Обучение по природни науки и върхови технологии

https://doi.org/10.53656/nat2022-5.03

2022/5, стр. 435 - 457

MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A
OrcID: 0000-0002-4418-197X
E-mail: ontilo.sefiu@oouagoiwoye.edu.ng
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria
Usman M. A.
OrcID: 0000-0002-0657-2478
E-mail: usmanma@yahoo.com
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria
Daniel D. O. Odetunde O. S.
OrcID: 0000-0003-1706-4978
E-mail: tunde.odetunde@oouagoiwoye.edu.ng
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria
Ogunwobi Z. O.
OrcID: 0000-0001-9107-3050
E-mail: ogunwobizac@yahoo.com
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria
Hammed F. A.
OrcID: 0000-0001-7566-1290
E-mail: faakhammed@gmail.com
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria
Olubanwo O. O.
OrcID: 0000-0003-2557-365X
E-mail: olubanwo.oludapo@oouagoiwoye.edu.ng
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria
Ajani A. S.
OrcID: 0000-0001-8639-1142
E-mail: ajani.abiodun@oouagoiwoye.edu.ng
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria
Sanusi A. S.
OrcID: 0000-0003-4891-9414
E-mail: sanusi.ajoke@oouagoiwoye.edu.ng
Department of Plant Science
Olabisi Onabanjo University Nigeria
Haruna A. H.
OrcID: 0000-0002-8496-1305
E-mail: harunaayobami@yahoo.com
Department of Mathematical Sciences
Olabisi Onabanjo University Nigeria

Резюме: In this paper, a deterministic model SEIR-SEI model of malaria transmission consisting of systems of ordinary differential equations, describing the transmission of malaria between humans and female anopheles mosquitoes, the definitive hosts of Plasmodium parasites, is examined. The reproduction number is estimated and the model equilibria and their stabilities are discussed. The diseasefree equilibrium for the model is found to be locally asymptotically stable if the reproduction number is less than one and unstable if the reproduction number is greater than one. Numerical simulations are carried out to demonstrate the analytical results, and suggest that malaria can be controlled by reducing the contact rate between human and mosquito, the use of active malaria drugs, insecticides and the use of mosquito treated nets.

Ключови думи: SEIR-SEI model; malaria; plasmodium; parasite; anopheles; transmission mechanism; stability, reproduction number, endemic equilibrium

Introduction

Malaria is one of the most dangerous infectious disease caused by Plasmodium parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. Malaria has claimed numerous lives around the world, about 33 billion individuals or one-half of the globes populace in 104 nations are at the threat of getting infected by malaria disease \({ }^{1)}\). It was predicted that between 300 and five hundred million individuals die of malaria yearly. Malaria is an old disease possessing a big social financial and wellness burden, it is mainly found in the tropical nations. Despite the fact that the disease was examined for centuries it still remains a primary public health concern along with 109 nations proclaimed as endemic to the disease in 2008. There were 243 million malaria cases disclosed and almost a million fatalities predominantly of little ones under 5 years without efficient vaccination in sight and most of the older antimalarial medications dropping efficiency because of the parasite advancing drug resistance, deterrence making use of bed nets is still the merely recommendations provided to infected individuals. Malaria has additionally acquired prominence in latest times since weather change or global warming is forecasted to have unanticipated impacts on its incidence each increase caused by fluctuation in temperature level influences the vector and parasite life cycle, this can easily trigger decreased occurrence of the disease in some places while it might increase in others areas.

Mathematical models for the transmission mechanics of malaria have a background of over 100 years. Mathematical models are useful in providing better understandings into the behaviour of the disease; the models have played excellent parts in affecting the decision-making process concerning treatment tactics for preventing and regulating the insurgence of malaria. Amongst all areas in biology, scientists in infectious disease were one of the primary to discover the vital function of mathematics and mathematical models in offering an specific structure for comprehending the disease transmission mechanics within and between hosts and parasites. In a mathematical model, several well-known medical and biological details are featured in a streamlined form through selecting attributes that appear to be vital to the concern being explored in disease progression and mechanics. As a result, a model is an estimation of the complex reality and its framework hinges on the methods being examined and intended for extrapolation based on the concerns being inquired. These studies can aid the fitting of empirical observations and can be applied to make theoretical forecasts on known or unidentified conditions. For instance, mathematical models have been extensively utilized by epidemiologists as tools to forecast the incident of upsurges of infectious diseases and as a resource for assisting research for eradication of malaria.

The earliest model on transmission of malaria parasite was proposed by Ross in 1911 who was awarded the nobel prize in physiology or medicine in 1902, for being the discoverer of the life cycle of malarial parasite. The Ross’s model contain two non-linear differential equations in pair of state variables that represent the proportions of infected humans and the infected mosquito. Macdonald (1957) improved Ross’s differential equations model along with some biological presumptions and entomological field data. The Ross-Macdonald model captures the vital feature of malaria transmission and the modelling structure has extensively been used to examine the epidemiology of malaria and other mosquito-borne or even vector-borne disease (Reiner et al. 2013). Jin et al. (2020) added the quarantine compartment to the Ross-Macdonald model to better study the dynamics of the transmission of malaria. Ever since the earliest model proposed by Ross, a number of models have been done for malaria by a number of authors. For instance, Aron & May (1982), Chitnis et al. (2008, 2010), Khan et al. (2015), Traore et al. (2018) included different components of malaria to the model of Macdonald featuring an incubation period in the mosquito superinfection and a duration of immunity in humans. Aron & May (1982) formed an SIRS model along with constant infection rate to fit data on age-prevalence curves. Ngwa & Shu (2000) developed a compartmental model along with an SEIRS pattern for individuals and an SEI pattern for mosquitoes, their model was extended by Chitnis et al. (2006) by means of featuring constant migration of susceptible individuals and generalizing mosquito biting rate. Although, it was presumed that individuals in the recovered class are invulnerable, in the sense that they do not experience serious disease and do not contract clinical malaria, it was argued that they still have little level of plasmodium in their blood stream and can contaminate the susceptible mosquitoes (Bai 2015; Macdonald 1957; Ngwa & Shu 2000; Traore, Singapore & Traore 2017).

Several other aspects taken into consideration in malaria models have aroused considerably interest in recent years, like the impacts of environment on the mechanics of the vector populace and the biting rate from mosquitoes to individual (Khan et al. 2015; Zhang, Jia & Song 2014; Li et al. 2002; Parham & Michael 2010), the phase framework of the duration in the hosts (Diekmann, Heesterbeek & Metz 1990; Khan et al. 2015), seasonal individual migration (Gao et al. 2014), drug resistance (Koella & Antia 2003), seasonality and spatial distribution by Plasmodium species (Zang et al. 2014) and the kind of incidence function. For instance, Traore et al. (2018) and Koutou et al. (2018a) have shown a non-autonomous model and an autonomous model for malaria transmission including the premature phases of the mosquitoes respectively. Olaniyi & Obabiyi (2013) and Koutou et al. (2018b) studies the nonlinear force of incidence of malaria between human populace and the mosquito parasites. Hasibeder & Dey (1988) and Gao et al. (2019) revealed that non-homogeneous interaction between individual and mosquitoes triggers a higher basic reproduction number using Lagragian and Eulerian techniques respectively. During the proliferation of the epidemic, time delays exist since an individual might not be infectious until some time after ending up being infected (Beretta & Kuang 2002; Zhang et al. 2014), which requires some time before the infective organism builds in the vector to the level that allows transmission of the infection to others (Khan et al. 2015; Van den Driessche & Watmough, 2002). Ruan et al. (2008) proposed a delayed Ross-Macdonald model in consideration of the incubation periods of parasites within each humans and mosquitoes. Abu-Raddad et al. (2006) and Mukandavire et al. (2009) examined the influence of the communication between HIV and malaria in an area. Variation in susceptibility exposedness and infectivity between non-immune as well as semi-immune individual hosts for malaria transmission were examined by Ducrot et al. (2009).

In this work, we examine the development of malaria, specifically; we take into consideration the interaction between individual and anopheles mosquito populace both of which are required for the life cycle of Plasmodium. Besides, we respectively examine the stability of the non-trivial disease-free equilibrium and the endemic equilibrium.

Mathematical Model and Formulation

The formulation of the model is for both human populace as well as mosquito populace at time \(t\). We divide the human populace into four classes: Susceptible \(S_{H}\), Exposed \(E_{H}\), Infectious \(I_{H}\), and Recovery Human \(R_{H}\), and that of the populace of anopheles mosquitoes is divided into three classes they are susceptible \(S_{V}\), Exposed \(E_{V}\), Infectious \(I_{V}\) respectively. The interaction between the human and anopheles mosquitoes is shown in the schematics diagram in Figure 1.

Figure 1. Schematic diagram of the transmission of Malaria between Humans and Anopheles Mosquitoes

The model equation are given by:

\(\left\{\begin{array}{l}\tfrac{d S_{H}}{d t}=\gamma_{H}-b \beta_{H} S_{H} I_{V}-\mu_{H} S_{H}+w_{H} R_{H} \\ \tfrac{d E_{H}}{d t}=\beta_{H} S_{H} I_{V}-\left(\alpha_{1 H}+\mu_{H}\right) E_{H} \\ \tfrac{d I_{H}}{d t}=\alpha_{1 H} E_{H}-\left(\alpha_{2 H}+\mu_{H}+\delta\right) I_{H} \\ \tfrac{d R_{H}}{d t}=\alpha_{2 H} I_{H}-\left(\mu_{H}+w_{H}\right) R_{H} \\ \tfrac{d S_{V}}{d t}=\gamma_{V}-\beta_{V} S_{V} I_{H}-\mu_{V} S_{V} \\ \tfrac{d E_{V}}{d t}=\beta_{V} S_{V} I_{H}-\left(\alpha_{1 V}+\mu_{V}\right) E_{V} \\ \tfrac{d I_{V}}{d t}=\alpha_{1 V} E_{V}-\left(\mu_{V}+\delta_{V}\right) I_{V}\end{array}\right. \quad\quad\quad(1)\)

with the initial condition: where \(w_{H}\) is the rate lost of immunity in humans \(\delta_{V} \delta_{V}\) is the disease-induced death rate of mosquito \(S_{H}(0) \gt 0, E_{H}(0) \geq 0, I_{H}(0) \geq 0, R_{H}(0) \geq 0, S_{V}(0) \gt 0, E_{V}(0) \geq 0, I_{V}(0) \geq 0\). The term \(\beta_{H} S_{H} I_{V} \beta_{H} S_{H} I_{V}\) refers to the rate at which the human hosts get infected by the anopheles mosquitoe vector \(I_{V} I_{V}\) while the term \(\beta_{V} S_{V} I_{H} \beta_{V} S_{V} I_{H}\) refers to the rate at which the susceptible mosquitoes are infected by the human hosts \(I_{H} I_{H}\) at a time. These two tems are the primary parts of the model describing the interaction between the human host and the vector.

Table 1. Parameters description of the malaria transmission model

ParameterDescriptionRecruitment rate for humansRecruitment rate for anopheles mosquitoesDeveloping rate of exposed (humans) becoming infectiousRecover rate humans(removal rate)Natural death rate of humansDisease-induced death rate for humansDeveloping rate of exposed (anopheles mosquitoes) becoming infectiousNatural death rate for anopheles mosquitoProbability of transmission of infection from an infectious humans to a susceptibleanopheles mosquitoProbability of Transmission of infection from an infectious humans to a susceptibleanopheles mosquitoesAnopheles mosquitoes biting rate
Infectious ratefor humansInfectious ratefor anopheles mosquitoesDisease-induced death rate of anopheles mosquitoesRate of lost of immunity in humans

We also consider the following equations:

\(N_{H}(t)=S_{H}(t)+E_{H}(t)+I_{H}(t)+R_{H}(t)\quad\quad\quad\quad(2)\)

\(E_{0 H V}=\left(\tfrac{\gamma_{H}}{\mu_{H}}, 0,0,0, \tfrac{\gamma_{V}}{\mu_{V}}, 0,0\right)\).

then the derivatives of \(N_{H}(t) N_{H}(t)\) with respect to \(t t\) is given by:

\[ \begin{gathered} \tfrac{d N_{H}}{d t} \leq \gamma_{H}-\mu_{H} N_{H}-\delta I_{H} \\ \lim _{t \rightarrow \infty} N_{H}(t) \leq \tfrac{\gamma_{H}}{\mu_{H}} \end{gathered} \]

The derivative of \(N_{V}(t) N_{V}(t)\) with respect to tt is given by:

\[ \begin{aligned} & \tfrac{d N_{V}}{d t} \leq \gamma_{V}-\mu_{V} N_{V} \\ & \lim _{t \rightarrow \infty} N_{V}(t) \leq \tfrac{\gamma_{V}}{\mu_{V}} \end{aligned} \]

It is easy to see that that \((1)\) has the disease-free equilibrium Basic Reproduction Number

To compute the basic reproduction number \(R_{0} R_{0}\) for the human and mosquito of the model (1), the next-generation matrix technique is adopted.

