function 𝐹𝐹 is 
a continuously differentiable function defined on some open neighborhood of an 
equilibrium point 𝑥̅𝑥. Then the following statements are true: 

a. If all the roots of (4) have an absolute value less than one, then the 
equilibrium point 𝑥̅𝑥 of (2) is locally asymptotically stable. 
b.  If at least one root of (4) has an absolute value greater than one, then the 
equilibrium point 𝑥̅𝑥 of (2) is unstable. 
If there exists a root of (4) with absolute value equal to one, then the equilibrium 

point 𝑥̅𝑥 is called non-hyperbolic. Otherwise, the equilibrium point 𝑥̅𝑥 of (2) is called 
hyperbolic. 

The next theorem gives a sufficient condition for all roots of an equation to lie 
inside a unit disk.  
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Theorem 1.2.5 (see Camouzis & Ladas 2008): If 𝑞𝑞0,𝑞𝑞1, … , 𝑞𝑞𝑘𝑘 are the real 
numbers such that |𝑞𝑞0| + |𝑞𝑞1| + ⋯+ |𝑞𝑞𝑘𝑘| < 1 then all roots of (4) lie inside the 
unit disk. 

The next theorem is known as the comparison result. It is very useful to establish 
bounds for the solutions of nonlinear equations in terms of the solutions of 
equations with known behavior. 

Theorem 1.4.1 (see Camouzis & Ladas 2008): Let 𝐼𝐼 be a real interval, let 𝑘𝑘 be 
a positive integer, and let 𝐹𝐹:  𝐼𝐼𝑘𝑘+1 → 𝐼𝐼 be an increasing in all its arguments function. 
Assume that the real sequences {𝑥𝑥𝑛𝑛}𝑛𝑛=−𝑘𝑘∞ , {𝑦𝑦𝑛𝑛}𝑛𝑛=−𝑘𝑘∞  and {𝑧𝑧}𝑛𝑛=−𝑘𝑘∞  are such that 
𝑥𝑥𝑛𝑛 ≤ 𝑦𝑦𝑛𝑛 ≤ 𝑧𝑧𝑛𝑛 for all −𝑘𝑘 ≤ 𝑛𝑛 ≤ 0 , and satisfiy the inequalities or 

𝑥𝑥𝑛𝑛+1 ≤ 𝐹𝐹(𝑥𝑥𝑛𝑛, … , 𝑥𝑥𝑛𝑛−𝑘𝑘),𝑦𝑦𝑛𝑛+1 = 𝐹𝐹(𝑦𝑦𝑛𝑛, … ,𝑦𝑦𝑛𝑛−𝑘𝑘), 𝑧𝑧𝑛𝑛+1 ≥ 𝐹𝐹(𝑧𝑧𝑛𝑛, … , 𝑧𝑧𝑛𝑛−𝑘𝑘). 
for each 𝑛𝑛 = 0,1, … Then 𝑥𝑥𝑛𝑛 ≤ 𝑦𝑦𝑛𝑛 ≤ 𝑧𝑧𝑛𝑛 for all 𝑛𝑛 > 0. 

2. Equilibrium points 
Proposition 1: Equation (1) always has the zero equilibrium and an unique 

positive equilibrium iff 𝑏𝑏 ∈ (0,1). 
Proof: Fixed points of (1) are the nonnegative solutions of the equation 

𝑥̅𝑥(3𝑎𝑎𝑥̅𝑥𝑘𝑘 + 𝑏𝑏 − 1) = 0, 
so, (1) always has zero equilibrium. Clearly, (1) has an unique positive equilibrium 
𝑥̅𝑥+ iff 

3𝑎𝑎𝑥̅𝑥𝑘𝑘 = 1 − 𝑏𝑏 > 0 . 

3. Analysis of local stability 
Set 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑧𝑧𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧), where 𝑓𝑓 is given by (1). Then 𝐹𝐹 is continuously 

differentiable, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑧𝑧 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑘𝑘−1, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝑧𝑧 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑘𝑘−1, 

and 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑧𝑧 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑎𝑎𝑎𝑎𝑧𝑧𝑘𝑘. 

