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Abstract. We study the local dynamics and global character of third-order
polynomial difference in the first octant of initial conditions with infinite number of
prime period-three solutions (three cycles). It is also presented the case when the
observed difference equation may be extended to the whole R3.
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1. Introduction

Let f(Xp, Xp—1,Xpn—2) = axX + axk_, + axk_, + b, where a,b > 0 and k €
N. In this paper we study the local stability of equilibriums, the global stability
character, the periodic behavior and the boundedness of solutions of polynomial

third-order difference equation of type
Xn+1 = Xn—z f (n, Xp—1, Xp—2) €y
with initial conditions x_,, x_1, X, in the first octant. So our results will be more
special, as well as more precise and hence easy to be applied. In our research of
dynamics of (1) we develop a new method of proofs and omit the well-known
theory of monotone maps (specially developed for planar maps applied to
polynomial maps), and in particular competitive and cooperative maps, which
guarantee the existence and uniqueness of the stable and unstable manifolds for the
fixed and periodic points (Kulenovi¢ & Merino 2010). Furthermore, the difference
equation (1) has infinitely many period-three solutions and we expose the explicit
form of the surface that separates the first octant into two basins of attraction of a
locally stable zero equilibrium and the point at infinity. The most investigated types
of difference equations are polynomial difference equations and polynomial maps
in the plane R?. Also, it is very important to mention that the polynomial difference
equations with simple form but rich dynamic were observed in the complex domain

(Milnor 2000; Morosawa et al. 2000).
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The basins of attraction may have very complicated structures even for very
simple-looking maps (the chaotic maps may have Cantor sets as a basin of
attraction, (Kulenovi¢ & Merino 2002)). The first results on polynomial difference
equations, based on elementary proofs, we can find in (Amleh et al. Part I 2008)
and (Amleh et al. Part IT 2008). More precisely, all obtained results described only
a part (box) of the basins of attraction of equilibrium(s) and period-two solutions.
The theory of monotone maps (cooperative and competitive maps) was developed
(Brett & Kulenovi¢ 2009), (Kulenovi¢ & Merino 2010), which provided the
existence and uniqueness of the stable, unstable, and central manifolds (one-
dimensional curve) for the equilibrium(s) and periodic points. All their results can
be extended and generalized.

From theorems proved in (Brett & Kulenovi¢ 2009), (Kulenovi¢ & Merino
2010), applied on polynomial maps, follow the results of general second-order
polynomial difference equations (BekteSevi¢ et al. 2014). All the solutions from the
described in (BekteSevi¢ et al. 2014) regions of initial conditions (basins of
attractions) in the first quadrant tend to equilibrium points, period-two solutions or
at infinity, except for the case of infinitely many period-two solutions. In
(BekteSevi¢ et al. 2018), the case of infinitely many period-two solutions is
completely investigated and the corresponding difference equation is a special case
of the equation

Xpp1 = AXp Xp_1 + ax2_; + bxp_4.

Further (Bektesevi¢ et al. 2021) we have extended and improved our research

to the difference equation

Xn+1 = AXy' Xp-1 + ax’?;n_—l-ll + bxp_q
form > 1. Since the difference equation x,,,; = x7*! xI* can be solved explicitly
(Elaydi 2005), in (BekteSevi¢ et al. 2022) we have considered the difference
equation of type

Xnt1 = Xn-1P (1) P(xp),

where P(0) > 0 and P(x) is polynomial with nonnegative coefficients and initial
conditions x_; and x; are arbitrary nonnegative numbers. This difference equation
represents an example of a difference equation for which the boundary of the region
of initial conditions when all solutions tend to infinity can be found explicitly and
represent a planar curve.

In the planar case, all definitions of stability of equilibrium points and the main
result for studying local stability of equilibrium(s) can be found in (Kulenovi¢ &
Ladas 2001). The special case of rational difference equation, with linear terms in
numerator and denominator, investigated by (Kulenovi¢ & Ladas 2001) is a
polynomial difference equation that can be solved exactly. The monograph
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(Kulenovi¢ & Ladas 2001) includes well-known difference equations such as
Riccati difference equations (forbidden set problem), Piclou’s discrete delay
logistic model, Lyness’s equation, and also contains a large number of open
problems and conjectures. (Camouzis & Ladas 2008) is represented by the
third-order rational difference equation with linear terms in numerator and
denominator with nonnegative parameters and initial conditions. The book
(Kulenovi¢ & Ladas 2001) contains the basic results for the development of theory
difference equations of order greater than two. All definitions of stability and
known results for linearized stability analysis and global dynamics are obtained
from (Agarwal 1992), (Alligood et al. 1997), (Devaney 1992), (Elaydi 2000),
(Elaydi 2005), (Guckenheimer & Holmes 1983), (Hale & Kocak 1991).
We first list some results needed for the proofs of our theorems.