The infection matrix is

(3)\[ F=\left(\begin{array}{cccc} 0 & \beta_{H} & 0 & \beta_{V} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \]

The transition matrix is

(4)\[ V=\left(\begin{array}{llll} \left(\alpha_{1 H}+\mu_{H}\right) & 0 & 0 & 0 \\ -\alpha_{1 H} & \left(\alpha_{2 H}+\mu_{H}+\delta\right) & 0 & 0 \\ 0 & 0 & \left(\alpha_{1 V}+\mu_{V}\right) & 0 \\ 0 & 0 & -\alpha_{1 V} & \left(\mu_{V}+\delta_{V}\right) \end{array}\right) \]

The reproduction number for model (1) is

(5)\[ R_{1}=\rho\left(F V^{-1}\right)=\tfrac{\beta_{H}}{\alpha_{2 H}+\mu_{H}+\delta}+\tfrac{\alpha_{1 V} \beta_{V}}{\left(\alpha_{2 H}+\mu_{H}+\delta\right)\left(\mu_{V}+\delta_{V}\right)} \]

\(R_{1}=R_{0 H}+R_{0 V}\) is the spectral radius such that

\(R_{0 H}\) and \(R_{0 v} R_{0 H}\) and \(R_{0 v}\) measures the contribution from humans and Plamodium Falciparum respectively.

Stability of Disease-Free Equilibrium

Theorem 1: The disease-free equilibrium \(E_{0 H V}=\left(\tfrac{\gamma_{H}}{\mu_{H}}, 0,0,0, \tfrac{\gamma_{V}}{\mu_{V}}, 0,0\right)\) \(E_{0 H V}=\left(\tfrac{\gamma_{H}}{\mu_{H}}, 0,0,0, \tfrac{\gamma_{V}}{\mu_{V}}, 0,0\right)\) of the system of the \(O D E^{\prime} \mathrm{s}\) (1) is asymptotically stable if \(R_{1} \lt 1\) and unstable if \(R_{1} \gt 1\).

we determine the local geometric al properties of the disease-free equilibrium \(E_{0 H v}=\left(\tfrac{\gamma_{H}}{\mu_{H}}, 0,0,0, \tfrac{\gamma_{V}}{\mu_{v}}, 0,0\right) E_{0 H v}=\left(\tfrac{\gamma_{H}}{\mu_{H}}, 0,0,0, \tfrac{\gamma_{V}}{\mu_{v}}, 0,0\right)\) by considering the linearised system of ODE’s (1) by taking the Jacobian matrix and obtained. To get \(J_{0} \rightarrow S_{H}, E_{H}, I_{H}, R_{H} J_{0} \rightarrow S_{H}, E_{H}, I_{H}, R_{H}\) is been reduce to 1 in equation (1)

\(I_{H V}\left(S_{H}, E_{H}, I_{H}, R_{H}, S_{v}, E_{V}, I_{V}\right)=\left[\begin{array}{ll} \mathcal{J}_{0} & \mathcal{J}_{2} \\ \mathcal{J}_{1} & \mathcal{J}_{3} \end{array}\right] \quad \quad \quad \quad \quad(6)\)

where \[ \mathcal{J}_{0}=\left[\begin{array}{ccc} -\beta_{H} I_{H}-\mu_{H}+w_{H} R_{H} & 0 & -\beta_{H} S_{H} \\ 0 & -\left(\alpha_{1 H}+\mu_{H}\right) & \beta_{H} S_{H} \\ 0 & \alpha_{1 H} & -\left(\alpha_{2 H}+\mu_{H}+\delta\right) \end{array}\right] \] \[ \begin{aligned} \mathcal{J}_{1} & =\left[\begin{array}{lll} 0 & 0 & \alpha_{2 H} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \\ \mathcal{J}_{2} & =\left[\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \\ \mathcal{J}_{3} & =\left[\begin{array}{cccc} -\mu_{H} & 0 & 0 & 0 \\ 0 & -\beta_{V} I_{V}-\mu_{V} & 0 & -\beta_{V} S_{V} \\ 0 & 0 & -\left(\alpha_{1 V}+\mu_{V}\right) & -\beta_{V} S_{V} \\ 0 & 0 & \alpha_{1 V} & -\left(\mu_{V}+\delta_{V}\right) \end{array}\right] \end{aligned} \]

The local stability of the disease-free equilibrium determined from the Jacobian matrix (6). This implies that the Jacobian matrix of the disease-free equilibrium is given by:

\(\mathcal{J}\left(E_{0 H v}\right)=\left[\begin{array}{ll}\jmath_{0} & \jmath_{2} \\ \jmath_{1} & \jmath_{3}\end{array}\right] \quad\quad\quad\quad\quad(7)\)

\(\mathcal{J}_{0}=\left[\begin{array}{ccc}-\mu_{H} & 0 & -\beta_{H} \tfrac{\gamma_{H}}{\mu_{H}} \\ 0 & -\left(\alpha_{1 H}+\mu_{H}\right) & \beta_{H} \tfrac{\gamma_{H}}{\mu_{H}} \\ 0 & \alpha_{1 H} & -\left(\alpha_{2 H}+\mu_{H}+\delta\right),\end{array}\right]\),

\(\mathcal{J}_{1}=\left[\begin{array}{ccc}0 & 0 & \alpha_{2 H} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad \mathcal{J}_{2}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\)

and

\(\mathcal{J}_{3}=\left[\begin{array}{cccc}-\mu_{H} & 0 & 0 & 0 \\ 0 & -\mu_{V} & 0 & -\beta_{V} \tfrac{\gamma_{V}}{\mu_{V}} \\ 0 & 0 & -\left(\alpha_{1 V}+\mu_{V}\right) & -\beta_{V} \tfrac{\gamma_{V}}{\mu_{V}} \\ 0 & 0 & \alpha_{1 V} & -\left(\mu_{V}+\delta\right)\end{array}\right]\)

The determinant of (7) is given by:

\(\left|\mathcal{J}\left(E_{0 H v}\right)-\lambda I\right|=\left|\begin{array}{ll} J_{0} & J_{2} \\ J_{1} & J_{3} \end{array}\right|=0 \quad\quad\quad\quad\quad\quad(8)\)

Where:

\[ \begin{aligned} & \mathcal{J}_{0}=\left[\begin{array}{ccc} -\mu_{H}-\lambda & 0 & -\beta_{H} \tfrac{\gamma_{H}}{\mu_{H}} \\ 0 & -\left(\alpha_{1 H}+\mu_{H}\right)-\lambda & \beta_{H} \tfrac{\gamma_{H}}{\mu_{H}} \\ 0 & \alpha_{1 H} & -\left(\alpha_{2 H}+\mu_{H}+\delta\right)-\lambda \end{array}\right], \\ & \mathcal{J}_{1}=\left[\begin{array}{cccc} 0 & 0 & 0 & \alpha_{2 H} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right], \end{aligned} \]

\[ \mathcal{J}_{2}=\left[\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \]

and

\[ \mathcal{J}_{3}=\left[\begin{array}{cccc} -\mu_{H}-\lambda & 0 & 0 & 0 \\ 0 & -\mu_{V}-\lambda & 0 & -\beta_{V} \tfrac{\gamma_{V}}{\mu_{V}} \\ 0 & 0 & -\left(\alpha_{1 V}+\mu_{V}\right)-\lambda & -\beta_{V} \tfrac{\gamma_{V}}{\mu_{V}} \\ 0 & 0 & \alpha_{1 V} & -\left(\mu_{V}+\delta\right)-\lambda \end{array}\right] \]

The eigenvalues of the (8) is given by: Clearly \(\lambda=-\mu_{H}, \lambda=-\mu_{V}\) \(\lambda=-\mu_{H}, \lambda=-\mu_{V}\) are negatives and

\(\lambda^{4}+p_{1} \lambda^{3}+p_{2} \lambda^{2}+p_{3} \lambda+p_{4}=0 \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(9)\)

By using the Routh-Hurwitz criterion, It can be seen that all the eigenvalues of the characteristic equation (9) have negative real part if and only if:

\(\left\{\begin{array}{l} p_{1} \gt 0, p_{2} \gt 0, p_{3} \gt 0, p_{4} \gt 0, p_{1} p_{2} p_{3}-p_{3}^{2}-p_{1}^{2} p_{4} \gt 0 \\ p_{1} p_{2} p_{3} p_{4}-p_{2} p_{3}^{2} p_{4} \gt 0 \end{array}\right. \quad\quad\quad\quad\quad\quad(10)\)

where \(p_{1}=\alpha_{1 H}+2 \mu_{H}+\alpha_{2 H}+\delta+2 \mu_{V}+\alpha_{1 V}\)

\[ \begin{aligned} & p_{2}=2 \alpha_{1 H} \mu_{V}+4 \mu_{V} \mu_{H}+2 \alpha_{2 H} \mu_{V}+\alpha_{1 H} \alpha_{1 V}+\alpha_{2 H} \alpha_{1 V}+\delta \alpha_{1 V}+2 \alpha_{1 V} \mu_{H}+\alpha_{1 V} \mu_{V}^{3} \\ & \quad-\tfrac{\alpha_{1 V} \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{\beta_{H} \gamma_{H}}{\mu_{H}} \\ & p_{3}=\alpha_{1 H} \alpha_{2 H}+\alpha_{1 H} \mu_{H}+\alpha_{1 H} \delta+\alpha_{2 H} \mu_{H}+\mu_{H}^{2}+\delta \mu_{H}+2 \alpha_{1 H} \alpha_{2 H} \mu_{V}+2 \alpha_{1 H} \mu_{V} \mu_{H} \\ &+2 \alpha_{1 H} \delta \mu_{V}+2 \alpha_{1 H} \mu_{V} \mu_{H}+2 \mu_{V} \mu_{H}^{2}+\alpha_{1 H} \alpha_{2 H} \alpha_{1 V}+\alpha_{1 H} \alpha_{1 V} \mu_{H}+\alpha_{1 H} \alpha_{1 V} \mu_{H} \\ &+\alpha_{2 H} \alpha_{1 V} \mu_{H}+\alpha_{1 V} \mu_{H}^{2}+\alpha_{1 H} \alpha_{1 V} \delta \mu_{V}^{3}+2 \alpha_{1 V} \delta \mu_{V}{ }^{3} \mu_{H}+\alpha_{1 V}{ }^{3} \mu_{V}^{3} \\ &+\alpha_{1 V} \delta_{V}^{3}-\tfrac{\alpha_{1 H} \alpha_{1 V} \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{2 \alpha_{1 V} \mu_{H} \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{\alpha_{1 V}^{2} \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{\alpha_{1 V} \delta \beta_{V} \gamma_{V}}{\mu_{V}} \\ &-\tfrac{2 \mu_{V} \beta_{H} \gamma_{H}}{\mu_{H}}-\tfrac{\alpha_{1 V} \beta_{H} \gamma_{H}}{\mu_{H}} \\ & p_{4}=\alpha_{1 H} \alpha_{2 H} \alpha_{1 V} \mu_{V}{ }^{3}+\alpha_{1 H} \alpha_{1 V} \mu_{V}{ }^{3} \mu_{H}+\alpha_{1 H} \alpha_{1 V} \delta \mu_{V}{ }^{3}+\alpha_{2 H} \alpha_{1 V} \mu_{V}{ }^{3} \mu_{H}+\alpha_{1 V} \mu_{V}{ }^{3} \mu_{H}^{2} \\ &+\delta \alpha_{1 V} \mu_{V}{ }^{3} \mu_{H}+\tfrac{\alpha_{1 V} \beta_{V} \gamma_{V} \beta_{H} \gamma_{H}}{\mu_{V} \mu_{H}}-\tfrac{\alpha_{1 V} \beta_{H} \gamma_{H} \mu_{V}}{\mu_{H}}-\tfrac{\beta_{H} \gamma_{H} \mu_{V}^{2}}{\mu_{H}} \\ &-\tfrac{\alpha_{1 H} \alpha_{2 H} \alpha_{1 V} \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{\alpha_{1 H} \mu_{H} \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{\alpha_{1 H} \alpha_{1 V} \delta \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{\alpha_{2 H} \alpha_{1 V} \mu_{H} \beta_{V} \gamma_{V}}{\mu_{V}} \\ &-\tfrac{\alpha_{1 V} \mu_{V}^{2} \beta_{V} \gamma_{V}}{\mu_{V}}-\tfrac{\delta \alpha_{1 V} \mu_{H} \beta_{V} \gamma_{V}}{\mu_{V}} \end{aligned} \]

It can be seen that all the eigenvalues have negative real parts and therefore the disease free equilibrium is Locally asymptotically stable.