Let 𝑥̅𝑥 be an equilibrium of (1) and  

𝑞𝑞1(𝑥̅𝑥) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 (𝑥̅𝑥 , 𝑥̅𝑥 , 𝑥̅𝑥 ) = 𝑎𝑎𝑎𝑎𝑥̅𝑥𝑘𝑘 ,𝑞𝑞2(𝑥̅𝑥) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 (𝑥̅𝑥 , 𝑥̅𝑥 , 𝑥̅𝑥 ) = 𝑎𝑎𝑎𝑎𝑥̅𝑥𝑘𝑘 , 

𝑞𝑞3(𝑥̅𝑥) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 (𝑥̅𝑥 , 𝑥̅𝑥 , 𝑥̅𝑥 ) = 𝑎𝑎(𝑘𝑘 + 3)𝑥̅𝑥𝑘𝑘 + 𝑏𝑏 

denote partial derivatives of the function 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) evaluated in (𝑥̅𝑥 , 𝑥̅𝑥 , 𝑥̅𝑥 ). Then 
the equation 

𝑦𝑦𝑛𝑛+1 = 𝑞𝑞1𝑦𝑦𝑛𝑛 + 𝑞𝑞2𝑦𝑦𝑛𝑛−1 + 𝑞𝑞3𝑦𝑦𝑛𝑛−2,   𝑛𝑛 ∈ ℕ0 
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is called the linearized equation of (1) and the equation 
𝜆𝜆3 −  𝑞𝑞1𝜆𝜆2 − 𝑞𝑞2𝜆𝜆 − 𝑞𝑞3 = 0        (5) 

is the corresponding characteristic equation. 
Proposition 2: The zero equilibrium of (1) is one of the following: 
a) locally asymptotically stable if 𝑏𝑏 ∈ (0,1); 
b) nonhyperbolic and locally stable if 𝑏𝑏 = 1; 
c) unstable if 𝑏𝑏 > 1. 
Proof: For zero equilibrium 𝑥̅𝑥 = 0 of (1) we have: 

𝑞𝑞1(0) = 0, 𝑞𝑞2(0) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞3(0) = 𝑏𝑏. 
a) Since |𝑞𝑞1| + |𝑞𝑞2| + |𝑞𝑞3| = 𝑏𝑏 < 1, by applying Theorem 1.2.5, we deduce 

that all roots of the characteristic equation lie inside the unit disk, so in a view of 
Theorem 1.2.1 the zero equilibrium is locally asymptotically stable. 

b) If 𝑏𝑏 = 1, then characteristic equation (5) associated with zero equilibrium 
is 𝜆𝜆3 = 1. The statement of proposition follows from Theorem 1.2.1. 

c)  If 𝑏𝑏 > 1, then characteristic equation (5) associated with zero equilibrium 
is 𝜆𝜆3 = 𝑏𝑏, where 𝜆𝜆 = √𝑏𝑏3 > 1. The statement of proposition follows from    
Theorem 1.2.1. 

Proposition 3: If 𝑏𝑏 ∈ (0,1), then the positive equilibrium of (1) is unstable and 
nonhyperbolic. 

Proof: For positive equilibrium of (1) we have 3𝑎𝑎𝑥̅𝑥𝑘𝑘 = 1 − 𝑏𝑏 and  

𝑞𝑞1(𝑥̅𝑥) = 𝑘𝑘(1 − 𝑏𝑏)
3 > 0, 𝑞𝑞2(𝑥̅𝑥) = 𝑘𝑘(1 − 𝑏𝑏)

3 > 0, 

𝑞𝑞3(𝑥̅𝑥) =
(𝑘𝑘 + 3)(1 − 𝑏𝑏)

3 + 𝑏𝑏 > 1. 
In this case, characteristic equation (5) can be written  

(𝑎𝑎𝑎𝑎 𝜆𝜆2 + 𝜆𝜆 + 1) (𝜆𝜆 − 𝑘𝑘(1−𝑏𝑏)+3
3 ) = 0  

and it has exactly one positive root 𝜆𝜆1 = 1 + 𝑘𝑘(1−𝑏𝑏)
3 > 1 and two complex roots 

𝜆𝜆2,3 such that |𝜆𝜆2,3| = 1. Now, the statement of proposition is a consequence of 
Theorem 1.2.1. 

