Обучение по природни науки и върхови технологии

2017/3, стр. 402 - 419

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon
Abolfazl Semnani
E-mail: a.semnani1341@gmail.com
Department of Chemistry
Shahrekord University
Shahrekord, P.O. Box 115, Iran
Ramin Jaberzadeh Ansari
Hamid Shakoori Langeroodi
Mahboube Shirani
Shima Ghanavati Nasab

Резюме: Two potent mathematical and statistical methods of response surface methodology (RSM) and genetic algorithm (GA) based on artificial neural network (ANN) were employed for prediction and optimization of three-constituent synthetic engine oil. Polyalpha olephin-4 (PAO4) Hitec 5780 (HI 5780), and Hitec 11100 (HI 11100) were used as base oil and the additives of the engine oil, respectively. The models were applied for the percentage of oil constituents and viscosity at 40 ˚C (Vis at 40 ˚C), viscosity at 100 ˚C (Vis at 100 ˚C), Viscosity index (VI), flash point and Noack of the finished oil. The range of the viscosity at 40 ºC and 100 ºC were selected according to ISO viscosity grade for engine oil. The optimization includes maximization of FP and VI and minimization of Noack. The obtained results showed that ANN has higher potential and capability and more accuracy for prediction and optimization of the process.

Ключови думи: engine oil formulation; PAO4; modeling; mixture design; artificial neural network; genetic algorithm

Introduction

The main function of lubricants is the reduction of wear and friction (Richardson, 2000). Automobile engine lubricating oil mainly contains base oil and some additives. Generally, the properties of lubricant are enhanced by engine oil additives. The significant roles of additives are to control deposition of lacquer and sludge, reduce corrosion, wear and oxidation, alter physical properties including pour point, flash point and modify chemical properties (Totten, 2006). The base oils are classified into five groups. Groups I-III are obtained from mineral sources, group IV oils are all polyalphaolephin (PAO) and group V oils are all other base stocks which are not included in group I-IV (Korcek & Jensen, 1976; Mensah-Brown, 2013; Murray et al., 1982). Synthetic base stocks which are used in motor oil formulation include esters, polyisobutylenes (PIB), polyalphaolephin, and polyalkalene glycols (PAG). PAO is one of the most widely used synthetic base oils which comparing to other synthetic oils and mineral oils, has the advantages such as better performance, higher viscosity index, better thermal oxidation stability and higher flash points. However, PAOs are more expensive than mineral oils (Mang & Dresel, 2007). The society of automotive engineers (SAE) classified motor oils according to the oil viscosity. Furthermore, American Petroleum Institute (API) classified motor oils according to the type of fuel into two general groups of Gasoline oil (with symbols (S)) and diesel oil (with symbol (C)) identified (Khalilian et al., 2016). RSM is a set of mathematical techniques which describes the relation between several independent variables (Tung & McMillan, 2004). The techniques were developed by Box and Willson (Myers et al., 2016) Mixture design is a special class of RSM techniques which is considered as the technology of the quality to reach the best of a product and response depending only on the amount of components present in the mixtures (Box & Wilson, 1951; Cafaggi et al., 2003). These components are dependent to each other. The sum of total parameters is exactly 100%. ANN is useful for identifying the relation between the components and the properties of the oil. These models have been applied to different systems (Brandvik & Daling, 1998; Dutta et al., 2010; Kumar & Porkodi, 2009). The main advantages of ANN models are their ability to identify both linear and nonlinear models, disregard of the nature of the original process. In addition, they are easy to implement and deliver good performance. After establishing the neural network-based model, the optimization is conducted using genetic algorithm. Genetic algorithm is a stochastic technique based on evolutionary algorithms. This algorithm search for all possible solutions, measure their fitness and reproduce new solutions in order to achieve global optima (Bezerra et al., 2008). The principal advantage of genetic algorithm is its independency on the error surface. Therefore, multi-dimensional, non-differential, non-continuous, and even non-parametrical problems can be solved using genetic algorithm.

In this work, the best formulation of the engine oil 5W40 SN containing of PAO4 as base oil as well as, HI 5780 and Hi11100 as additives was obtained. Vis at 40 ˚C and at 100 ˚C, VI, F.P., and Noack were optimized to achieve the best formulation. RSM-mixture design and GA based on ANN are used for modeling and optimization purpose. Finally, the efficiencies of both models were compared by a set of experimental data provided by extreme vertices designs.