Endemic Equilibrium

We consider a situation in which all the steady states coexist in the equilibrium. We denote \(E_{H V}^{*}=\left(S_{H}{ }^{*}, E_{H}{ }^{*}, I_{H}{ }^{*}, R_{H}{ }^{*}, S_{V}{ }^{*}, E_{V}{ }^{*}, I_{V}{ }^{*}\right)\) \(E_{H V}^{*}=\left(S_{H}{ }^{*}, E_{H}{ }^{*}, I_{H}{ }^{*}, R_{H}{ }^{*}, S_{V}{ }^{*}, E_{V}{ }^{*}, I_{V}{ }^{*}\right)\) as the endemic equilibrium of the system (1) we also obtain

\[ S_{H}^{*}=\tfrac{\left(\alpha_{1 H}+\mu_{H}\right)-\left(\alpha_{2 H}+\mu_{H}+\delta\right)}{\alpha_{1 H} \beta_{H}} \]

\[ \begin{aligned} E_{H}^{*} & =\tfrac{\alpha_{1 H} \beta_{H} \gamma_{H}-\mu_{H}\left(\alpha_{1 H}+\mu_{H}\right)\left(\alpha_{2 H}+\mu_{H}+\delta\right)}{\alpha_{1 H} \mu_{H} \beta_{H}\left(\alpha_{1 H}+\mu_{H}\right)} \\ I_{H}^{*} & =\tfrac{\alpha_{1 H} \beta_{H} \gamma_{H}-\mu_{H}\left(\alpha_{1 H}+\mu_{H}\right)\left(\alpha_{2 H}+\mu_{H}+\delta\right)}{\beta_{H}\left(\alpha_{2 H}+\mu_{H}+\delta\right)\left(\alpha_{1 H}+\mu_{H}+w_{H}\right)} \\ R_{H}^{*} & =\tfrac{\alpha_{2 H}\left(\alpha_{1 H} \beta_{H} \gamma_{H}-\mu_{H}\right)\left(\alpha_{1 H}+\mu_{H}\right)\left(\alpha_{2 H}+\mu_{H}+\delta_{H}\right)}{\beta_{H}\left(\alpha_{2 H}+\mu_{H}+\delta\right)\left(\mu_{H}+w_{H}+\alpha_{1 H}\right)} \\ E_{V}^{*} & =\tfrac{\alpha_{1 V} \beta_{V} \gamma_{V}-\mu_{V}^{2}\left(\alpha_{1 V}+\mu_{V}\right)\left(\mu_{V}+\delta_{V}\right)}{\alpha_{1 V} \beta_{V}\left(\alpha_{1 V}+\mu_{V}\right)} \\ I_{V}^{*} & =\tfrac{\alpha_{1 V} \beta_{V} \gamma_{V}-\mu_{V}^{2}\left(\alpha_{1 V}+\mu_{V}\right)\left(\mu_{V}+\delta_{V}\right)}{\alpha_{1 V} \beta_{V}\left(\alpha_{1 V}+\mu_{V}\right)} \end{aligned} \]

To find \(S_{V}^{*} S_{V}^{*}\). We find the determinant of the matrix \(\mathcal{J}_{3}\)

\( \left(\alpha_{1 V}+\mu_{V}\right)\left(\mu_{V}+\delta_{V}\right)-\alpha_{1 V} \beta_{V} S_{V}^{*} \\ \cfrac{\left.\left(\alpha_{1 V}\right)+\mu_{V}\right)\left(\mu_{V}+\delta_{V}\right)}{\alpha_{1 V} \beta_{V}}=S_{V}^{*} \\ \)

\( S_{V}^{*}=\cfrac{\left(\alpha_{1 V}+\mu_{V}\right)\left(\mu_{V}+\delta_{V}\right)}{\alpha_{1 V} \beta_{V}} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(11) \)

The local stability of the endemic equilibrium determined from the Jacobian Matrix (6). This implies that the Jacobian matrix of the endemic equilibrium is given by:

\(\mathcal{J}\left(S_{H}{ }^{*}, E_{H}{ }^{*}, I_{H}{ }^{*}, R_{H}{ }^{*}, S_{V}{ }^{*}, E_{V}{ }^{*}, I_{V}{ }^{*}\right) \mathcal{J}\left(E^{*}{ }_{H V}\right)=\left[\begin{array}{ll}J_{0} & J_{2} \\ J_{1} & J_{3}\end{array}\right]\quad\quad\quad\quad\quad(12)\)

Where:

\[ \mathcal{J}_{0}=\left[\begin{array}{ccc} -\beta_{H} I_{H}^{*}-\mu_{H}+w_{H} R_{H} & 0 & -\beta_{H} S_{H}^{*} \\ 0 & -\left(\alpha_{1 H}+\mu_{H}\right) & \beta_{H} S_{H}^{*} \\ 0 & \alpha_{1 H} & -\left(\alpha_{2 H}+\mu_{H}+\delta\right) \end{array}\right] \]

\[ \begin{aligned} \mathcal{J}_{1} & =\left[\begin{array}{ccc} 0 & 0 & \alpha_{2 H} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \\ \mathcal{J}_{2} & =\left[\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{aligned} \] and

\[ \mathcal{J}_{3}=\left[\begin{array}{cccc} -\mu_{H} & 0 & 0 & 0 \\ 0 & -\beta_{v} I_{v}-\mu_{V} & 0 & -\beta_{V} S_{V}^{*} \\ 0 & 0 & -\left(\alpha_{1 V} \mu_{V}\right) & \beta_{V} S_{V}^{*} \\ 0 & 0 & \alpha_{1 V} & -\left(\mu_{V}+\delta_{v}\right) \end{array}\right] \]

To get \(S_{H}{ }^{*}\). We find the determinant of \(\mathcal{J}_{0}\).

\(\begin{aligned} & b=\left(\alpha_{1 H}+\mu_{H}\right)-\left(\alpha_{2 H}+\mu_{H}+\delta\right)-\alpha_{1 H} \beta_{H} S_{H}^{*}\left(\alpha_{1 H}+\mu_{H}\right)-\left(\alpha_{2 H}+\mu_{H}+\delta\right) \\ & \quad=\alpha_{1 H} \beta_{H} S_{H}^{*} \end{aligned}\quad\quad(13)\)

Divide through by \(\alpha_{1 H} \beta_{H}\)

The eigenvalues of the (13) are given by:

\(\lambda_{1}=-\left[\tfrac{\left(\alpha_{1 H}+\mu_{H}\right)\left(\alpha_{2 H}+\mu_{H}+\delta\right)}{\alpha_{1 H}}+\mu_{H}\right], \quad \lambda_{2}=-\mu_{H}\), \(\lambda_{3}=-\tfrac{\alpha_{1 V} \beta_{V} \gamma_{V}}{\mu_{V}\left(\alpha_{1 V}+\mu_{V}\right)\left(\mu_{V}+\delta_{V}\right)}\)

Which are negatives and

(14)\(\lambda^{4}+q_{1} \lambda^{3}+q_{2} \lambda^{2}+q_{3} \lambda+q_{4}=0\)

By Using the Routh-Hurwitz criterion, it can be seen that all the eigenvalues of the characteristic equation (14) have negative real part if and only if:

(15)\(\left\{\begin{array}{c}q_{1} \gt 0, q_{2} \gt 0, q_{3} \gt 0, q_{4} \gt 0, \\ q_{1} q_{2}-q_{3} \gt 0, \\ q_{1} q_{2} q_{3}-q_{3}^{2}-q_{1}^{2} q_{4} \gt 0 \\ q_{1} q_{2} q_{3} q_{4}-q_{2} q_{3}^{2} q_{4} \gt 0\end{array}\right.\)

Where:

\[ \begin{aligned} & q_{2}=\alpha_{1 H} \alpha_{2 H}+4 \alpha_{1 H} \mu_{H}+2 \delta \alpha_{1 H}+\alpha_{1 H} \mu_{V}+2 \alpha_{2 H} \mu_{H}+4 \mu_{H}^{2}+\delta_{H}+2 \mu_{H} \mu_{V} \\ &+2 \mu_{H} \alpha_{1 V}+\alpha_{2 H} \mu_{V}+\alpha_{2 H} \alpha_{1 V}+\alpha_{2 H} \mu_{H}+\delta_{V}+\delta \alpha_{1 V}+\delta \mu_{H}+\mu_{V} \alpha_{1 V} \\ &+\mu_{V} \alpha_{1 V}+\mu_{V} \mu_{H}+\beta_{V} \alpha_{1 V}+\beta_{V} \mu_{V} \\ & q_{3}=\alpha_{1 H} \alpha_{2 H} \mu_{V}+\alpha_{1 H} \alpha_{2 H} \alpha_{1 V}+\alpha_{1 H} \alpha_{2 H} \mu_{H}+\alpha_{1 H} \mu_{H} \mu_{V}+\alpha_{1 H} \alpha_{2 H} \alpha_{1 V}+\alpha_{1 H} \mu_{H}^{2} \\ &+\delta \alpha_{1 H} \mu_{V}+\delta \alpha_{1 H} \alpha_{1 V}+\delta \alpha_{1 H} \mu_{V}+\alpha_{1 H} \mu_{V} \mu_{H}+\alpha_{1 H} \mu_{V} \mu_{H} \\ &+\alpha_{1 H} \beta_{V} \alpha_{1 V}+\alpha_{1 H} \beta_{V} \mu_{V}+\alpha_{2 H} \mu_{V} \mu_{H}+\mu_{H} \alpha_{2 H} \alpha_{1 V}+\mu_{H}^{2} \alpha_{2 H}+\mu_{H}^{2} \mu_{V} \\ &+\mu_{H}^{2} \alpha_{1 V}+\mu_{H}^{3}+\delta \mu_{H} \mu_{V}+\delta \mu_{H} \alpha_{1 V}+\delta \mu_{H}^{2}+2 \mu_{H}^{2} \mu_{V}+2 \alpha_{1 V} \mu_{V} \mu_{H} \\ &+\alpha_{2 H} \mu_{V} \mu_{H}+\alpha_{2 H} \beta_{V} \alpha_{1 V}+\alpha_{2 H} \beta_{V} \mu_{V}+2 \mu_{H} \beta_{V} \alpha_{1 V}+2 \mu_{H} \beta_{V} \mu_{V} \\ &+\delta \mu_{V} \mu_{H}+\delta \beta_{V} \alpha_{1 V}+\delta \beta_{V} \mu_{V}+\alpha_{1 H} \alpha_{2 H} \mu_{V}+\alpha_{1 H} \alpha_{2 H} \mu_{H}+\alpha_{1 H} \mu_{H} \mu_{V} \\ &+\alpha_{1 H} \mu_{H} \alpha_{1 V}+\alpha_{1 H} \mu_{H}^{2}+\delta \alpha_{1 H} \delta_{1 V}+\delta \alpha_{1 H} \mu_{H}+\alpha_{H} \alpha_{2 H} \mu_{V}+\alpha_{H} \alpha_{2 H} \mu_{V} \\ &+\mu_{H} \alpha_{2 H} \alpha_{1 V}+\mu_{H}^{2} \alpha_{2 H}+\mu_{H 2} \mu_{V}+\mu_{H}^{2} \alpha_{1 V}+\mu_{H}^{3}+\delta \mu_{H} \mu_{V}+\delta \alpha_{V} \mu_{H} \\ &+\delta \mu_{H}^{2}+\delta \mu_{H} \\ & q_{4}=2 \alpha_{1 H} \alpha_{2 H} \alpha_{1 V} \mu_{V}+2 \alpha_{1 H} \alpha_{2 H} \mu_{V} \mu_{H}+\alpha_{1 H} \alpha_{2 H} \mu_{V} \beta_{V}+\alpha_{1 H} \alpha_{1 V} \mu_{V} \mu_{H}+\alpha_{1 H} \mu_{H}^{2} \mu_{V} \\ &+\alpha_{1 H} \mu_{H} \beta_{V} \alpha_{1 V}+\alpha_{1 H} \mu_{H} \beta_{V} \mu_{V}+\delta \alpha_{1 H} \mu_{V} \alpha_{1 V}+\delta \alpha_{1 H} \mu_{V} \mu_{H} \\ &+\delta \alpha_{1 H} \beta_{V} \alpha_{1 V}+\delta \alpha_{1 H} \beta_{V} \mu_{V}+\alpha_{2 H} \mu_{H} \mu_{V} \alpha_{1 V}+\alpha_{2 H} \mu_{H}^{2} \mu_{V} \\ &+\alpha_{2 H} \mu_{H} \beta_{V} \alpha_{1 V}+\alpha_{2 H} \mu_{H} \beta_{V} \mu_{V}+\mu_{H}^{2} \mu_{V} \alpha_{1 V}+\mu_{H}^{3} \mu_{V}+\mu_{H}^{2} \beta_{V} \alpha_{1 V} \\ &+\mu_{H}^{2} \beta_{V} \mu_{V}+\delta \mu_{H} \mu_{V} \alpha_{1 V}+\delta \mu_{H}^{2} \mu_{V}+\delta \mu_{H} \beta_{V} \alpha_{1 V}+\delta \mu_{H} \mu_{V} \beta_{V} \\ &+\alpha_{1 H} \alpha_{2 H} \alpha_{1 V} \beta_{V}+\alpha_{1 H} \alpha_{2 H} \beta_{V} \mu_{V}+\alpha_{1 H} \mu_{H} \alpha_{1 V} \mu_{V} \\ &+\alpha_{1 H} \mu_{H}^{2} \mu_{V} \alpha_{1 H} \mu_{H} \alpha_{1 V} \beta_{V}+\alpha_{1 H} \mu_{H} \beta_{V} \mu_{V}+\delta \alpha_{1 H} \alpha_{1 V} \mu_{V}+\delta \alpha_{1 H} \\ &+\delta \alpha_{1 H} \beta_{V} \mu_{V}+\mu_{H} \alpha_{2 H} \mu_{V}+\mu_{H}^{2} \alpha_{1 V} \mu_{V}+\mu_{H} \alpha_{2 H} \beta_{V} \alpha_{1 V}+\mu_{H} \alpha_{2 H} \beta_{V} \mu_{V} \\ &+\mu_{H}^{3} \mu_{V}+\mu_{H}^{2} \beta_{V} \mu_{V}+\delta \mu_{H} \mu_{V} \alpha_{1 V}+\delta \mu_{H}^{2} \mu_{V}+\delta \mu_{H} \beta_{V} \alpha_{1 V}+\delta \mu_{H} \beta_{V} \\ &+\delta \mu_{H} \beta_{V} \mu_{V} . \end{aligned} \] Results and Discussion