Proposition 4: If 𝑏𝑏 > 1, then every solution of (1) tends to infinity. 
Proof: Every solution {𝑥𝑥𝑛𝑛} of (1) satisfies the inequality 

𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛−2 𝑓𝑓(𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) ≥ 𝑏𝑏𝑥𝑥𝑛𝑛−2 
which is because the comparison result from Theorem 1.4.1 implies that 𝑥𝑥𝑛𝑛 ≥ 𝑦𝑦𝑛𝑛 , 
where 𝑦𝑦𝑛𝑛 is the solution of 𝑦𝑦𝑛𝑛+1 =  𝑏𝑏𝑦𝑦𝑛𝑛−2. We will find the solution of the last 
difference equation in the form 𝜆𝜆𝑛𝑛, where in general 𝜆𝜆 is a complex number. 
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Substituting this value into 𝑦𝑦𝑛𝑛+1 =  𝑏𝑏𝑦𝑦𝑛𝑛−2 we have the following polynomial cubic 
equation 𝜆𝜆3 =  𝑏𝑏 , or equivalently 

𝜆𝜆3 − (√𝑏𝑏3 )3 = (𝜆𝜆 − √𝑏𝑏3 ) (𝜆𝜆2 + 𝜆𝜆√𝑏𝑏3 + (√𝑏𝑏3 )2) = 0. 
After straightforward calculation we get  

𝜆𝜆1 = √𝑏𝑏3  𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆2,3 = √𝑏𝑏3 −1 ± √3𝑖𝑖
2 . 

Since,  
−1 + √3𝑖𝑖

2 = 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜋𝜋
3 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 2𝜋𝜋

3 , 
then general solution of the diffrence equation is given by  

𝑦𝑦𝑛𝑛 = 𝛼𝛼1(√𝑏𝑏
3 )𝑛𝑛 + 𝛼𝛼2(√𝑏𝑏

3 )𝑛𝑛 (−1 + √3𝑖𝑖
2 )

𝑛𝑛

+ 𝛼𝛼3(√𝑏𝑏
3 )𝑛𝑛 (−1− √3𝑖𝑖

2 )
𝑛𝑛

 

                              
= 𝛼𝛼1(√𝑏𝑏

3 )𝑛𝑛 + 𝛼𝛼2(√𝑏𝑏
3 )𝑛𝑛 (𝑐𝑐𝑐𝑐𝑐𝑐 2𝜋𝜋

3 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 2𝜋𝜋
3 )

𝑛𝑛

+ 𝛼𝛼3(√𝑏𝑏
3 )𝑛𝑛 (𝑐𝑐𝑐𝑐𝑐𝑐 2𝜋𝜋

3 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 2𝜋𝜋
3 )

𝑛𝑛
. 

According to the De Moivre's Theorem, 

𝑦𝑦𝑛𝑛 = 𝛼𝛼1(√𝑏𝑏
3 )𝑛𝑛 + 𝛼𝛼2(√𝑏𝑏

3 )𝑛𝑛 (𝑐𝑐𝑐𝑐𝑐𝑐 2𝑛𝑛𝑛𝑛
3 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 2𝑛𝑛𝑛𝑛

3 )

+ 𝛼𝛼3(√𝑏𝑏
3 )𝑛𝑛 (𝑐𝑐𝑐𝑐𝑐𝑐 2𝑛𝑛𝜋𝜋

3 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 2𝑛𝑛𝑛𝑛
3 ), 

which become 

𝑦𝑦𝑛𝑛 = 𝛼𝛼1(√𝑏𝑏
3 )𝑛𝑛 + (𝛼𝛼2 + 𝛼𝛼3)(√𝑏𝑏3 )𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 2𝑛𝑛𝑛𝑛

3 + 𝑖𝑖(𝛼𝛼2 − 𝛼𝛼3)(√𝑏𝑏3 )𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 2𝑛𝑛𝑛𝑛
3 . 