Experimental

Engine oil constituents

The following components were used: PAO4, HI 5780 and HI 11100 from ELA Company. The role of HI 1100 and HI 5780 is VI improver. In each experiment, the constituents were blended and stirred for 30 min.

Instrumental

VI, Vis at 40 ˚C, and Vis at 100 ˚C were performed by viscometer Anton bar model SVM 3000. Flash points were determined by flash point tester Herzog model HC852 and Noack was determined by Noack tester Tajhiz Gostar Apadana.

Test method

Different tests were executed according to ASTM D-445 for viscosity at 100 ˚C, 40 ˚C, ASTM D-2270 for viscosity index, ASTM D- 92 for flash point, ASTM D-97 for pour point and ASTM D-5800 for Noack.

Mathematical and statistical modeling
In this study, two different methods were applied to find the best for
mulation for the engine oil (5W40SN) production. The first method was
implemented using Minitab17.0 software. The results were analyzed by
executing following steps: (1) establishing the surface model: As mix
ture design and RSM were applied on the process the sequential F-test
and other adequacy were obtained. The criterion for finding best fitting
function are the evaluations of several statistical parameters such as the
multiple correlation coefficient (R 2), the coefficient of variation (CV)

and adjusted multiple correlation coefficient(adjusted R 2) (Goldberg,
1989). According to this information quadratic and linear model were
selected. The selected model for a mixture is shown by Eq. (1) (Lu &
Anderson-Cook 2012);

Yn(x)=1qiqβiXi+iqjqβijXiXj+β123X1X2X31

where Yn represents the response function of the experimental data (viscosities at 100 ˚C, 40 ˚C, VI, FP and Noack), x1, x2, x3, x4, x5, and x6 are independent variables and βij represents the coefficients of the interaction parameters; (2) analysis of variance (ANOVA). After analyzing each response, multi responses optimization was employed with numerical tools using Minitab 17.0.

In the second method, a neural network was firstly trained to use as a function for linking the components and the properties of the engine oil. Then using the same fitness function as the first method, genetic algorithm was applied to find the best formulation of the engine oil.

Procedure

The first method is categorized under RSM which includes approximation of responses using low-order polynomial with interaction and optimum level using methods like steepest ascent. The first step is to find a relation between the components and the properties using experimental data. Then, an appropriate criterion for measuring the quality of responses has to be established. Finally, the optimal mixture is found by using an optimization approach.

ANN is a calculation model that endeavors to simulate the functionalities and structure of biological neural networks. It is a parallel broadcast processing system combined of neurons (node) and connection (weights). In this study suggested the use of RSM and a genetic algorithm based on ANN to find optimizing of engine oil formulation (Orives et al., 2014).

Results and discussion

Experimental design by RSM

Experimental design was generated with the Minitab 17.0 at the interest concentration range. An extreme vertices design was based on a lower and upper bound on their component amount (Maran et al., 2014; Maran et al., 2013) (Eq. (2):

a jXj=1 and Lj X jU(2) j

where Xj = component proportion; LjAccordingISOviscositygradethe = lower constraint; Uj = upper constraint.

to following constraints were imposed on the components:

x 1+ x 2+ x 3 = 100 ,57 x1 77 ,13 x 2 33 and 9.5 x 3 11.0

where x1, x2, and x3 are the percentages of PAO4, 5780, and HI 11100 respectively.

The responses for the dependent variables, Vis at 100˚C, Vis at 40˚C, VI, FP, and Noack were obtained by mixing the three components of the engine oil according to the suggested conditions (Table 1). A quadratic and linear model were selected and fitted to the obtained results (Mourabet et al., 2014).