The behaviour of the model using some parameter values from Olaniyi & Obabiyi (2013) as presented in Table 1 are used for simulation with the following initial conditions:

\(S_{H}(0)=100, E_{H}(0)=20, I_{H}(0)=10, R_{H}(0)=0, S_{V}(0)=1000, E_{V}(0)=20, I_{V}(0)=30\).

The numerical simulation was analysed and plotted using MATLAB and the results are shown in Figure 2 –10 to illustrate the behaviour for different values of the model parameters.

Table 2. Model parameters and values used in simulation

ParametersValues0.002150.070.120.10.090.00005481/150.0010.011/170.051/181/730

Figure 2 shows the number of individuals that are susceptible to the virus, exposed to the virus, infected with the virus and recovered from the virus (malaria). It is observed that in the human populace, the number of individual reduced drastically, while those exposed increased initially more than the infected and was later stabilized by the rate of recovery experience in the recovery class.

020406080100time020406080100120Cases of IndividualsSusceptibleExposedInfectiousRecovered

Figure 2. The number of susceptible, exposed, infectious and recovered individuals at time \(t\)

020406080100time01002003004005006007008009001000Cases of VirusSusceptibleExposedInfectious

Figure 3. The number of susceptible, exposed, and infectious virus at time t

Figure 3 shows the number of anopheles mosquitoes that are susceptible, exposed and infected in the mosquito populace. It is observed that in the mosquito populace, the number of mosquito in susceptible class reduces, while those in the exposed class and infected class in the mosquito populace also reduces with time since there is no recovered mosquito.

Figures 4, 5, 6, 7 show the different effect of the biting rate of the mosquito on human populace. In particular, Figure 4 shows the susceptible human populace dropped as a result of the increase in infection by infectious mosquito and later stabilize by the rate of recovery. Figure 5 and Figure 6 respectively show the magnitude at which the exposed and infectious human populace experience decrease in human populace in their respective compartment as a result of increase in infection by the infectious mosquito. It is also observed that decreased in the magnitude of infection by the infectious mosquito contributes to the increase in recovered human populace as shown in Figure 7, which sequentially effected the sharp reduction experienced by susceptible human populace.

Similarly, Figure 8, Figure 9 and Figure 10 show the different effect of the biting rate by the mosquito on mosquito populace. It is observed from Figure 8 that the number of susceptible reduced with time as there are no recovered compartment for mosquito populace. However, the increase in infection rate by the mosquito populace reduces the susceptible mosquito populace as seen in Figure 8. The increase in biting rate of the infectious mosquito increases exposed anopheles mosquitoes and infectious anopheles mosquitoes as shown in Figure 9 and Figure 10 respectively. However, it should be noted if the biting rate of the mosquito can reduce, it would reduced the number of anopheles mosquitoes that would be exposed and infected and in turn will reduce the number of individuals that would be exposed and infected with malaria.

Figure 4. The behaviour of susceptible human for different values of \(\eta_{V}\)

020406080100time020406080100120EHV=0.02V=0.12V=2.0

Figure 5. The behaviour of exposed human for different values of \(\eta_{V}\)

020406080100time0102030405060IHV=0.02V=0.12V=2.0

Figure 6. The behaviour of Infectious human for different values of \(\eta_V\)

020406080100time020406080100120RHV=0.02V=0.12V=2.0

Figure 7. The behaviour of Recovered human for different values of \(\eta_V\)

020406080100time01002003004005006007008009001000SVV=0.02V=0.12V=2.0

Figure 8. The behaviour of Infectious virus for different values of \(\eta_V\)

020406080100time0100200300400500600700800900EVV=0.02V=0.12V=2.0

Figure 9. The behaviour of Exposed virus for different values of \(\eta_V\)

020406080100time050100150200250IVV=0.02V=0.12V=2.0

Figure 10. The behaviour of Infected virus for different values of \(\eta_V\)

Summary and Conclusion

Mathematical model is a useful technique for solving real life problems, a deterministic model SEIR-SEI consisting of systems of ordinary differential equations was considered in this paper. The model describes the transmission of malaria among humans populace and mosquito populace. The existence of the region where the model is epidemiologically feasible was established. The model is asymptotically stable when the reproduction number \(R_{0} \lt 1\), which implies that malaria will eventually be eliminated from the populace. But, unstable when \(R_{0} \gt 1\), which implies that malaria would continue to be prevalent among humans. Numerical simulations were conducted to further study the interaction between human populace and mosquito populace.

From the numerical results, the study concludes that increase in infection rate would cause a high increase in the number of anopheles mosquitoes that would be exposed and hereby infected causing human populace to go into extinction. To have a stable human populace, the recovery rate should be increase and infection rate between human populace and Anopheles mosquito populace should be reduced.

Accordingly, in line with the above conclusion, the following recommendation are made to keep the human populace stable: Use of mathematical models to model real life problems which simplifies problems in the society should be encouraged; Transmission of malaria can be reduced by reducing the infection rate. The method of reduction include fighting against the development of eggs, larvae and pupa by using larvicide or by cleaning the environment to reduce the breeding sites of eggs and larvae; Use of bed nets (mosquito protected nets) and insecticides to reduce contact rate between anopheles mosquitoes and humans.

NOTES

1. World Health Organization 2019. World malaria report 2019. https://www.who. int/publications-detail/world-malaria-report-2019. Accessed 08 August 2022.

REFERENCES

ABU-RADDAD, L. J., et al., 2006. Dual Infection with HIV and Malaria Fuels the Spread of Both Diseases in Sub-Saharan Africa. Science. 314, 1603 – 1606.

ARON, J. L., & MAY, R. M., 1982. The population dynamics of malaria. In: Anderson, R.M. (ed.) The Population Dynamics of Infectious Disease: Theory and Applications, Chapman & Hall, London, 139 – 179.

BAI, Z., 2015. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences and Engineering. 12(3), 555 – 564.

BERETTA, E. & KUANG, Y., 2002. Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters. SIAM Journal on Mathematical Analysis. 33, 1144 – 1165.

CHITNIS, N. et al., 2006. Bifurcation analysis of a mathematical model for malaria transmission. SIAM Journal on Applied Mathematics. 67, 24 – 45.

CHITNIS, N. et al., 2008. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology. 70, 1272 – 1296.

CHITNIS, N. et al., 2010. Comparing the effectiveness of malaria vector-control interventions through a mathematical model. The American Journal of Tropical Medicine and Hygiene. 83, 230 – 240.

DIEKMANN, O., HEESTERBEEK, J. A. P., & METZ, J. A. J. 1990. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology. 28,365 – 382.

DUCROT, A., et al., 2009. A mathematical model for malaria involving diferential susceptibility, exposedness and infectivity of human host. Journal of Biological Dynamics. 3(6), 574 – 598.

GAO, D. et al., 2014. Optimal seasonal timing of oral azithromycin for malaria. American Journal of Tropical Medicine and Hygiene. 91(5), 936 – 942.

GAO, D. et al., 2019. Habitat fragmentation promotes malaria persistence. Journal of Mathematical Biology. 79(6 – 7), 2255 – 2280.

HASIBEDER, G. & DYE, C., 1988. Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theoretical Population Biology. 33, 31 – 53.

JIN, X., et al., 2020. Mathematical Analysis of the Ross-Macdonald Model with Quarantine. Bulletin of Mathematical Biology. 82(4):47.

KHAN, M. A. et al., 2015. Dynamical system of a SEIQV epidemic model with nonlinear generalized incidence rate arising in biology. International Journal of Biomathematics. 10(7), 1750096 (19 pages).

KOELLA J. C., & ANTIA R., 2003. Epidemiological models for the spread of antimalarial resistance. Malaria Journal, 2(3). https://doi.org/10.1186/1475-2875-2-3.

KOUTOU, O., TRAORÉ, B., & SANGARÉ, B., 2018a. Mathematical modeling of malaria transmission global dynamics: Taking into account the immature stages of the vectors. Advances in Difference Equations, 220. https://doi.org/10.1186/ s13662-018-1671-2.

KOUTOU, O., TRAORÉ B. & SANGARÉ B., 2018b. Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates. Cogent Mathematics and Statistics, 5:1. https://doi.org/10.1080/1 7513758.2018.1468935.

LI, J., et al., 2002. Dynamic Malaria Models with Environmental Changes. Proceedings of the Thirty- Fourth Southeastern Symposium on System Theory Huntsville, AL, London. 396 – 400. doi: 10.1109/ SSST.2002.1027075.

MACDONALD, G., 1957. The epidemiology and control of malaria. Oxford University Press.

MUKANDAVIRE, Z. et al., 2009. Modelling Effects of Public Health Sensitizational Campaigns on HIV-AIDS Transmission Dynamics. Applied Mathematical Modelling, 33, 2084 – 2095.

NGWA, G. A., & SHU, W. S., 2000. A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32, 747 – 763.

OLANIYI, S., & OBABIYI, O. S., 2013. Mathematical model for malaria transmission dynamics on human and mosquito population with non-linear forces of infectious disease. Int. Journal of Pure and Applied Mathematics. 88(1), 125 – 150.

PARHAM, P. E. & MICHAEL, E., 2010. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect, 118, 620 – 626.

REINER, R. C., et al., 2013. A systematic review of mathematical models of mosquitoborne pathogen transmission: 1970-2010. Journal of the Royal Society Interface, 10(81), \(1-13\). https://doi.org/10.1098/rsif.2012.0921.

ROSS, R., 1911. The Prevention of Malaria. Murray, London. p. 3, 31, 48.

RUAN, S., et al., 2008. On the Delayed Ross–Macdonald Model for Malaria Transmission. Bulletin of Mathematical Biology. 70, 1098 – 1114.

TRAORÉ, B., et al., 2018. A mathematical model of malaria transmission in a periodic environment. J. Biol. Dyn. 12(1), 400 – 432.

TRAORÉ, B., SANGARÉ, B., & TRAORÉ, S., 2017. Mathematical model of malaria transmission with structured vector population and seasonality. J. Appl. Math., Article ID ID6754097. https://doi.org/10.1155/2017/6754097.

VAN DEN DRIESSCHE, P. & WATMOUGH, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29 – 48.

ZHANG, Q. et al., 2014. The epidemiology of Plasmodium vivax and Plasmodium falciparum malaria in China, 2004-2012: from intensified control to elimination. Malaria Journal. 13:419. https://doi.org/10.1186/1475-2875-13-419.

ZHANG, J., JIA, J. AND SONG, X. 2014. Analysis of an SEIR Model with Saturated Incidence and Saturated Treatment Function. The Scientific World Journal. Article ID: 910421, 11 p. https://doi.org/10.1155/2014/910421.