Finally 

𝑦𝑦𝑛𝑛 = 𝑐𝑐1(√𝑏𝑏
3 )𝑛𝑛 + (√𝑏𝑏3 )𝑛𝑛 (𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐

2𝑛𝑛𝑛𝑛
3 + 𝑐𝑐3𝑠𝑠𝑠𝑠𝑠𝑠

2𝑛𝑛𝑛𝑛
3 ), 

Where 𝑐𝑐1 = 𝛼𝛼1, 𝑐𝑐2 = 𝛼𝛼2 + 𝛼𝛼3,  𝑐𝑐3 = 𝑖𝑖(𝛼𝛼2 − 𝛼𝛼3) ∈ ℝ are such that 𝑦𝑦𝑛𝑛 ≥ 0 for 
all 𝑛𝑛 ∈ ℕ. Hence, 𝑦𝑦𝑛𝑛 → ∞ which implies 𝑥𝑥𝑛𝑛 → ∞.  

4. Periodic solutions of prime period three  
Proposition 5: Equation (1) has infinitely many prime period-three solutions. 

All period-three solutions belong the surface 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 1 except the point 
(𝑥̅𝑥+, 𝑥̅𝑥+, 𝑥̅𝑥+) where 𝑥̅𝑥+ is the positive equilibrium of (1). 

Proof: The period-three solutions 𝜙𝜙,𝜓𝜓,𝜔𝜔 of (1) satisfy the system 
𝜙𝜙 =  𝜙𝜙 𝑓𝑓(𝜔𝜔,𝜓𝜓,𝜙𝜙),𝜓𝜓 =  𝜓𝜓 𝑓𝑓(𝜙𝜙,𝜔𝜔,𝜓𝜓), 𝜔𝜔 =  𝜔𝜔 𝑓𝑓(𝜓𝜓,𝜙𝜙,𝜔𝜔). 
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Since 𝑓𝑓(𝜔𝜔,𝜓𝜓,𝜙𝜙) = 𝑓𝑓(𝜙𝜙,𝜔𝜔,𝜓𝜓) = 𝑓𝑓(𝜓𝜓,𝜙𝜙,𝜔𝜔) and 0 ≤ 𝜙𝜙 < 𝜓𝜓 < 𝜔𝜔, we deduce 
that 𝑓𝑓(𝜙𝜙,𝜔𝜔,𝜓𝜓) = 1. Therefore, every point of the set 𝒮𝒮 = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧): 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
1} ∖ {(𝑥̅𝑥+, 𝑥̅𝑥+, 𝑥̅𝑥+)} is a prime period-three solution of (1). Thus the surface 
𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 1 separates the first octant of the initial condition into two regions and 
ℐ = {(𝑥𝑥 ,𝑦𝑦, 𝑧𝑧) ∈ ℝ3:𝑥𝑥 ≥ 0,𝑦𝑦 ≥ 0, 𝑧𝑧 ≥ 0}. 

5. Main result, Analysis of global stability 
The next our main result describes the global behavior of all solutions of (1). 
Theorem 1: Consider the difference equation (1) with initial conditions 

𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0 ∈ ℐ and 𝑏𝑏 ∈ (0,1). Then (1) has a zero equilibrium and a unique 
positive equilibrium 𝑥̅𝑥+. The surface 𝒮𝒮 separates the set ℐ into two regions: the 
region below the surface 𝒮𝒮 is the basin of attraction of the point 𝐸𝐸0(0,0,0) and the 
region above the surface 𝒮𝒮 is the basin of attraction of the point at infinity and every 
point on 𝒮𝒮 except 𝐸𝐸+(𝑥̅𝑥+, 𝑥̅𝑥+, 𝑥̅𝑥+) is a period-three solution of (1). 

Proof: According to Proposition 1, the equation (1) has zero equilibrium and 

unique positive equilibrium 𝑥̅𝑥+ = √1−𝑏𝑏
3𝑎𝑎

𝑘𝑘
. By applying Proposition 2 we conclude 

that the zero equilibrium is locally asymptotically stable (sink). According to 
Proposition 3, the positive equilibrium 𝑥̅𝑥+ is an unstable nonhyperbolic point. From 
Proposition 5 it follows that the equation (1) has infinitely many prime period-three 
solutions and all of them belong to the set 𝒮𝒮.  