Table 1. Extreme vertices experimental design and obtained responses for the dependent variables

Obtained responsesRunPAO45780HIHI-11100162.227.99.8Suggested formulation 112.0 19.1 193.0 224.0 4.9 2 76.0 13.0 11.0 49.7 9.5 180.6 229.0 6.8 3 57.0 32.0 11.0 143.0 23.3 194.5 220.0 4.4 4 71.9 18.2 9.8 64.1 12.0 186.8 228.0 6.1 5 71.4 17.9 10.5 64.4 12.0 186.1 229.0 6.1 6 57.0 33.0 10.0 147.8 24.0 195.4 220.0 4.2

5.0

877.013.59.549.09.4180.9230.06.8961.927.910.0107.918.5192.6221.05.01077.013.010.049.09.4180.9232.06.81157.533.09.5146.123.8195.0217.04.31266.922.910.184.515.1190.3226.05.41371.917.910.064.212.0187.3230.06.1761.927.410.5108.618.6192.2222.0

Modeling by RSM

The assessment of every dependent variable was carried out by using quadratic and linear model which contained quadratic and linear terms. The ANOVA results displayed the linear, interactive and quadratic relationship between the effects of independent variables on dependent variable. The significance of each term was assessed according to their corresponding p-values. The p-value reveals the significance of each variable. The p-value less than 0.05 shows that variable is significant and the p-value greater than 0.05 indicates that variable is insignificant (Tschoegl, 2012). The Fisher’s F-test (F values) were measured and found to be high with very low probability value (p < 0.05), which displays a high degree of adequacy of model and also indicate that the process variable combinations were highly significant (Maran et al., 2014). Determination coefficient (R 2), correlation coefficient (R) and adjusted determination coefficient (R2 ) and coefficient of variance (CV) were

a

also determined to evaluate the suitability of the model. The determination coefficient (R2) value of the regression model indicated that only the values of the total variations were not explained by the proposed model (Maran et al., 2013). The large value of the adjusted determination coefficient (R 2 ) ina dicated that the model was highly significant. The regression equations were obtained after the analysis of variance (ANOVA). These equations represented the level of Vis at 100˚C, Vis 40 ˚C, VI, FP, PP, and Noack as a function of PAO4, HI 5780 and HI 11100. Eq. (3) was adjusted to fit experimental data and Y1 represents the viscosity at 40 ˚C (cSt).

Y 1 =Visat 40C =+0.88378*X1+12.62910*X2+30.79787*X3-0.14319*X1 *

X2 -0.37837*X1 *X 3 -0.43370*X2 *X 3 (3)

The model F-value of 1069.8 implies that the model is significant. Values of p< 0.05 indicate that the model terms are significant according to ANOVA (Table 2) yielding an experimental R2 of 99.87 % and the predicted R2 of 99.43 % which are in reasonable agreement with the adjusted R2 of 99.78 %.

Table 2. ANOVA for response of the Viscosity at 40 ˚C

SourceSum ofsquaresDOF*MeansquareF-valuep-valueModel17401.153480.21069.8<0.05signicantResidual22.773.25CorrectedTotal17423.812

Eq. (4) was adjusted to the experimental data to show the model, where Y2 is viscosity at 100 ˚C (cSt).

Y2 =Visat100C =+0.08986*X1 +1.62015*X2+2.18304*X3-0.016322X1 *

X 2 -0.025479*X1 *X 3 -0.034224*X2 *X3 (4)

The proposed model was analyzed by using analysis of variance (ANOVA). As the results indicated in Table 3, the F-value of the model equals to 1182.9 which implies that the model is significant and the values of p < 0.05 indicate the model terms are significant. The predicted (R2) was 99.47 % and the adjusted R2was99.80 % as shown in Table 3.

Table 3. ANOVA for response of the Viscosity at 100 ˚C

SourceSum ofsquaresDOF*MeansquareF-valuep-valueModel378.3575.61182.98<0.05signicantResidual0.4570.064CorrectedTotal378.212

VI is a measure of the change of viscosity with variations in temperature. The higher VI value shows that oil viscosity changes with temperature. VI is an important factor for quality of engine oils (Maran et al., 2014). Table 4 shows ANOVA response for VI.

Table 4. ANOVA for response of the VI

SourceSum ofsquaresDOFMeansquareF-valuep-valueModel363.2572.6197.5<0.05signicantResidual2.5870.37CorrectedTotal365.812

Consequently, Eq. (5) was presented,

Y 3 =VI = +0.65384*X1 +0.34048*X2 -71.69262*X+0.021404*X31 *

X2 +0.91217*X1 *X3 +0.91935*X2 *X3 (5)

where Y4 represents the dependent variable of VI. Moreover, x1 and x2 influence the response positively and x3 negatively. The F-value of the model equals 197.5 which imply that the model is significant and the values of p < 0.05 indicate the model terms are significant; the predicted R2 of 96.22% is in reasonable agreement with the adjusted R2 of 98.79%.