2025 година
Книжка 4
Книжка 3
ПРАЗНИК НА ХИМИЯТА 2025

Александра Камушева, Златина Златанова

ФАТАЛНИЯТ 13

Гинчо Гичев, Росица Стефанова

ХИМИЯ НА МЕДОВИНАТА

Габриела Иванова, Галя Аралова-Атанасова

Х ИМ ИЯ НА Б АНКНОТИТЕ И МОНЕТИТЕ

Ивайло Борисов, Мая Ганева

АЛУМИНИЙ – „ЩАСТЛИВИЯТ“ 13-И ЕЛЕМЕНТ

Мария Кирилова, Ралица Ранчова

МЕТАЛЪТ НА ВРЕМЕТО

Християна Христова, Мария Стойнова

СЛАДКА ЛИ Е ФРЕНСКАТА ЛУЧЕНА СУПА?

Женя Петрова, Мими Димова

ПАРИТЕ – ИСТОРИЯ И НЕОБХОДИМОСТ

Мария Александрова, Румяна Стойнева

АЛУМИНИЯТ – ОТ ОТПАДЪК ДО РЕСУРС

Стилян Атанасов, Никола Иванов, Галина Кирова

ТАЙНАТА ХИМИЯ НА ШВЕЙЦАРСКИТЕ БАНКНОТИ

Ивайла Николова, Марияна Георгиева

ХИМИЯТА – ДЕТЕКТИВ ИЛИ ПРЕСТЪПНИК?

Алвина Илин, Валентина Ткачова, Петя Петрова

БЕБЕШКИ ШАМПОАН ОТ ЯДЛИВИ СЪСТАВКИ: ФОРМУЛИРАНЕ НА НОВ КОЗМЕТИЧЕН ПРОДУКТ

Хана Крипендорф, 5, Даниел Кунев, 5, Цветелина Стоянова

БЪЛГАРСКОТО ИМЕ НА ДЪЛГОЛЕТИЕТО

Сияна Краишникова, Анелия Иванова

ХИМИЯ НА МОНЕТИТЕ

Кристина Анкова, Сияна Христова, Ростислава Цанева

ХИМИЯ НА ШОКОЛАДА

Камелия Вунчева, Мария-Сара Мандил, Марияна Георгиева

ХИМИЯТА НА ПАРИТЕ

Биляна Куртева, Ралица Ранчова

АЛУМИНИЯТ В КРИОГЕНИКАТА

Даниел Анков, Ива Петкова, Марияна Георгиева

ПРИЛОЖЕНИЕ НА АЛУМИНИЯ ВЪВ ВАКСИНИТЕ

Станислав Милчев, Петя Вълкова

АЛУМИНИЙ: „КРИЛА НА ЧОВЕЧЕСТВОТО – ЛЮБИМЕЦ 13“

Ростислав Стойков, Пепа Георгиева

ХИМИЯТА В ПЧЕЛНИЯ МЕД

Сиана Каракашева, Симона Тричкова, Майя Найденова-Георгиева

ХИМИЯ НА МЛЕЧНИТЕ ПРОДУКТИ

Пламена Боиклиева, 10 клас, Дафинка Юрчиева

ХИМИЯ В МАСЛИНИТЕ

Симона Гочева, Майя Найденова

ХИМИЯ НА ЛЮТОТО

Марта Пенчева, Васка Сотирова

ХИНАП – ИЗСЛЕДВАНЕ НА СЪДЪРЖАНИЕТО НА ВИТАМИН С

Елица Нейкова, Елисавета Григорова, Майя Найденова

ХИМИЯ НA ПAРИТE

Игликa Кoлeвa, Eмилия Ивaнoвa

ВЛИЯНИЕ НА МАРИНАТИТЕ ВЪРХУ МЕСОТО

Емил Мирчев, Галя Петрова

АНАЛИЗ НА ПРИРОДНИ ВОДИ В ОБЩИНА СЛИВЕН

Никола Урумов, Анелия Иванова

ТРИНАДЕСЕТИЯТ ЕЛЕМЕНТ – СПАСИТЕЛ ИЛИ ТИХ РАЗРУШИТЕЛ?

Виктория Дечкова, Никола Велчев, Нели Иванова

Книжка 2
Книжка 1
MATHEMATICAL MODELLING OF THE TRANSMISSION DYNAMICS OF PNEUMONIA AND MENINGITIS COINFECTION WITH VACCINATION

Deborah O. Daniel, Sefiu A. Onitilo, Omolade B. Benjamin, Ayoola A. Olasunkanmi

2024 година
Книжка 5-6
Книжка 3-4
Книжка 1-2
2023 година
Книжка 5-6
ПОДКАСТ – КОГА, АКО НЕ СЕГА?

Христо Чукурлиев

Книжка 3-4
Книжка 2
Книжка 1
2022 година
Книжка 6
METEOROLOGICAL DETERMINANTS OF COVID-19 DISEASE: A LITERATURE REVIEW

Z. Mateeva, E. Batchvarova, Z. Spasova, I. Ivanov, B. Kazakov, S. Matev, A. Simidchiev, A. Kitev

Книжка 5
MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A, Usman M. A., Daniel D. O. Odetunde O. S., Ogunwobi Z. O., Hammed F. A., Olubanwo O. O., Ajani A. S., Sanusi A. S., Haruna A. H.

ПОСТАНОВКА ЗА ИЗМЕРВАНЕ СКОРОСТТА НА ЗВУКА ВЪВ ВЪЗДУХ

Станислав Сланев, Хафизе Шабан, Шебнем Шабан, Анета Маринова

Книжка 4
MAGNETIC PROPERTIES

Sofija Blagojević, Lana Vujanović, Andreana Kovačević Ćurić

„TAP, TAP WATER“ QUANTUM TUNNELING DEMONSTRATION

Katarina Borković, Andreana Kovačević Ćurić

Книжка 3
Книжка 2
КОМЕТИТЕ – I ЧАСТ

Пенчо Маркишки

Книжка 1
DISTANCE LEARNING: HOMEMADE COLLOIDAL SILVER

Ana Sofía Covarrubias-Montero, Jorge G. Ibanez

2021 година
Книжка 6
STUDY OF COMPOSITIONS FOR SELECTIVE WATER ISOLATION IN GAS WELLS

Al-Obaidi S.H., Hofmann M., Smirnov V.I., Khalaf F.H., Alwan H.H.

Книжка 5
POTENTIAL APPLICATIONS OF ANTIBACTERIAL COMPOUNDS IN EDIBLE COATING AS FISH PRESERVATIVE

Maulidan Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, Nisrina Rahma Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto

Книжка 4
Книжка 3
Книжка 2
INVESTIGATION OF 238U, 234U AND 210PO CONTENT IN SELECTED BULGARIAN DRINKING WATER

Bozhidar Slavchev, Elena Geleva, Blagorodka Veleva, Hristo Protohristov, Lyuben Dobrev, Desislava Dimitrova, Vladimir Bashev, Dimitar Tonev

Книжка 1
DEMONSTRATION OF DAMPED ELECTRICAL OSCILLATIONS

Elena Grebenakova, Stojan Manolev

2020 година
Книжка 6
ДОЦ. Д-Р МАРЧЕЛ КОСТОВ КОСТОВ ЖИВОТ И ТВОРЧЕСТВО

Здравка Костова, Елена Георгиева

Книжка 5
Книжка 4
JACOB’S LADDER FOR THE PHYSICS CLASSROOM

Kristijan Shishkoski, Vera Zoroska

КАЛЦИЙ, ФОСФОР И ДРУГИ ФАКТОРИ ЗА КОСТНО ЗДРАВЕ

Радка Томова, Светла Асенова, Павлина Косева

Книжка 3
MATHEMATICAL MODELING OF 2019 NOVEL CORONAVIRUS (2019 – NCOV) PANDEMIC IN NIGERIA

Sefiu A. Onitilo, Mustapha A. Usman, Olutunde S. Odetunde, Fatai A. Hammed, Zacheous O. Ogunwobi, Hammed A. Haruna, Deborah O. Daniel

Книжка 2

Книжка 1
WATER PURIFICATION WITH LASER RADIATION

Lyubomir Lazov, Hristina Deneva, Galina Gencheva

2019 година
Книжка 6
LASER MICRO-PERFORATION AND FIELDS OF APPLICATION

Hristina Deneva, Lyubomir Lazov, Edmunds Teirumnieks

ПРОЦЕСЪТ ДИФУЗИЯ – ОСНОВА НА ДИАЛИЗАТА

Берна Сабит, Джемиле Дервиш, Мая Никова, Йорданка Енева

IN VITRO EVALUATION OF THE ANTIOXIDANT PROPERTIES OF OLIVE LEAF EXTRACTS – CAPSULES VERSUS POWDER

Hugo Saint-James, Gergana Bekova, Zhanina Guberkova, Nadya Hristova-Avakumova, Liliya Atanasova, Svobodan Alexandrov, Trayko Traykov, Vera Hadjimitova

Бележки върху нормативното осигуряване на оценяването в процеса

БЕЛЕЖКИ ВЪРХУ НОРМАТИВНОТО ОСИГУРЯВАНЕ, НА ОЦЕНЯВАНЕТО В ПРОЦЕСА НА ОБУЧЕНИЕТО

ТЕХНОЛОГИЯ

Б. В. Тошев

Книжка 5
ON THE GENETIC TIES BETWEEN EUROPEAN NATIONS

Jordan Tabov, Nevena Sabeva-Koleva, Georgi Gachev

Иван Странски – майсторът на кристалния растеж [Ivan Stranski

ИВАН СТРАНСКИ – МАЙСТОРЪТ, НА КРИСТАЛНИЯ РАСТЕЖ

Книжка 4

CHEMOMETRIC ANALYSIS OF SCHOOL LIFE IN VARNA

Radka Tomova, Petinka Galcheva, Ivajlo Trajkov, Antoaneta Hineva, Stela Grigorova, Rumyana Slavova, Miglena Slavova

ЦИКЛИТЕ НА КРЕБС

Ивелин Кулев

Книжка 3
ПРИНЦИПИТЕ НА КАРИЕРНОТО РАЗВИТИЕ НА МЛАДИЯ УЧЕН

И. Панчева, М. Недялкова, С. Кирилова, П. Петков, В. Симеонов

UTILISATION OF THE STATIC EVANS METHOD TO MEASURE MAGNETIC SUSCEPTIBILITIES OF TRANSITION METAL ACETYLACETONATE COMPLEXES AS PART OF AN UNDERGRADUATE INORGANIC LABORATORY CLASS

Anton Dobzhenetskiy, Callum A. Gater, Alexander T. M. Wilcock, Stuart K. Langley, Rachel M. Brignall, David C. Williamson, Ryan E. Mewis

THE 100

Maria Atanassova, Radoslav Angelov

A TALE OF SEVEN SCIENTISTS

Scerri, E.R. (2016). A Tale of Seven Scientists and a New Philosophy of Science.

Книжка 2
DEVELOPMENT OF A LESSON PLAN ON THE TEACHING OF MODULE “WATER CONDUCTIVITY”

A. Thysiadou, S. Christoforidis, P. Giannakoudakis

AMPEROMETRIC NITRIC OXIDE SENSOR BASED ON MWCNT CHROMIUM(III) OXIDE NANOCOMPOSITE

Arsim Maloku, Epir Qeriqi, Liridon S. Berisha, Ilir Mazreku, Tahir Arbneshi, Kurt Kalcher

THE EFFECT OF AGING TIME ON Mg/Al HYDROTALCITES STRUCTURES

Eddy Heraldy, Triyono, Sri Juari Santosa, Karna Wijaya, Shogo Shimazu

Книжка 1
A CONTENT ANALYSIS OF THE RESULTS FROM THE STATE MATRICULATION EXAMINATION IN MATHEMATICS

Elena Karashtranova, Nikolay Karashtranov, Vladimir Vladimirov

SOME CONCEPTS FROM PROBABILITY AND STATISTICS AND OPPORTUNITIES TO INTEGRATE THEM IN TEACHING NATURAL SCIENCES

Elena Karashtranova, Nikolay Karashtranov, Nadezhda Borisova, Dafina Kostadinova

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Василева

2018 година
Книжка 6

ЗДРАВЕ И ОКОЛНА СРЕДА

Кадрие Шукри, Светлана Великова, Едис Мехмед

РОБОТИКА ЗА НАЧИНАЕЩИ ЕНТУСИАСТИ

Даниела Узунова, Борис Велковски, Илко Симеонов, Владислав Шабански, Димитър Колев