We also clame that the surface 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 1 is a graph of the decreasing 
function 𝑧𝑧 = 𝑧𝑧(𝑥𝑥,𝑦𝑦) in both variables on set ℐ. Indeed, from 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 1 we get 
𝑧𝑧 = √𝑐𝑐 − 𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘𝑘𝑘 , 
where 𝑐𝑐 = 1−𝑏𝑏

3𝑎𝑎  and 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = −𝑘𝑘𝑥𝑥𝑘𝑘−1

𝑘𝑘 √(𝑐𝑐−𝑥𝑥𝑘𝑘−𝑦𝑦𝑘𝑘)𝑘𝑘−1
𝑘𝑘 ≤ 0, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = −𝑘𝑘𝑦𝑦𝑘𝑘−1

𝑘𝑘 √(𝑐𝑐−𝑥𝑥𝑘𝑘−𝑦𝑦𝑘𝑘)𝑘𝑘−1
𝑘𝑘 ≤ 0. 

It is easy to see that the function 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is an increasing function in each of 
its arguments 𝑥𝑥,𝑦𝑦, 𝑧𝑧. Now, let {𝑥𝑥𝑛𝑛} be a solution of (1) for initial values 
𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0 ∈ ℐ such that the point (𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) lies below the surface 𝒮𝒮. That 
yields 𝑓𝑓(𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) < 1. One can easily see that 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is a symmetric 
function, and so 

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑓𝑓(𝑦𝑦, 𝑥𝑥, 𝑧𝑧) = 𝑓𝑓(𝑧𝑧,𝑦𝑦, 𝑥𝑥) = 𝑓𝑓(𝑥𝑥, 𝑧𝑧,𝑦𝑦). 
Thus, because of the monotonicity of 𝑓𝑓 in all of its arguments, we get 

𝑥𝑥1 = 𝑥𝑥−2𝑓𝑓(𝑥𝑥0,𝑥𝑥−1,𝑥𝑥−2) = 𝑥𝑥−2𝑓𝑓(𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) < 𝑥𝑥−2, 
𝑥𝑥2 = 𝑥𝑥−1𝑓𝑓(𝑥𝑥1,𝑥𝑥0, 𝑥𝑥−1) < 𝑥𝑥−1𝑓𝑓(𝑥𝑥−2,𝑥𝑥0,𝑥𝑥−1)

= 𝑥𝑥−1𝑓𝑓(𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) < 𝑥𝑥−1, 
𝑥𝑥3 = 𝑥𝑥0𝑓𝑓(𝑥𝑥2,𝑥𝑥1,𝑥𝑥0) < 𝑥𝑥0𝑓𝑓(𝑥𝑥−1,𝑥𝑥−2,𝑥𝑥0) = 𝑥𝑥0𝑓𝑓(𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0)

< 𝑥𝑥0. 
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Therefore, (𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) and (𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3) are two “North-East ordered” points: 
(𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) ≼𝑁𝑁𝑁𝑁 (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3). 

This means that the point (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) also belows to the surface 𝒮𝒮 and hence 
𝑓𝑓(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) < 1. Similarly, one can find that 

𝑥𝑥4 = 𝑥𝑥1𝑓𝑓(𝑥𝑥3,𝑥𝑥2, 𝑥𝑥1) = 𝑥𝑥1𝑓𝑓(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3) < 𝑥𝑥1, 
𝑥𝑥5 = 𝑥𝑥2𝑓𝑓(𝑥𝑥4,𝑥𝑥3, 𝑥𝑥2) < 𝑥𝑥2𝑓𝑓(𝑥𝑥1,𝑥𝑥3, 𝑥𝑥2) = 𝑥𝑥2𝑓𝑓(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3) < 𝑥𝑥2, 
𝑥𝑥6 = 𝑥𝑥3𝑓𝑓(𝑥𝑥5,𝑥𝑥4, 𝑥𝑥3) < 𝑥𝑥3𝑓𝑓(𝑥𝑥2,𝑥𝑥1, 𝑥𝑥3) = 𝑥𝑥3𝑓𝑓(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3) < 𝑥𝑥3. 