Suppose that the function F =F (ug, U4, ..., Uy ) is continuously differentiable in
some open neighborhood of an equilibrium point X. Denote by q; = % (x,x,x),

i =0,1,..., k, the partial derivative of F with respect to u; , evaluated at the point
x of the difference equation of order k + 1

Xne1 = FO0, Xn_1, o Xn—ic), n=20,1,.. (2)
Then the equation
Yn+1 = QoYn t @1Yn-1+ =+ QYn-r,  n=0,1,.. (3)

is called the linearized equation of (2) around the equilibrium point X, and the
equation

AHL — oA — o — g1 A —qx = 0 4)
is called the characteristic equation of (3).

The following, known as Linearized Stability Theorem, is very useful in
determining the local stability character of the equilibrium point x of (2).

Theorem 1.2.1 (see Camouzis & Ladas 2008): Assume that the function F is
a continuously differentiable function defined on some open neighborhood of an
equilibrium point x. Then the following statements are true:

a. If all the roots of (4) have an absolute value less than one, then the

equilibrium point x of (2) is locally asymptotically stable.

b. If at least one root of (4) has an absolute value greater than one, then the

equilibrium point X of (2) is unstable.

If there exists a root of (4) with absolute value equal to one, then the equilibrium
point X is called non-hyperbolic. Otherwise, the equilibrium point X of (2) is called
hyperbolic.

The next theorem gives a sufficient condition for all roots of an equation to lie
inside a unit disk.
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Theorem 1.2.5 (see Camouzis & Ladas 2008): If qg, q4, ..., i are the real
numbers such that |qg| + |q;| + - + |qx| < 1 then all roots of (4) lie inside the
unit disk.

The next theorem is known as the comparison result. It is very useful to establish
bounds for the solutions of nonlinear equations in terms of the solutions of
equations with known behavior.

Theorem 1.4.1 (see Camouzis & Ladas 2008): Let / be a real interval, let k be
apositive integer, and let F: 1¥*1 - | be an increasing in all its arguments function.
Assume that the real sequences {X,}n-_k, {Vnine—k and{z},-_j are such that
Xn < Y < zy forall —k < n < 0, and satisfiy the inequalities or

Xn+1 = F(xnr ---!xn—k)' Ynt1 = F(Yn: ---IYn—k)' Zn+1 = F(an ---;Zn—k)-
foreachn = 0,1, ... Thenx,, <y, < z, foralln > 0.

2. Equilibrium points
Proposition 1: Equation (1) always has the zero equilibrium and an unique
positive equilibrium iff b € (0,1).
Proof: Fixed points of (1) are the nonnegative solutions of the equation
x(3ax*+b—-1) =0,
s0, (1) always has zero equilibrium. Clearly, (1) has an unique positive equilibrium
X, iff
3ax¥=1-b>0.

3. Analysis of local stability
Set F(x,y,z) = zf (x,y,z), where f is given by (1). Then F is continuously
differentiable,

oF _ 9f _ k-1 9F _ Oof _ k-1
ax—zax—akzx ’ay_Zay_aka ,
and
oF N of b aks
az—f(x,y,z) zaz—f(x,y,z) akz".
Let X be an equilibrium of (1) and
(B = 5 (%,%,%) = ak,0,(0) = 3. _(¢,%, ) = ake*
0 (%) = (%,%,%) = akx", ¢ (% =% X,%X,x) = akx",

. OF _ _ _ _
Cls(x)=g(x,x,x)=a(k+3)xk+b

denote partial derivatives of the function F(x,y, z) evaluated in (X ,X,X ). Then
the equation

Yn+1 = Q1Yn + 2Yn-1 + q3Yn—2 NEN,

455



Jasmin Bektesevi¢, Vahidin Hadziabdi¢, Midhat Mehuljic, Sadjit Metovi¢, Haris Luli¢

is called the linearized equation of (1) and the equation
B =2 =ql=q3=0 ©)
is the corresponding characteristic equation.

Proposition 2: The zero equilibrium of (1) is one of the following:

a) locally asymptotically stable if b € (0,1);

b) nonhyperbolic and locally stable if b = 1;

¢) unstableif b > 1.