DESIGN AND DOCKING STUDIES OF HIS-LEU ANALOGUES AS POTENTIOAL ACE INHIBITORS

Rumen Georgiev, , Tatyana Dzimbova, Atanas Chapkanov

X-RAY DIFFRACTION STUDY OF M 2 Zn(TeО3)2 (M - Na, K) ТELLURIDE

Kenzhebek T. Rustembekov, Mitko Stoev, Aitolkyn A. Toibek

CALIBRATION OF GC/MS METHOD FOR DETERMINATION OF PHTHALATES

N. Dineva, I. Givechev, D. Tanev, D. Danalev

ELECTROSYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES WITH SIMULTANEOUS EXTRACTION INTO P-XYLENE

S. S. Fomanyuk, V. O. Smilyk, G. Y. Kolbasov, I. A. Rusetskyi, T. A. Mirnaya

БИОЛОГИЧЕН АСПЕКТ НА РЕКАНАЛИЗАЦИЯ С ВЕНОЗНА ТРОМБОЛИЗА

Мариела Филипова, Даниела Попова, Стоян Везенков

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО VOLUME 27 / ГОДИНА XXVII, 2018 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА 3 / NUMBER 3: 313 – 472 КНИЖКА 4 / NUMBER 4: 473 – 632 КНИЖКА 5 / NUMBER 5: 633 – 792 КНИЖКА 6 / NUMBER 6: 793 – 952 КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА

(South Africa), A. Ali, M. Bashir (Pakistan) 266 – 278: j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)fx and nd1 Configurations and Correlation with L-S Terms / P. L. Meena (India) 760 – 770: Methyl, тhe Smallest Alkyl Group with Stunning Effects / S. Moulay 771 – 776: The Fourth State of Matter / R. Tsekov

Книжка 5
ИМОБИЛИЗИРАНЕНАФРУКТОЗИЛТРАНСФЕРАЗА ВЪРХУКОМПОЗИТНИФИЛМИОТПОЛИМЛЕЧНА КИСЕЛИНА, КСАНТАН И ХИТОЗАН

Илия Илиев, Тонка Василева, Веселин Биволарски, Ася Виранева, Иван Бодуров, Мария Марудова, Теменужка Йовчева

ELECTRICAL IMPEDANCE SPECTROSCOPY OF GRAPHENE-E7 LIQUID-CRYSTAL NANOCOMPOSITE

Todor Vlakhov, Yordan Marinov, Georgi. Hadjichristov, Alexander Petrov

ON THE POSSIBILITY TO ANALYZE AMBIENT NOISERECORDED BYAMOBILEDEVICETHROUGH THE H/V SPECTRAL RATIO TECHNIQUE

Dragomir Gospodinov, Delko Zlatanski, Boyko Ranguelov, Alexander Kandilarov

RHEOLOGICAL PROPERTIES OF BATTER FOR GLUTEN FREE BREAD

G. Zsivanovits, D. Iserliyska, M. Momchilova, M. Marudova

ПОЛУЧАВАНЕ НА ПОЛИЕЛЕКТРОЛИТНИ КОМПЛЕКСИ ОТ ХИТОЗАН И КАЗЕИН

Антоанета Маринова, Теменужка Йовчева, Ася Виранева, Иван Бодуров, Мария Марудова

CHEMILUMINESCENT AND PHOTOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF COCOON EXTRACTS

Y. Evtimova, V. Mihailova, L. A. Atanasova, N. G. Hristova-Avakumova, M. V. Panayotov, V. A. Hadjimitova

ИЗСЛЕДОВАТЕЛСКИ ПРАКТИКУМ

Ивелина Димитрова, Гошо Гоев, Савина Георгиева, Цвета Цанова, Любомира Иванова, Борислав Георгиев

Книжка 4
PARAMETRIC INTERACTION OF OPTICAL PULSES IN NONLINEAR ISOTROPIC MEDIUM

A. Dakova, V. Slavchev, D. Dakova, L. Kovachev

ДЕЙСТВИЕ НА ГАМА-ЛЪЧИТЕ ВЪРХУ ДЕЗОКСИРИБОНУКЛЕИНОВАТА КИСЕЛИНА

Мирела Вачева, Хари Стефанов, Йоана Гвоздейкова, Йорданка Енева

RADIATION PROTECTION

Natasha Ivanova, Bistra Manusheva

СТАБИЛНОСТ НА ЕМУЛСИИ ОТ ТИПА МАСЛО/ ВОДА С КОНЮГИРАНА ЛИНОЛОВА КИСЕЛИНА

И. Милкова-Томова, Д. Бухалова, К. Николова, Й. Алексиева, И. Минчев, Г. Рунтолев

THE EFFECT OF EXTRA VIRGIN OLIVE OIL ON THE HUMAN BODY AND QUALITY CONTROL BY USING OPTICAL METHODS

Carsten Tottmann, Valentin Hedderich, Poli Radusheva, Krastena Nikolova

ИНФРАЧЕРВЕНА ТЕРМОГРАФИЯ ЗА ДИАГНОСТИКА НА ФОКАЛНА ИНФЕКЦИЯ

Рая Грозданова-Узунова, Тодор Узунов, Пепа Узунова

ЕЛЕКТРИЧНИ СВОЙСТВА НА КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА

Ася Виранева, Иван Бодуров, Теменужка Йовчева

Книжка 3
ТРИ ИДЕИ ЗА ЕФЕКТИВНО ОБУЧЕНИЕ

Гергана Карафезиева

МАГИЯТА НА ТВОРЧЕСТВОТО КАТО ПЪТ НА ЕСТЕСТВЕНО УЧЕНЕ В УЧЕБНИЯ ПРОЦЕС

Гергана Добрева, Жаклин Жекова, Михаела Чонос

ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ ЧРЕЗ МИСЛОВНИ КАРТИ

Виолета Стоянова, Павлина Георгиева

ИГРА НА ДОМИНО В ЧАС ПО ФИЗИКА

Росица Кичукова, Ценка Маринова

ПРОБЛЕМИ ПРИ ОБУЧЕНИЕТО ПО ФИЗИКА ВЪВ ВВМУ „Н. Й. ВАПЦАРОВ“

А. Христова, Г. Вангелов, И. Ташев, М. Димидов

ИЗГРАЖДАНЕ НА СИСТЕМА ОТ УЧЕБНИ ИНТЕРНЕТ РЕСУРСИ ПО ФИЗИКА И ОЦЕНКА НА ДИДАКТИЧЕСКАТА ИМ СТОЙНОСТ

Желязка Райкова, Георги Вулджев, Наталия Монева, Нели Комсалова, Айше Наби

ИНОВАЦИИ В БОРБАТА С ТУМОРНИ ОБРАЗУВАНИЯ – ЛЕЧЕНИЕ ЧРЕЗ БРАХИТЕРАПИЯ

Георги Върбанов, Радостин Михайлов, Деница Симеонова, Йорданка Енева

NATURAL RADIONUCLIDES IN DRINKING WATER

Natasha Ivanova, Bistra Manusheva

Книжка 2

АДАПТИРАНЕ НА ОБРАЗОВАНИЕТО ДНЕС ЗА УТРЕШНИЯ ДЕН

И. Панчева, М. Недялкова, П. Петков, Х. Александров, В. Симеонов

STRUCTURAL ELUCIDATION OF UNKNOWNS: A SPECTROSCOPIC INVESTIGATION WITH AN EMPHASIS ON 1D AND 2D 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Vittorio Caprio, Andrew S. McLachlan, Oliver B. Sutcliffe, David C. Williamson, Ryan E. Mewis

j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)f

j-jCOUPLEDATOMICTERMSFORNONEQUIVALENT, ELECTRONS OF (n-f X nd CONFIGURATIONS AND, CORRELATION WITH L-S TERMS

INTEGRATED ENGINEERING EDUCATION: THE ROLE OF ANALYSIS OF STUDENTS’ NEEDS

Veselina Kolarski, Dancho Danalev, Senia Terzieva

Книжка 1
ZAGREB CONNECTION INDICES OF TiO2 NANOTUBES

Sohaib Khalid, Johan Kok, Akbar Ali, Mohsin Bashir

SYNTHESIS OF NEW 3-[(CHROMEN-3-YL)ETHYLIDENEAMINO]-PHENYL]-THIAZOLIDIN-4ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Malesore Pllana, Musaj Pacarizi, Veprim Thaçi, Gjyle Mulliqi-Osmani

2017 година
Книжка 6
GEOECOLOGICAL ANALYSIS OF INDUSTRIAL CITIES: ON THE EXAMPLE OF AKTOBE AGGLOMERATION

Zharas Berdenov, Erbolat Mendibaev, Talgat Salihov, Kazhmurat Akhmedenov, Gulshat Ataeva

TECHNOGENESIS OF GEOECOLOGICAL SYSTEMS OF NORTHEN KAZAKHSTAN: PROGRESS, DEVELOPMENT AND EVOLUTION

Kulchichan Dzhanaleyeva, Gulnur Mazhitova, Altyn Zhanguzhina, Zharas Berdenov, Tursynkul Bazarbayeva, Emin Atasoy

СПИСАНИЕ ПРОСВѢТА

Списание „Просвета“ е орган на Просветния съюз в България. Списанието е излизало всеки месец без юли и август. Годишният том съдържа 1280 стра- ници. Списанието се издава от комитет, а главен редактор от 1935 до 1943 г. е проф. Петър Мутафчиев, историк византолог и специалист по средновеков-

Книжка 5
47-А НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

В последните години тези традиционни за българското учителство конфе- ренции се организират от Българското дружество по химическо образование и история и философия на химията. То е асоцииран член на Съюза на химици- те в България, който пък е член на Европейската асоциация на химическите и

JOURNALS OF INTEREST: A REVIEW (2016)

BULGARIAN JOURNAL OF SCIENCE AND EDUCATION POLICY ISSN 1313-1958 (print) ISSN 1313-9118 (online) http://bjsep.org

INVESTIGATING THE ABILITY OF 8

Marina Stojanovska, Vladimir M. Petruševski

SYNTHESIS OF TiO -M (Cd, Co, Mn)

Candra Purnawan, Sayekti Wahyuningsih, Dwita Nur Aisyah

EFFECT OF DIFFERENT CADMIUM CONCENTRATION ON SOME BIOCHEMICAL PARAMETERS IN ‘ISA BROWN’ HYBRID CHICKEN

Imer Haziri, Adem Rama, Fatgzim Latifi, Dorjana Beqiraj-Kalamishi, Ibrahim Mehmeti, Arben Haziri

PHYTOCHEMICAL AND IN VITRO ANTIOXIDANT STUDIES OF PRIMULA VERIS (L.) GROWING WILD IN KOSOVO

Ibrahim Rudhani, Florentina Raci, Hamide Ibrahimi, Arben Mehmeti, Ariana Kameri, Fatmir Faiku, Majlinda Daci, Sevdije Govori, Arben Haziri

ПЕДАГОГИЧЕСКА ПОЕМА

Преди година-две заедно с директора на Националното издателство „Аз- буки“ д-р Надя Кантарева-Барух посетихме няколко училища в Родопите. В едно от тях ни посрещнаха в голямата учителска стая. По стените ѝ имаше големи портрети на видни педагози, а под тях – художествено написани умни мисли, които те по някакъв повод са казали. На централно място бе портретът на Антон Семьонович Макаренко (1888 – 1939). Попитах учителките кой е Макаренко – те посрещнаха въпроса ми с мълчание. А някога, в г

Книжка 4
„СИМВОЛНИЯТ КАПИТАЛ“ НА БЪЛГАРСКОТО УЧИЛИЩЕ

Николай Цанков, Веска Гювийска

KINETICS OF PHOTO-ELECTRO-ASSISTED DEGRADATION OF REMAZOL RED 5B

Fitria Rahmawati, Tri Martini, Nina Iswati

ALLELOPATHIC AND IN VITRO ANTICANCER ACTIVITY OF STEVIA AND CHIA

Asya Dragoeva, Vanya Koleva, Zheni Stoyanova, Eli Zayova, Selime Ali

NOVEL HETEROARYLAMINO-CHROMEN-2-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Gjyle Mulliqi-Osmani, Veprim Thaçi

Книжка 3
Quantum Connement of Mobile Na+ Ions in Sodium Silicate Glassy

QUANTUM CONFINEMENT OF MOBILE Na + IONS, IN SODIUM SILICATE GLASSY NANOPARTICLES

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon, Abolfazl Semnani, Ramin Jaberzadeh Ansari, Hamid Shakoori Langeroodi, Mahboube Shirani, Shima Ghanavati Nasab

EVALUATION OF ANTIBACTERIAL ACTIVITY OF DIFFERENT SOLVENT EXTRACTS OF TEUCRIUM CHAMAEDRYS (L.) GROWING WILD IN KOSOVO

Arben Haziri, Fatmir Faiku, Roze Berisha, Ibrahim Mehmeti, Sevdije Govori, Imer Haziri

Книжка 2
COMPUTER SIMULATORS: APPLICATION FOR GRADUATES’ADAPTATION AT OIL AND GAS REFINERIES

Irena O. Dolganova, Igor M. Dolganov, Kseniya A. Vasyuchka

SYNTHESIS OF NEW [(3-NITRO-2-OXO-2H-CHROMEN4-YLAMINO)-PHENYL]-PHENYL-TRIAZOLIDIN-4-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Hamit Ismaili, Idriz Vehapi, Naser Troni, Gjyle Mulliqi-Osmani, Veprim Thaçi