Continuing in this way we obtain that 
(0,0,0) ≼𝑁𝑁𝑁𝑁 … ≼𝑁𝑁𝑁𝑁 𝐸𝐸𝑚𝑚 ≼𝑁𝑁𝑁𝑁 … ≼𝑁𝑁𝑁𝑁 𝐸𝐸2 ≼𝑁𝑁𝑁𝑁 𝐸𝐸1 ≼𝑁𝑁𝑁𝑁 𝐸𝐸0, 

where 𝐸𝐸𝑚𝑚(𝑥𝑥−2+3𝑚𝑚,𝑥𝑥−1+3𝑚𝑚,𝑥𝑥3𝑚𝑚) for 𝑚𝑚 ∈ ℕ0. All this leads that those 
subsequences {𝑥𝑥3𝑛𝑛}, {𝑥𝑥3𝑛𝑛+1} and {𝑥𝑥3𝑛𝑛+2} are monotonically decreasing and 
bounded below by zero. Since below the surface 𝒮𝒮 there is no period-three solution, 
we deduce that 𝑥𝑥3𝑛𝑛 → 0, 𝑥𝑥3𝑛𝑛+1 → 0, and 𝑥𝑥3𝑛𝑛+2 → 0.  

On the other hand, suppose that {𝑥𝑥𝑛𝑛} is a solution of (1) with initial values 
𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0 ∈ ℐ, such that the point (𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) lies above the surface 𝒮𝒮. Then 
𝑓𝑓(𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) > 1. In view of the method used above, 

𝐸𝐸0 ≼𝑁𝑁𝑁𝑁 𝐸𝐸1 ≼𝑁𝑁𝑁𝑁 𝐸𝐸2 ≼𝑁𝑁𝑁𝑁 … ≼𝑁𝑁𝑁𝑁 𝐸𝐸𝑚𝑚 ≼𝑁𝑁𝑁𝑁 …, 
where 𝐸𝐸𝑚𝑚(𝑥𝑥−2+3𝑚𝑚,𝑥𝑥−1+3𝑚𝑚,𝑥𝑥3𝑚𝑚), 𝑚𝑚 ∈ ℕ0. Hence, the subsequences {𝑥𝑥3𝑛𝑛}, 

{𝑥𝑥3𝑛𝑛+1}, and {𝑥𝑥3𝑛𝑛+2} of solution {𝑥𝑥𝑛𝑛} of (1) are monotonically increasing and tend 
to the point at infinity.  

Let ℬ(0,0,0), ℬ(𝑥̅𝑥+, 𝑥̅𝑥+, 𝑥̅𝑥+), ℬ(∞) denote the basins of attraction of zero 
equilibrium, positive equilibrium of (1), and the point at infinity, respectively. 
Finally 
ℬ(0,0,0) = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℐ:𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) < 1},ℬ(∞) = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℐ:𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) > 1}, 

ℬ(𝑥̅𝑥+, 𝑥̅𝑥+, 𝑥̅𝑥+) = {(𝑥̅𝑥+, 𝑥̅𝑥+, 𝑥̅𝑥+)}. 
 

In some special cases, we can extend our research to the whole space ℝ3. 
Theorem 2: Consider the difference equation (1) for 𝑘𝑘 = 2, where initial 

conditions (𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) ∈ ℝ3 and 𝑏𝑏 ∈ (0,1). Then (1) has a zero equilibrium, a 
positive equilibrium 𝑥̅𝑥+, and a negative equilibrium 𝑥̅𝑥− = −𝑥̅𝑥+. In this case, the 
surface 𝒮𝒮 is a sphere:  

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1 − 𝑏𝑏
𝑎𝑎  

which separates the set ℝ3 into two regions: the region inside the sphere 𝒮𝒮 is the 
basin of attraction of the point 𝐸𝐸0(0,0,0) and the region outside the sphere 𝒮𝒮 is the 
basin of attraction of the point at infinity. Every point on 𝒮𝒮 except 𝐸𝐸+(𝑥̅𝑥+, 𝑥̅𝑥+, 𝑥̅𝑥+) 
and 𝐸𝐸−(𝑥̅𝑥−, 𝑥̅𝑥−, 𝑥̅𝑥−)  is a period-three solution of (1). 
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Proof: Because of Theorem 1, the equation (1) has a locally asymptotically 

stable zero equilibrium, unstable nonhyperbolic equilibrium 𝑥̅𝑥+ = √1−𝑏𝑏
3𝑎𝑎 , and 

infinitely many the prime period-three solutions that belong to sphere 𝒮𝒮. One can 
show that the negative equilibrium 𝑥̅𝑥− has the same characteristic equation as the 
positive equilibrium 𝑥̅𝑥+. By applying Proposition 3, we prove that the negative 
equilibrium 𝑥̅𝑥− is also an unstable nonhyperbolic point.  