Proof: For zero equilibrium X = 0 of (1) we have:

q1(0) = 0,92(0) = 0 and q3(0) = b.

a) Since |q;| + 92| + |q3] = b < 1, by applying Theorem 1.2.5, we deduce
that all roots of the characteristic equation lie inside the unit disk, so in a view of
Theorem 1.2.1 the zero equilibrium is locally asymptotically stable.

b) If b =1, then characteristic equation (5) associated with zero equilibrium
is A3 = 1. The statement of proposition follows from Theorem 1.2.1.

c) If b > 1, then characteristic equation (5) associated with zero equilibrium
is 23 =b, where 1 =3/b>1. The statement of proposition follows from
Theorem 1.2.1.

Proposition 3: If b € (0,1), then the positive equilibrium of (1) is unstable and
nonhyperbolic.

Proof: For positive equilibrium of (1) we have 3ax* = 1 — b and
k(1-b) . k(-b)

— >0 ®=—7F—>0
In this case, characteristic equation (5) can be written

(as22+2+1)(A-222) =
k(1-b)

g1 (x) =

and it has exactly one positive root 4y =1 + > 1 and two complex roots

Ay 3 such that |/12,3| = 1. Now, the statement of proposition is a consequence of
Theorem 1.2.1.

Proposition 4: If b > 1, then every solution of (1) tends to infinity.

Proof: Every solution {x,,} of (1) satisfies the inequality

Xn+1 = Xn—2 [ (n, Xn—1,Xn—2) = bxy_

which is because the comparison result from Theorem 1.4.1 implies that x,, > vy, ,
where y, is the solution of y,,; = by,_,. We will find the solution of the last
difference equation in the form A", where in general 4 is a complex number.
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Substituting this value into y,, .1 = by, _, we have the following polynomial cubic
equation A2 = b, or equivalently

2~ ()" = (A=) (2 +2¥b + (¥B) ) =

After straightforward calculation we get

-1++3i
Al = %and }{2,3 == %T
Since,
—1++/3i 2 2m
_— = cos? + lsm?,

then general solution of the diffrence equation is given by

v = @ (YB)" + ay(VB)" ( 1*“) + as(YB)" ( 1= ‘“)

—0(1(\/_) +a2(\/_) (cos—+15m2—n>

3
2m
+ a3(\/_) (cos— - lsm?) .
According to the De Moivre's Theorem,

—0(1(\/_) +0(2(\/_) (cos—n+lsm2nTﬂ)

2nm 2nm
+ a3(\/_) (cos— - LsinT),
which become
2nm
= 0(1(\/_) + (a, + a3)(\/_) cos—+ i(a, — a3)(\/_) sm—
F1nally
2nm 2nm
Vp = cl(%)n + (?\’/E)n (CZCOST + c3sin T)'
Where ¢; = @4, ¢; = a; + a3z, c3 = i(a; — a3) € R are such that y,, > 0 for
all n € N. Hence, y,, = oo which implies x,, — oo.

4. Periodic solutions of prime period three

Proposition 5: Equation (1) has infinitely many prime period-three solutions.
All period-three solutions belong the surface f(x,y,z) =1 except the point
(x4, X4, X, ) where X, is the positive equilibrium of (1).

Proof: The period-three solutions ¢, 1, w of (1) satisfy the system

¢=¢fwyd)y=9Yflowi) o= wfldw).
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Since f(w, ¥, p) = f(p, w,Y) = f(Y,p,w) and 0 < ¢ < Y < w, we deduce
that f (¢, w,) = 1. Therefore, every point of the set S = {(x,y,2): f(x,y,2) =
1}\ {(x,,x;,x,)} is a prime period-three solution of (1). Thus the surface
f(x,y,z) = 1 separates the first octant of the initial condition into two regions and
J={(x,y,z) ER%x >0,y >0,z>0}.

5. Main result, Analysis of global stability

The next our main result describes the global behavior of all solutions of (1).

Theorem 1: Consider the difference equation (1) with initial conditions
X_2,X_1,%X9 €J and b € (0,1). Then (1) has a zero equilibrium and a unique
positive equilibrium X,. The surface S separates the set J into two regions: the
region below the surface S is the basin of attraction of the point E;(0,0,0) and the
region above the surface S is the basin of attraction of the point at infinity and every
point on § except E, (X, X, X, ) is a period-three solution of (1).