STABILITY OF RJ-5 FUEL

Lemi Türker, Serhat Variş

A STUDY OF BEGLIKTASH MEGALITHIC COMPLEX

Diana Kjurkchieva, Evgeni Stoykov, Sabin Ivanov, Borislav Borisov, Hristo Hristov, Pencho Kyurkchiev, Dimitar Vladev, Irina Ivanova

Книжка 1
2016 година
Книжка 6
THE EFFECT OF KOH AND KCL ADDITION TO THE DESTILATION OF ETHANOL-WATER MIXTURE

Khoirina Dwi Nugrahaningtyas, Fitria Rahmawati, Avrina Kumalasari

Книжка 5

ОЦЕНЯВАНЕ ЛИЧНОСТТА НА УЧЕНИКА

Министерството на народното просвещение е направило допълне- ния към Правилника за гимназиите (ДВ, бр. 242 от 30 октомври 1941 г.), според които в бъдеще ще се оценяват следните прояви на учениците: (1) трудолюбие; (2) ред, точност и изпълнителност; (3) благовъзпитаност; (4) народностни прояви. Трудолюбието ще се оценява с бележките „образцово“, „добро“, „незадо- волително“. С „образцово“ ще се оценяват учениците, които с любов и по- стоянство извършват всяка възложена им ил

Книжка 4
VOLTAMMERIC SENSOR FOR NITROPHENOLS BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH REDUCED GRAPHENE OXIDE

Arsim Maloku, Liridon S. Berisha, Granit Jashari, Eduard Andoni, Tahir Arbneshi

Книжка 3
ИЗСЛЕДВАНЕ НА ПРОФЕСИОНАЛНО-ПЕДАГОГИЧЕСКАТА РЕФЛЕКСИЯ НА УЧИТЕЛЯ ПО БИОЛОГИЯ (ЧАСТ ВТОРА)

Надежда Райчева, Иса Хаджиали, Наташа Цанова, Виктория Нечева

EXISTING NATURE OF SCIENCE TEACHING OF A THAI IN-SERVICE BIOLOGY TEACHER

Wimol Sumranwanich, Sitthipon Art-in, Panee Maneechom, Chokchai Yuenyong

NUTRIENT COMPOSITION OF CUCURBITA MELO GROWING IN KOSOVO

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

НАГРАДИТЕ „ЗЛАТНА ДЕТЕЛИНА“ ЗА 2016 Г.

На 8 март 2016 г. в голямата зала на Националния политехнически музей в София фондация „Вигория“ връчи годишните си награди – почетен плакет „Златна детелина“. Тази награда се дава за цялостна професионална и творче- ска изява на личности с особени заслуги към обществото в трите направления на фондация „Вигория“ – образование, екология, култура. Наградата цели да се даде израз на признателност за високи постижения на личности, които на професионално равнище и на доброволни начала са рабо

Книжка 2
СТО ГОДИНИ ОТ РОЖДЕНИЕТО НА ПРОФЕСОР ХРИСТО ИВАНОВ (1916 – 2004)

СТО ГОДИНИ ОТ РОЖДЕНИЕТО, НА ПРОФЕСОР ХРИСТО ИВАНОВ, (96 – 00

CONTEXT-BASED CHEMISTRY LAB WORK WITH THE USE OF COMPUTER-ASSISTED LEARNING SYSTEM

N. Y. Stozhko, A. V. Tchernysheva, E.M. Podshivalova, B.I. Bortnik

Книжка 1
ПО ПЪТЯ

Б. В. Тошев

INTERDISCIPLINARY PROJECT FOR ENHANCING STUDENTS’ INTEREST IN CHEMISTRY

Stela Georgieva, Petar Todorov , Zlatina Genova, Petia Peneva

2015 година
Книжка 6
COMPLEX SYSTEMS FOR DRUG TRANSPORT ACROSS CELL MEMBRANES

Nikoleta Ivanova, Yana Tsoneva, Nina Ilkova, Anela Ivanova

SURFACE FUNCTIONALIZATION OF SILICA SOL-GEL MICROPARTICLES WITH EUROPIUM COMPLEXES

Nina Danchova , Gulay Ahmed , Michael Bredol , Stoyan Gutzov

INTERFACIAL REORGANIZATION OF MOLECULAR ASSEMBLIES USED AS DRUG DELIVERY SYSTEMS

I. Panaiotov, Tz. Ivanova, K. Balashev, N. Grozev, I. Minkov, K. Mircheva

KINETICS OF THE OSMOTIC PROCESS AND THE POLARIZATION EFFECT

Boryan P. Radoev, Ivan L. Minkov, Emil D. Manev

WETTING BEHAVIOR OF A NATURAL AND A SYNTHETIC THERAPEUTIC PULMONARY SURFACTANTS

Lidia Alexandrova, Michail Nedyalkov, Dimo Platikanov

Книжка 5
TEACHER’S ACCEPTANCE OF STUDENTS WITH DISABILITY

Daniela Dimitrova-Radojchikj, Natasha Chichevska-Jovanova

IRANIAN UNIVERSITY STUDENTS’ PERCEPTION OF CHEMISTRY LABORATORY ENVIRONMENTS

Zahra Eskandari, Nabi.A Ebrahimi Young Researchers & Elite Club, Arsanjan Branch,

APPLICATION OF LASER INDUCED BREAKDOWN SPECTROSCOPY AS NONDESDUCTRIVE AND SAFE ANALYSIS METHOD FOR COMPOSITE SOLID PROPELLANTS

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, Seyyed Mohamad Reza Darbany, Mehran Karimi, Amir Hossein Rezayi Optics & Laser Science and Technology Research Center,

THE EFFECT OF DIOCTYLPHTHALATE ON INITIAL PROPERTIES AND FIELD PERFORMANCE OF SOME SEMISYNTHETIC ENGINE OILS

Azadeh Ghasemizadeh, Abolfazl Semnani, Hamid Shakoori Langeroodi, Alireza Nezamzade Ejhieh

QUALITY ASSESSMENT OF RIVER’S WATER OF LUMBARDHI PEJA (KOSOVO)

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

Книжка 4
БЛАГОДАРЯ ВИ!

Александър Панайотов

ТЕМАТА ВЪГЛЕХИДРАТИ В ПРОГРАМИТЕ ПО ХИМИЯ И БИОЛОГИЯ

Радка Томова, Елена Бояджиева, Миглена Славова , Мариан Николов

BILINGUAL COURSE IN BIOTECHNOLOGY: INTERDISCIPLINARY MODEL

V. Kolarski, D. Marinkova, R. Raykova, D. Danalev, S. Terzieva

ХИМИЧНИЯТ ОПИТ – НАУКА И ЗАБАВА

Елица Чорбаджийска, Величка Димитрова, Магдалена Шекерлийска, Галина Бальова, Методийка Ангелова

ЕКОЛОГИЯТА В БЪЛГАРИЯ

Здравка Костова

Книжка 3
SYNTHESIS OF FLUORINATED HYDROXYCINNAMOYL DERIVATIVES OF ANTI-INFLUENZA DRUGS AND THEIR BIOLOGICAL ACTIVITY

Boyka Stoykova, Maya Chochkova, Galya Ivanova, Luchia Mukova, Nadya Nikolova, Lubomira Nikolaeva-Glomb, Pavel Vojtíšek, Tsenka Milkova, Martin Štícha, David Havlíček

SYNTHESIS AND ANTIVIRAL ACTIVITY OF SOME AMINO ACIDS DERIVATIVES OF INFLUENZA VIRUS DRUGS

Radoslav Chayrov, Vesela Veselinova, Vasilka Markova, Luchia Mukova, Angel Galabov, Ivanka Stankova

NEW DERIVATIVES OF OSELTAMIVIR WITH BILE ACIDS

Kiril Chuchkov, Silvia Nakova, Lucia Mukova, Angel Galabov, Ivanka Stankova

MONOHYDROXY FLAVONES. PART III: THE MULLIKEN ANALYSIS

Maria Vakarelska-Popovska, Zhivko Velkov

LEU-ARG ANALOGUES: SYNTHESIS, IR CHARACTERIZATION AND DOCKING STUDIES

Tatyana Dzimbova, Atanas Chapkanov, Tamara Pajpanova

MODIFIED QUECHERS METHOD FOR DETERMINATION OF METHOMYL, ALDICARB, CARBOFURAN AND PROPOXUR IN LIVER

I. Stoykova, T. Yankovska-Stefenova, L.Yotova, D. Danalev Bulgarian Food Safety Agency, Sofi a, Bulgaria

LACTOBACILLUS PLANTARUM AC 11S AS A BIOCATALYST IN MICROBIAL ELECYTOLYSIS CELL

Elitsa Chorbadzhiyska, Yolina Hubenova, Sophia Yankova, Dragomir Yankov, Mario Mitov

STUDYING THE PROCESS OF DEPOSITION OF ANTIMONY WITH CALCIUM CARBONATE

K. B. Omarov, Z. B. Absat, S. K. Aldabergenova, A. B. Siyazova, N. J. Rakhimzhanova, Z. B. Sagindykova

Книжка 2
TEACHING CHEMISTRY AT TECHNICAL UNIVERSITY

Lilyana Nacheva-Skopalik, Milena Koleva

ФОРМИРАЩО ОЦЕНЯВАНЕ PEER INSTRUCTION С ПОМОЩТА НА PLICКERS ТЕХНОЛОГИЯТА

Ивелина Коцева, Мая Гайдарова, Галина Ненчева

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Javid Safarov, Bahruz Ahmadov, Saleh Mirzayev, Astan Shahverdiyev, Egon Hassel

Книжка 1
РУМЕН ЛЮБОМИРОВ ДОЙЧЕВ (1938 – 1999)

Огнян Димитров, Здравка Костова

NAMING OF CHEMICAL ELEMENTS

Maria Atanassova

НАЙДЕН НАЙДЕНОВ, 1929 – 2014 СПОМЕН ЗА ПРИЯТЕЛЯ

ИНЖ. НАЙДЕН ХРИСТОВ НАЙДЕНОВ, СЕКРЕТАР, НА СЪЮЗА НА ХИМИЦИТЕ В БЪЛГАРИЯ (2.10.1929 – 25.10.2014)

2014 година
Книжка 6
145 ГОДИНИ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

145 ANNIVERSARY OF THE BULGARIAN ACADEMY OF SCIENCES

ПАРНО НАЛЯГАНЕ НА РАЗТВОРИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

LUBRICATION PROPERTIES OF DIFFERENT PENTAERYTHRITOL-OLEIC ACID REACTION PRODUCTS

Abolfazl Semnani, Hamid Shakoori Langeroodi, Mahboube Shirani

THE ORIGINS OF SECONDARY AND TERTIARY GENERAL EDUCATION IN RUSSIA: HISTORICAL VIEWS FROM THE 21ST CENTURY

V. Romanenko, G. Nikitina Academy of Information Technologies in Education, Russia

ALLELOPATHIC AND CYTOTOXIC ACTIVITY OF ORIGANUM VULGARE SSP. VULGARE GROWING WILD IN BULGARIA

Asya Pencheva Dragoeva, Vanya Petrova Koleva, Zheni Dimitrova Nanova, Mariya Zhivkova Kaschieva, Irina Rumenova Yotova

Книжка 5
GENDER ISSUES OF UKRAINIAN HIGHER EDUCATION

Н.H.Petruchenia, M.I.Vorovka

МНОГОВАРИАЦИОННА СТАТИСТИЧЕСКА ОЦЕНКА НА DREEM – БЪЛГАРИЯ: ВЪЗПРИЕМАНЕ НА ОБРАЗОВАТЕЛНАТА СРЕДА ОТ СТУДЕНТИТЕ В МЕДИЦИНСКИЯ УНИВЕРСИТЕТ – СОФИЯ

Радка Томова, Павлина Гатева, Радка Хаджиолова, Зафер Сабит, Миглена Славова, Гергана Чергарова, Васил Симеонов

MUSSEL BIOADHESIVES: A TOP LESSON FROM NATURE

Saâd Moulay Université Saâd Dahlab de Blida, Algeria

Книжка 4
ЕЛЕКТРОННО ПОМАГАЛO „ОТ АТОМА ДО КОСМОСА“ ЗА УЧЕНИЦИ ОТ Х КЛАС

Силвия Боянова Професионална гимназия „Акад. Сергей П. Корольов“ – Дупница

ЕСЕТО КАТО ИНТЕГРАТИВЕН КОНСТРУКТ – НОРМАТИВЕН, ПРОЦЕСУАЛЕН И ОЦЕНЪЧНО-РЕЗУЛТАТИВЕН АСПЕКТ

Надежда Райчева, Иван Капурдов, Наташа Цанова, Иса Хаджиали, Снежана Томова

44

Донка Ташева, Пенка Василева

ДОЦ. Д.П.Н. АЛЕКСАНДЪР АТАНАСОВ ПАНАЙОТОВ

Наташа Цанова, Иса Хаджиали, Надежда Райчева

COMPUTER ASSISTED LEARNING SYSTEM FOR STUDYING ANALYTICAL CHEMISTRY

N. Y. Stozhko, A. V. Tchernysheva, L.I. Mironova

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА: БОРБА С ЕДНА ЛЕДЕНА ЕПОХА В ГОДИНАТА 3000 СЛЕД ХРИСТА. 3.