Let 𝐴𝐴0(𝑥𝑥−2,𝑥𝑥−1, 𝑥𝑥0) be the interior point of sphere 𝒮𝒮. Denote by 𝑑𝑑(𝐴𝐴,𝐵𝐵) the 
distance between two points 𝐴𝐴 and 𝐵𝐵. According to Theorem 1, every solution {𝑥𝑥𝑛𝑛} 
tends to the zero equilibrium provided 𝐴𝐴0 ∈ ℐ. Now consider the two sequences of 
the points {𝐴𝐴𝑛𝑛(𝑥𝑥𝑛𝑛−2,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛)} and real numbers {𝜌𝜌𝑛𝑛}, where 𝜌𝜌𝑛𝑛 = 𝑑𝑑(𝐴𝐴𝑛𝑛,  𝐸𝐸0) =
√𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−12 + 𝑥𝑥𝑛𝑛−22 , 𝑛𝑛 ∈ ℕ0. If we assume that point 𝐴𝐴𝑛𝑛 is the interior point of 
sphere 𝒮𝒮, then   

𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−12 + 𝑥𝑥𝑛𝑛−22 < 1−𝑏𝑏
𝑎𝑎   𝑜𝑜𝑜𝑜  𝜌𝜌𝑛𝑛2 < 1−𝑏𝑏

𝑎𝑎 . 
So 

𝜌𝜌𝑛𝑛+12 = 𝑥𝑥𝑛𝑛+12 + 𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−12 , 
and from (1) we find 𝑥𝑥𝑛𝑛+12 , which implies consequently 

𝜌𝜌𝑛𝑛+12 = 𝑥𝑥𝑛𝑛−22 (𝑎𝑎(𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−12 + 𝑥𝑥𝑛𝑛−22 ) + 𝑏𝑏)2 + 𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−12 , 
𝜌𝜌𝑛𝑛+12 = 𝑥𝑥𝑛𝑛−22 (𝑎𝑎𝜌𝜌𝑛𝑛2 + 𝑏𝑏)2 + 𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−12 , 

𝜌𝜌𝑛𝑛+12 < 𝑥𝑥𝑛𝑛−22 (𝑎𝑎 1 − 𝑏𝑏
𝑎𝑎 + 𝑏𝑏)

2
+ 𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−1,

2  

𝜌𝜌𝑛𝑛+12 < 𝑥𝑥𝑛𝑛−22 + 𝑥𝑥𝑛𝑛2 + 𝑥𝑥𝑛𝑛−12 = 𝜌𝜌𝑛𝑛2. 
Hence 𝜌𝜌𝑛𝑛+1 ≤ 𝜌𝜌𝑛𝑛, and the point 𝐴𝐴𝑛𝑛+1 is also an interior point of sphere 𝒮𝒮 closer 

to point 𝐸𝐸0 than 𝐴𝐴𝑛𝑛. By applying mathematical induction with 𝐴𝐴0 being an interior 
point of the sphere 𝒮𝒮, we obtain that all 𝐴𝐴𝑛𝑛 are interior points of 𝒮𝒮 satisfying 

𝜌𝜌0 > 𝜌𝜌1 > ⋯ > 𝜌𝜌𝑛𝑛 > 𝜌𝜌𝑛𝑛+1 > ⋯ ,      (𝜌𝜌𝑘𝑘 = 𝑑𝑑(𝐴𝐴𝑘𝑘 ,𝐸𝐸0)) . 
So the sequence of distances {𝜌𝜌𝑛𝑛} is decreasing, bounded below by zero and 

hence convergent. Since there is no interior period-three solution of (1) in sphere 
𝒮𝒮, the subsequences {|𝑥𝑥3𝑛𝑛| }, {|𝑥𝑥3𝑛𝑛+1| } and {|𝑥𝑥3𝑛𝑛+2| } must approach the zero 
equilibrium.  