Proof: According to Proposition 1, the equation (1) has zero equilibrium and

unique positive equilibrium X, = k’ %. By applying Proposition 2 we conclude

that the zero equilibrium is locally asymptotically stable (sink). According to
Proposition 3, the positive equilibrium X, is an unstable nonhyperbolic point. From
Proposition 5 it follows that the equation (1) has infinitely many prime period-three
solutions and all of them belong to the set S.

We also clame that the surface f(x,y,z) =1 is a graph of the decreasing
function z = z(x, y) in both variables on set J. Indeed, from f(x,y,z) = 1 we get

k
z=4/c—xk—yk
—kxk-1 0z —kyk-1

wherec=1;bandz=k—so, — =<0
3a 0x K ,(c—xk—yk)k_l dy K ’(c—xk—yk)k_l
It is easy to see that the function f(x,y, z) is an increasing function in each of
its arguments x,y,z. Now, let {x,} be a solution of (1) for initial values
X_3,%X_1,Xo € J such that the point (x_,,x_q,xy) lies below the surface §. That
yields f(x_,,x_1,%9) < 1. One can easily see that f(x,y,z) is a symmetric
function, and so
fCoy,2)=f(y,x2) =f(z,y,x)=f(xz2Y).
Thus, because of the monotonicity of f in all of its arguments, we get
x1 = X_of (X0, X_1,X_2) = x_5f (x_3,%_1,%0) < X_3,
Xy = x_1f (1, %0, %-1) < x_1f(x_2,%0,%-1)
=x_1f(Xx_2,x_1,%) < x_q,
x3 = xof (x2,%1,%0) < Xof (X-1,%_2,%0) = Xof (¥-2,%-1,%0)
< X,.
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Therefore, (x_,,x_1, %) and (x4, x5, x3) are two “North-East ordered” points:
(x—2,%-1,%0) Sng (X1, %2, X3).
This means that the point (x;, x5, X3) also belows to the surface § and hence
f(xq,x5,x3) < 1. Similarly, one can find that
xq = x1f (X3,%2,%1) = x1f (%1, %2, %3) < x1,
x5 = X f (X4, %3, %) < Xpf (X1, %3,%2) = %2 f (%1, %2, %3) < X,
xe = x3f (x5, %4, x3) < X3 (%2, %1, %3) = x3f (21, %2, %3) < x3.
Continuing in this way we obtain that
(0,0,0) <NE <NE Em <NE <NE Ez <NE E1 %NE EO,

where E,(X_243m» X_143m,X3m) for m € Ny. All this leads that those
subsequences {x3,}, {x3n+1} and {x3,4,} are monotonically decreasing and
bounded below by zero. Since below the surface S there is no period-three solution,
we deduce that x5, = 0, x3,41 = 0, and x3,,,, = 0.

On the other hand, suppose that {x,} is a solution of (1) with initial values
X_2,X_1,Xo € J, such that the point (x_,,x_q,Xy) lies above the surface S. Then
f(x_y,%x_1,%9) > 1. In view of the method used above,

Eo <y E1 <ng E2 SNg - SNE Em SNE 0

where Ep, (X_43m» X—1+3m» X3m)>, M € Ny. Hence, the subsequences {x3,},
{x37+1}, and {x3,,4,} of solution {x,,} of (1) are monotonically increasing and tend
to the point at infinity.

Let B(0,0,0), B(x,,x,,%,), B(c0) denote the basins of attraction of zero
equilibrium, positive equilibrium of (1), and the point at infinity, respectively.
Finally
B(0,0,0) ={(x,y,2) € J:f(x,y,2) <1}, B(e0) = {(x,¥,2) € I: f(x,y,2) > 1},

B(xy, Xy, %4) = {(Xy, Xy, %)}

In some special cases, we can extend our research to the whole space R3.

Theorem 2: Consider the difference equation (1) for k = 2, where initial
conditions (x_,,%_1,%,) € R3 and b € (0,1). Then (1) has a zero equilibrium, a
positive equilibrium X, and a negative equilibrium x_ = —X,. In this case, the
surface S is a sphere:

x2+y?+z%= #

which separates the set R into two regions: the region inside the sphere S is the
basin of attraction of the point E;(0,0,0) and the region outside the sphere S is the
basin of attraction of the point at infinity. Every point on § except E, (X, X,,%,)
and E_(x_,X_,x_) is a period-three solution of (1).
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Proof: Because of Theorem 1, the equation (1) has a locally asymptotically

stable zero equilibrium, unstable nonhyperbolic equilibrium X, = ’%, and

infinitely many the prime period-three solutions that belong to sphere S. One can
show that the negative equilibrium x_ has the same characteristic equation as the
positive equilibrium X,. By applying Proposition 3, we prove that the negative
equilibrium x_ is also an unstable nonhyperbolic point.