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА:, БОРБА С ЕДНА ЛЕДЕНА ЕПОХА, В ГОДИНАТА 000 СЛЕД ХРИСТА. .

Книжка 3
KNOWLEDGE OF AND ATTITUDES TOWARDS WATER IN 5

Antoaneta Angelacheva, Kalina Kamarska

ВИСША МАТЕМАТИКА ЗА УЧИТЕЛИ, УЧЕНИЦИ И СТУДЕНТИ: ДИФЕРЕНЦИАЛНО СМЯТАНЕ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ВАСИЛ ХРИСТОВ БОЗАРОВ

Пенка Бозарова, Здравка Костова

БИБЛИОГРАФИЯ НА СТАТИИ ЗА МИСКОНЦЕПЦИИТЕ В ОБУЧЕНИЕТО ПО ПРИРОДНИ НАУКИ ВЪВ ВСИЧКИ ОБРАЗОВАТЕЛНИ НИВА

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 2
SCIENTIX – OБЩНОСТ ЗА НАУЧНО ОБРАЗОВАНИЕ В ЕВРОПА

Свежина Димитрова Народна астрономическа обсерватория и планетариум „Николай Коперник“ – Варна

BOTYU ATANASSOV BOTEV

Zdravka Kostova, Margarita Topashka-Ancheva

CHRONOLOGY OF CHEMICAL ELEMENTS DISCOVERIES

Maria Atanassova, Radoslav Angelov

Книжка 1
ОБРАЗОВАНИЕ ЗА ПРИРОДОНАУЧНА ГРАМОТНОСТ

Адриана Тафрова-Григорова

A COMMENTARY ON THE GENERATION OF AUDIENCE-ORIENTED EDUCATIONAL PARADIGMS IN NUCLEAR PHYSICS

Baldomero Herrera-González Universidad Autónoma del Estado de México, Mexico

2013 година
Книжка 6
DIFFERENTIAL TEACHING IN SCHOOL SCIENCE EDUCATION: CONCEPTUAL PRINCIPLES

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ШЕСТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО „ЧОВЕКЪТ И ПРИРОДАТА“

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

HISTORY AND PHILOSOPHY OF SCIENCE: SOME RECENT PERIODICALS (2013)

Chemistry: Bulgarian Journal of Science Education

45. НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

„Образователни стандарти и природонаучна грамотност“ – това е темата на състоялата се от 25 до 27 октомври 2013 г. в Габрово 45. Национална конфе- ренция на учителите по химия с международно участие, която по традиция се проведе комбинирано с Годишната конференция на Българското дружество за химическо образование и история и философия на химията. Изборът на темата е предизвикан от факта, че развиването на природонаучна грамотност е обща тенденция на реформите на учебните програми и главна

Книжка 5

ЗА ХИМИЯТА НА БИРАТА

Ивелин Кулев

МЕТЕОРИТЪТ ОТ БЕЛОГРАДЧИК

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
RECASTING THE DERIVATION OF THE CLAPEYRON EQUATION INTO A CONCEPTUALLY SIMPLER FORM

Srihari Murthy Meenakshi Sundararajan Engineering College, India

CHEMICAL REACTIONS DO NOT ALWAYS MODERATE CHANGES IN CONCENTRATION OF AN ACTIVE COMPONENT

Joan J. Solaz-Portolés, Vicent Sanjosé Universitat de Valènciа, Spain

POLYMETALLIC COMPEXES: CV. SYNTHESIS, SPECTRAL, THERMOGRAVIMETRIC, XRD, MOLECULAR MODELLING AND POTENTIAL ANTIBACTERIAL PROPERTIES OF TETRAMERIC COMPLEXES OF Co(II), Ni(II), Cu(II), Zn(II), Cd(II) AND Hg(II) WITH OCTADENTATE AZODYE LIGANDS

Bipin B. Mahapatra, S. N. Dehury, A. K. Sarangi, S. N. Chaulia G. M. Autonomous College, India Covt. College of Engineering Kalahandi, India DAV Junior College, India

ПРОФЕСОР ЕЛЕНА КИРКОВА НАВЪРШИ 90 ГОДИНИ

CELEBRATING 90TH ANNIVERSARY OF PROFESSOR ELENA KIRKOVA

Книжка 3
SIMULATION OF THE FATTY ACID SYNTHASE COMPLEX MECHANISM OF ACTION

M.E.A. Mohammed, Ali Abeer, Fatima Elsamani, O.M. Elsheikh, Abdulrizak Hodow, O. Khamis Haji

FORMING OF CONTENT OF DIFFERENTIAL TEACHING OF CHEMISTRY IN SCHOOL EDUCATION OF UKRAINE

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

ИЗСЛЕДВАНЕ НА РАДИКАЛ-УЛАВЯЩА СПОСОБНОСТ

Станислав Станимиров, Живко Велков

Книжка 2
Книжка 1
COLORFUL EXPERIMENTS FOR STUDENTS: SYNTHESIS OF INDIGO AND DERIVATIVES

Vanessa BIANDA, Jos-Antonio CONSTENLA, Rolf HAUBRICHS, Pierre-Lonard ZAFFALON

OBSERVING CHANGE IN POTASSIUM ABUNDANCE IN A SOIL EROSION EXPERIMENT WITH FIELD INFRARED SPECTROSCOPY

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

ЦАРСКАТА ПЕЩЕРА

Рафаил ПОПОВ

УЧИЛИЩНИ ЛАБОРАТОРИИ И ОБОРУДВАНЕ SCHOOL LABORATORIES AND EQUIPMENT

Учебни лаборатории Илюстрации от каталог на Franz Hugershoff, Лайциг, притежаван от бъдещия

2012 година
Книжка 6
ADDRESING STUDENTS’ MISCONCEPTIONS CONCERNING CHEMICAL REACTIONS AND SYMBOLIC REPRESENTATIONS

Marina I. Stojanovska, Vladimir M. Petruševski, Bojan T. Šoptrajanov

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ПЕТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО ЧОВЕКЪТ И ПРИРОДАТА

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

ЕКОТОКСИКОЛОГИЯ

Васил Симеонов

ПРОФ. МЕДОДИЙ ПОПОВ ЗА НАУКАТА И НАУЧНАТА ДЕЙНОСТ (1920 Г.)

Проф. Методий Попов (1881-1954) Госпожици и Господа студенти,

Книжка 5
КОНЦЕПТУАЛНА СХЕМА НА УЧИЛИЩНИЯ КУРС П О ХИМИЯ – МАКР О СКОПСКИ ПОДХОД

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ROLE OF ULTRASONIC WAVES TO STUDY MOLECULAR INTERACTIONS IN AQUEOUS SOLUTION OF DICLOFENAC SODIUM

Sunanda S. Aswale, Shashikant R. Aswale, Aparna B. Dhote Lokmanya Tilak Mahavidyalaya, INDIA Nilkanthrao Shinde College, INDIA

SIMULTANEOUS ESTIMATION OF IBUPROFEN AND RANITIDINE HYDROCHLORIDE USING UV SPECTROPHOT O METRIC METHOD

Jadupati Malakar, Amit Kumar Nayak Bengal College of Pharmaceutical Sciences and Research, INDIA

GAPS AND OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION ASSESSMENT

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

РАДИОХИМИЯ И АРХЕОМЕТРИЯ: ПРО Ф. ДХН ИВЕЛИН КУЛЕВ RADIOCHEMISTRY AND ARCHEOMETRY: PROF. IVELIN KULEFF, DSc

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
TEACHING THE CONSTITUTION OF MATTER

Małgorzata Nodzyńska, Jan Rajmund Paśko

СЪСИРВАЩА СИСТЕМА НА КРЪВТА

Маша Радославова, Ася Драгоева

CATALITIC VOLCANO

CATALITIC VOLCANO

43-ТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка ТАШЕВА, Пенка ЦАНОВА

ЮБИЛЕЙ: ПРОФ. ДХН БОРИС ГЪЛЪБОВ JUBILEE: PROF. DR. BORIS GALABOV

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ПЪРВИЯТ ПРАВИЛНИК ЗА УЧЕБНИЦИТЕ (1897 Г.)

Чл. 1. Съставянето и издаване на учебници се предоставя на частната инициа- тива. Забележка: На учителите – съставители на учебници се запрещава сами да разпродават своите учебници. Чл. 2. Министерството на народното просвещение може да определя премии по конкурс за съставяне на учебници за горните класове на гимназиите и специ- алните училища. Чл. 3. Никой учебник не може да бъде въведен в училищата, ако предварително не е прегледан и одобрен от Министерството на народното просвещение. Чл.

JOHN DEWEY: HOW WE THINK (1910)

John Dewey (1859 – 1952)

ИНФОРМАЦИЯ ЗА СПЕЦИАЛНОСТИТЕ В ОБЛАСТТА НА ПРИРОДНИТЕ НАУКИ В СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ

1. Биология Студентите от специалност Биология придобиват знания и практически умения в областта на биологическите науки, като акцентът е поставен на организмово равнище. Те се подготвят да изследват биологията на организмите на клетъчно- организмово, популационно и екосистемно ниво в научно-функционален и прило- жен аспект, с оглед на провеждане на научно-изследователска, научно-приложна, производствена и педагогическа дейност. Чрез широк набор избираеми и факул- тативни курсове студентите

Книжка 3
УЧИТЕЛИТЕ ПО ПРИРОДНИ НАУКИ – ЗА КОНСТРУКТИВИСТКАТА УЧЕБНА СРЕДА В БЪЛГАРСКОТО УЧИЛИЩЕ

Адриана Тафрова-Григорова, Милена Кирова, Елена Бояджиева

ПОВИШАВАНЕ ИНТЕРЕСА КЪМ ИСТОРИЯТА НА ХИМИЧНИТЕ ЗНАНИЯ И ПРАКТИКИ ПО БЪЛГАРСКИТЕ ЗЕМИ

Людмила Генкова, Свобода Бенева Българско дружество за химическо образование и история и философия на химията

НАЧАЛО НА ПРЕПОДАВАНЕТО НА УЧЕБЕН ПРЕДМЕТ ХИМИЯ В АПРИЛОВОТО УЧИЛИЩЕ В ГАБРОВО

Мария Николова Национална Априловска гимназия – Габрово

ПРИРОДОНАУЧНОТО ОБРАЗОВАНИЕ В БЪЛГАРИЯ – ФОТОАРХИВ

В един дълъг период от време гимназиалните учители по математика, физика, химия и естествена

Книжка 2
„МАГИЯТА НА ХИМИЯТА“ – ВЕЧЕР НА ХИМИЯТА В ЕЗИКОВА ГИМНАЗИЯ „АКАД. Л. СТОЯНОВ“ БЛАГОЕВГРАД

Стефка Михайлова Езикова гимназия „Акад. Людмил Стоянов“ – Благоевград

МЕЖДУНАРОДНАТА ГОДИНА НА ХИМИЯТА 2011 В ПОЩЕНСКИ МАРКИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ЗА ПРИРОДНИТЕ НАУКИ И ЗА ПРАКТИКУМА ПО ФИЗИКА (Иванов, 1926)

Бурният развой на естествознанието във всичките му клонове през XIX –ия век предизвика дълбоки промени в мирогледа на културния свят, в техниката и в индустрията, в социалните отношения и в държавните интереси. Можем ли днес да си представим един философ, един държавен мъж, един обществен деец, един индустриалец, просто един културен човек, който би могъл да игнорира придобив- ките на природните науки през последния век. Какви ужасни катастрофи, какви социални сътресения би сполетяло съвре

Книжка 1
MURPHY’S LAW IN CHEMISTRY

Milan D. Stojković

42-рa МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Цанова

СЕМЕЙНИ УЧЕНИЧЕСКИ ВЕЧЕРИНКИ

Семейството трябва да познава училишето и училишето трябва да познава семейството. Взаимното познанство се налага от обстоятелството, че те, макар и да са два различни по природата си фактори на възпитанието, преследват една и съща проста цел – младото поколение да бъде по-умно, по-нравствено, физически по-здраво и по-щастливо от старото – децата да бъдат по-щастливи от родителите