The case when 𝐴𝐴0(𝑥𝑥−2,𝑥𝑥−1,𝑥𝑥0) is an outer point of sphere 𝒮𝒮 is similar and will 
be omitted. One can show that 𝜌𝜌𝑛𝑛+1 > 𝜌𝜌𝑛𝑛 > 1−𝑏𝑏

𝑎𝑎  for all 𝑛𝑛 ∈ ℕ0, which means that 
the subsequences {|𝑥𝑥3𝑛𝑛| }, {|𝑥𝑥3𝑛𝑛+1|}, and {|𝑥𝑥3𝑛𝑛+2| } are monotonically increasing. 
Since on the sphere 𝒮𝒮 is no period-three solution or equilibrium point of (1), we 
deduce that {|𝑥𝑥3𝑛𝑛| }, {|𝑥𝑥3𝑛𝑛+1|}, and {|𝑥𝑥3𝑛𝑛+2| } must tend to infinity.                                                                     
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 The figures 1 and 2 are visual illustrations of Theorem 1 for 𝑘𝑘 = 1 and Theorem 2 
for 𝑘𝑘 = 2. 

 

 

 
Figure 1 Figure 2 

 

6. Conclusions 
In general, the polynomial difference equations and their applications are a great 

source of ideas for finding an approximate solution of difference equations at all in 
this dynamic area of research. In the planar (two-dimensional) case, the theory of 
monotonic maps guarantees the existence of unique stable manifold (one-
dimensional increasing/decreasing smooth curve). This manifold passes through 
the positive equilibrium point (saddle point or a nonhyperbolic point) which 
separates the first quadrant of initial conditions into two disjoint regions. By now 
we are not able to find the equation of a stable manifold, but able to find asymptotic 
approximations of this equation. Moreover, bringing the above considered map to 
the normal form around the equilibrium solutions, cosidering the period-two 
solutions and using the method of undetermined coefficients makes possible to 
obtain some local approximations of the considered manifold. In the three-
dimensional case, no theory provides to us with stable and unstable manifolds 
through equilibrium points, so we are forced to develop another method and 
techniques of research to understand the dynamics of third-order polynomial 
difference equations. 

Results in this paper may be used for observation and investigation of difference 
equations of type 

𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛−2 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) ,                                                            (6) 
where 𝑓𝑓(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) = 𝑎𝑎1𝑥𝑥𝑛𝑛𝑘𝑘 + 𝑎𝑎2𝑥𝑥𝑛𝑛−1𝑘𝑘 + 𝑎𝑎3𝑥𝑥𝑛𝑛−2𝑘𝑘 + 𝑏𝑏   with 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑏𝑏 > 0 
and 𝑘𝑘 ∈ ℕ.  



462

Jasmin Bektešević, Vahidin Hadžiabdić, Midhat Mehuljić, Sadjit Metović, Haris Lulić

If 𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎1,𝑎𝑎2,𝑎𝑎3} and 𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎1,𝑎𝑎2,𝑎𝑎3}, then 

𝑓𝑓1(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) ≤  𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) ≤  𝑓𝑓2(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2), 
where 

𝑓𝑓1(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) = 𝑚𝑚𝑥𝑥𝑛𝑛𝑘𝑘 + 𝑚𝑚𝑥𝑥𝑛𝑛−1𝑘𝑘 + 𝑚𝑚𝑥𝑥𝑛𝑛−2𝑘𝑘 + 𝑏𝑏 , 
𝑓𝑓2(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2) = 𝑀𝑀𝑥𝑥𝑛𝑛𝑘𝑘 + 𝑀𝑀𝑥𝑥𝑛𝑛−1𝑘𝑘 + 𝑀𝑀𝑥𝑥𝑛𝑛−2𝑘𝑘 + 𝑏𝑏. 

By applying Theorem 1.4.1 (Comparison result) on difference equations  
𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛−2 𝑓𝑓1(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2), 
𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛−2 𝑓𝑓(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛−2), 
𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛−2 𝑓𝑓2(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2) 

one can find a part of basins of attraction of zero equilibrium and point at infinity 
of (6). If 𝑘𝑘 = 1, surface 𝒮𝒮 from Theorem 1 becomes a real plane in ℝ3. 
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