The flash point is a measure of the tendency of oil to form a flammable mixture with air under controlled laboratory conditions (Aleme & Barbeira, 2012). The minimum FP, according to the ISO 5W 40 SN, is 200 °C in engine oil. Based on the obtained results, the predictive Eq. (6) was produced and (Y4) represents the dependent variable of flash point.

Y = F.P =2.4637x + 2.5037x + 0.3694(6)x

(6)4 1 2 3

As analysis of variance shows in Table 5, this model is significant. F-value 61.7 and P-value (less than 0.05) of the model imply that the model is significant. The predicted R2 of 84.4% is in reasonable agreement with the adjusted R2 of 91.01%. The Noack test is employed to measure the evaporative loss of an oil at 250 °C after 1 h (Waddoups et al., 2001).

Table 5. ANOVA for response of the F.P

SourceSum ofsquaresDOFMeansquareF-valuep-valueModel259.32129.661.70.4806signicantResidual21.0102.1CorrectedTotal280.312

The Noack is measured traditionally by ASTM D5800. The predictive Eq. (7) represents the response of the dependent variable Y5 (Noack). According to the obtained ANOVA results in Table 6, the model F-value is 1161.7 and the p-value is <0.05 which reveal that the model is significant. The predicted (R2) was 99.35 % and the adjusted R2 was 99.49 %.

Y5 = Noack =0.0858x10.0399x2 + 0.0686x(7)3

Table 6. ANOVA for response of Noack

SourceSum ofsquaresDOFMeansquareF-valuep-valueModel11.325.651161.7<0.05signicantResidual0.049104.863E-003CorrectedTotal11.3512

Optimization by RSM

According to the responses (Y1, Y2, Y3, Y4, and Y5) of the obtained multiresponse optimization were evident. In the case of large number of responses, desirability function is the most popular to be used. In 1980 Suich and Derringer found the desirability function to find the best value for all response (Kim et al., 2002; Myers et al., 2016).

1

Ù(1×2××)1Ù(∏)

=1

where n is the number of responses. Desirability always possess values between 0 and 1, where di=0 for an undesirable response, and di=1 a thoroughly desirable response (Das et al., 2009).

Final results of RSM

In order to optimize the process, FP and VI were maximized. Moreover, for Vis at 100 ˚C and 40 ˚C the restriction of (12.6-16) cSt and Vis (60-100) were set respectively for engine oil. Noack was minimized. The optimum formulation displayed a Viscosity at 100 ˚C, 40 ˚C, VI, FP, Noack and PP of 85.0 cSt, 15.0 cSt, 190.6, 225 ˚C, 5.0, respectively when the formulation was composed of 66.9% PAO 4, 22.9% HI 5780, and 10.1% HI 11100. The obtained optimum conditions were used to validate the model prediction. Validation was performed in triplicate and the average values for Viscosity at 100 ˚C, 40 ˚C , VI, FP , Noack were 84.5 cSt, 15.1 cSt, 190.3, 224 ˚C , 5.4, and -39 , respectively.

Modeling by ANN: prediction by ANN

In this work, a feed-forward neural network (FF ANN) was employed to establish the relation between components and outputs. The general structure of FF ANN is shown in Fig. 1.

Fig. 1. Structure of feed-forward network

The first step is to determine the number of neurons in the hidden layer. There are several methods for calculating the number of neurons (Gómez et al., 2009). However, there is not any determinate method to use. Considering the available methods, we selected the number of neurons using trial and error. The next step is to select the learning algorithm, in order to reach the best weights for the neural network. The choice of a suitable learning method is a crucial part of modeling by ANN, because the best training of network is achieved by minimizing the error function. The back-propagation algorithm was used for training the understudy feed-forward ANN. To this aim, the Levenberg– Marquardt optimization algorithm is employed for its training. The last step is to validate and to verify the prediction model on the basis of error function. In this work, the mean square error (MSE) was employed as the error function. Also, the correlation coefficient (r) was selected as a parameter to show the predictive ability of the network. The same experimental data (Table 1) were used for training the artificial neural network. The data were randomly dispersed into three groups, 70% in the training set, 15% in the test set and 15% in the validation set. After repetition of the trails, a network with 5 hidden neurons showed the best performance. The result is shown in Fig. 2. The MSE value was obtained to be 0.84 which is shown in Fig. 3. The weights which are obtained from the final trained network are shown in Tables 7 and 8. The ANN prediction results are indicated in Table 9.