Let Ag(x_,,x_1,x0) be the interior point of sphere §. Denote by d(4, B) the
distance between two points A and B. According to Theorem 1, every solution {x,, }
tends to the zero equilibrium provided A, € J. Now consider the two sequences of
the points {4, (X,—2, Xn—1, X,)} and real numbers {p,,}, where p,, = d(4,, Ey) =

\/ x2+x%_; +x2_,, n € Ny. If we assume that point 4, is the interior point of

sphere S, then
X2+ x2_ +xi, < % or pi < ?.
So
Pha1 = Xhpq + X5 + X5y,
and from (1) we find x2, ;, which implies consequently
Phe1 = x?lZ—Z(a(xELZ-I_ xrzl—% + xTZLZ—Z) +2b)2 -;xrzl + X751,

Prs1 = Xp_2(apy +b)* + x5+ x5_4,
1-b N
+ b) + x5+ X5-1,

P < Xj_ (a
Phi1 < Xj_p +Xh + X%y = ph.

Hence p,,+1 < pn, and the point 4,,,4 1s also an interior point of sphere S closer
to point E, than A,,. By applying mathematical induction with A, being an interior
point of the sphere §, we obtain that all 4,, are interior points of S satisfying

Po> Py > >pp > pppr >, (o = d(Ay, Ep)) -

So the sequence of distances {p,,} is decreasing, bounded below by zero and
hence convergent. Since there is no interior period-three solution of (1) in sphere
S, the subsequences {|x3,|}, {|x3n41]} and {|x3,42| } must approach the zero
equilibrium.

The case when Ay (x_5, X_1, Xo) is an outer point of sphere § is similar and will
be omitted. One can show that p,, .1 > p, > % for all n € Ny, which means that

the subsequences {|x3,| }, {|X3n4+11}, and {|x3,42| } are monotonically increasing.
Since on the sphere § is no period-three solution or equilibrium point of (1), we
deduce that {|x3,|}, {lx3ns+1l}, and {|x3p42]} must tend to infinity.
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The figures 1 and 2 are visual illustrations of Theorem 1 for k = 1 and Theorem 2
for k = 2.

k=1
alw+y+z)=1-b

B(oc) Sphere S

B(Ey)

Figure 1 Figure 2

6. Conclusions

In general, the polynomial difference equations and their applications are a great
source of ideas for finding an approximate solution of difference equations at all in
this dynamic area of research. In the planar (two-dimensional) case, the theory of
monotonic maps guarantees the existence of unique stable manifold (one-
dimensional increasing/decreasing smooth curve). This manifold passes through
the positive equilibrium point (saddle point or a nonhyperbolic point) which
separates the first quadrant of initial conditions into two disjoint regions. By now
we are not able to find the equation of a stable manifold, but able to find asymptotic
approximations of this equation. Moreover, bringing the above considered map to
the normal form around the equilibrium solutions, cosidering the period-two
solutions and using the method of undetermined coefficients makes possible to
obtain some local approximations of the considered manifold. In the three-
dimensional case, no theory provides to us with stable and unstable manifolds
through equilibrium points, so we are forced to develop another method and
techniques of research to understand the dynamics of third-order polynomial
difference equations.

Results in this paper may be used for observation and investigation of difference
equations of type

Xns1 = Xn—g [, Xn_1,Xn_2) , (6)

where f(xp, Xp_1,Xpn—2) = @1 xK + a,x¥_; + azxk_, + b with a;,a,,a3,b >0
and k € N.
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If m = min{a,, a,, as} and M = max{a,, a,, as}, then

1O Xn—1,Xn-2) < fOn Xn—1,Xn-2) < f2(%n, Xn_1, Xn—2),
where

fir(tn, X1, Xn—p) = mxf +mxf_y +mxy_, +b,
fo (X Xn—1,Xn—2) = Mxfi + Mxj_y + Mx)_, + b.

By applying Theorem 1.4.1 (Comparison result) on difference equations
Xn41 = Xn—z f1(Xn, Xn_1, Xn_2),
Xn+1 = Xn-z [ (Xns Xn_1,Xn_2),
Xn1 = Xn—2 f2(%n Xn—1, Xn—2)
one can find a part of basins of attraction of zero equilibrium and point at infinity
of (6). If k = 1, surface S from Theorem 1 becomes a real plane in R3.
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