Fig. 2. Optimal architecture of ANN model

Fig. 3. Evolution of network performance (MSE) during training phase using Levenberg-Marquardt

Table 7. Optimal values of the first layer of the network weights

HN* 1HN 2HN 3HN 4HN 5Input1-0.05451.16461.36670.45801.0161Input22.3945-1.7114-0.9790-1.7227-1.5985Input31.37870.1334-2.75520.3063-2.3289Bias-1.2436-1.39731.87971.41951.7555* Hidden Neuron

Table 8. Optimal values of the output layer of the network weights

Output1Output2Output3Output4Output5HN1-0.1467-0.0968-0.1545-2.5956-0.8856HN2-0.3489-0.3887-0.71070.17570.5220HN3-0.1095-0.20130.09921.63760.2603HN4-0.7940-0.7375-0.3786-0.27040.1387HN5-0.1508-0.0074-0.2504-3.5385-0.8456Bias0.22110.19970.06470.15900.0846

Table 9. Input data and predicted response which have been obtained by ANN

RunInput data suggestedby experimental designOutput data obtained by ANNPAO4HI5780HI-11100Vis at40Visat100VIFPNoack162.227.99.8112.119.0192.9223.85.0276.013.011.049.89.6180.9229.16.7357.032.011.0143.023.3194.5220.04.5471.918.29.866.512.3186.1228.76.1571.417.910.564.411.9185.4228.36.1657.033.010.0147.623.7195.4220.84.3761.927.410.5109.218.6192.3221.94.9877.013.59.549.99.5181.2230.06.7961.927.910.0108.318.5192.6220.94.81077.013.010.049.19.4181.0230.06.81157.533.09.5146.323.8195.1217.34.31266.922.910.183.915.0190.6226.35.41371.917.910.064.812.0185.6228.86.2

Optimization by genetic algorithm

In this work, the genetic algorithm was used to obtain an optimal condition to minimize a number of preliminary experiments. GA-ANN was employed to find the properties of different mixtures. The GA with the following properties is used to determine the controllers’ parameters: chromosome population = 40; number of generation = 100; crossover fraction = 0.8; elite count = 5 %; migration fraction = 0.2; migration interval = 20.

The optimum formulation using the genetic algorithm displayed a Vis at 100 ˚C, Vis at 40 ˚C, VI, FP, Noack and PP of 82.1 cSt, 14.6 cSt, 188.4, 225 ˚C , 5.6, and -39 respectively when the formulation was composed of 67.0 .% PAO4, 22.1% 5780, and 10.8% HI 11100. Validation was performed in triplicate and the average values for Viscosity at 100 ˚C, 40 ˚C , VI, FP and Noack were 82.1 cSt, 14.6 cSt, 188.5, 226 ˚C ,5.6, and -39 , respectively. The results of optimization are similar to the experimental data.

Therefore, the combination of ANN and GA (i.e. GA-ANN) find the solution with minimum error from experimental data. Also, the mean fitness value in each generation is shown in Fig 4.

Fig. 4. Mean fitness value for generations

Comparison mixture design and ANN

The predicted data obtained from RSM-mixture design and ANN and the experimental data were compared. To this aim, a new set of 4 experiments was considered in the acceptable range, which does not belong to the training data set (Table 10). Table 11 shows the predicted data of RSM-mixture design and ANN.

Table 10. Experimental range for predict

RunPAO4HI 5780HI11100A60.000029.000011.0000B64.000026.50009.5000C74.000015.000011.0000D69.000020.500010.5000

Table 11. Comparison of modeling powers of RSM and ANN

PropertyRunABCDVis at 40ºCActual values116.0105.053.975.5Prediction of ANN118.5106.354.176.4Error of ANN-2.5-1.3-0.2-0.9Prediction of RSM120.8101.755.173.2Error of RSM-4.83.3-1.22.3Vis at 100ºCActual values19.618.010.213.8Prediction of ANN19.918.210.313.9Error of ANN-0.3-0.2-0.1-0.1Prediction of RSM20.217.610.513.4Error of RSM-0.60.4-0.30.4VIActual values192.0192.7182.0189.2Prediction of ANN192.8192.6181.8188.9Error of ANN-0.80.10.20.3Prediction of RSM193.0192.1182.8188.3Error of RSM-1.00.6-0.80.9FPActual values220.0227.0222.0224.0Prediction of ANN219.5227.9228.1226.8Error of ANN0.5-0.9-6.1-2.8Prediction of RSM221.4223.1229.9226.6Error of RSM-1.43.9-7.9-2.6NoackActual values4.95.46.55.6Prediction of ANN4.75.36.65.7Error of ANN0.20.1-0.1-0.1Prediction of RSM4.75.06.55.8Error of RSM0.20.40-0.2

Obviously ANN was more powerful in prediction of the process. In order to evaluate the precision and accuracy of both applied models, the mean squared error (MSE) was calculated for RSM and ANN. MSE can be defined by Eq. (9):

=1∑(,,)2

where MSE is the mean squared error; N is the number of experimental data points; yi,exp is the experimental value of training sample i and yi,pred is the predicted value from the neural network for training sample i.

The MSE was 130.82 and 55.9 for RSM and ANN respectively. Moreover, a regression analysis for predicted data by ANN and experimental data was done. As the results show in Fig. 5, all data scatter around the 45º line which is an indicative for high suitability of ANN prediction for the process. According to the obtained results, ANN had higher predictive accuracy than RSM-mixture design even with

limited number of experiments.

Fig. 5. Network model with training, validation, test and all predictions

Comparison of optimization by RSM and GA-ANN

RSM and GAANN were used to predict and optimize the proposed process. Table 12 and Table 13 show the comparison of the results obtained by two methods for multi-objective which indicate the suitability of both RSM and GA ANN for this study.

Table 12. Comparison of optimization powers of GA-ANN and RSM

MethodComponentConcentration

PAO4 69.3 Optimization by GA-ANN HI5780 21.1 HI11100 9.5

PAO4 67.0 Optimization by RSM HI5780 22.0 HI11100 111.0

Table 13. Comparison of result by GA-ANN and RSM

PropertyRunVis at 40ºCResult by GA-ANN80.5Result by RSM80.8Vis at 100ºCResult by GA-ANN14.5Result by RSM14.5VIResult by GA-ANN189.8Result by RSM188.9FPResult by GA-ANN228.0Result by RSM225.0NoackResult by GA-ANN5.6Result by RSM5.6

Conclusions

In this paper, RSM Mixture design with six independent variables and ANN with five neurons in hidden layer were used for formulation of engine oil. RSM and ANN models were successfully employed for prediction and optimization of the process. The comparison of the obtained results from two statistical methods of RSM- mixture design and ANN confirmed that ANN model had better prediction capability of target values. In this study, the genetic algorithm was used as the optimization algorithm. The results indicate that there was no significant difference between the experimental and predicted data. Achieving optimized components by application of genetic algorithm leads to an economical formulation due to the lower consumption of expensive additives HI 5780 (preserving the properties of oil at their optimal values based on ISOgrade for engine oil).

Acknowledgments: The financial support of this project by Shahrekord University is appreciated. The authors were also partially supported by the Center of Excellence for Mathematics, Shahrekord University.

REFERENCES

Aleme, H.G. & Barbeira, P.J.S. (2012). Determination of flash point and cetane index in diesel using distillation curves and multivariate calibration. Fuel, 102, 129 – 134.

Bezerra, M.A., Santelli, R.E., Oliveira, E.P,. Villar, L.S. & Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965 – 977.

Box, G.E.P. & Wilson, K.B. (1951). On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. B, 13, 1 – 45.

Brandvik, P.J. & Daling, P.S. (1998). Optimisation of oil spill dispersant comp osition by mixture design and response surface methods. Chemometrics & Intelligent Laboratory Systems, 42, 63 – 72.

Cafaggi, S., Leardi, R., Parodi, B., Caviglioli, G. & Bignardi, G. (2003). An example of application of a mixture design with constraints to a pharmaceutical formulation. Chemometrics & Intelligent Laboratory Systems, 65, 139 – 147.

Das, P., Mukherjee, S., Ganguly, S., Bhattacharyay, B.K. & Datta, S. (2009). Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function. Comp. Materials Sci., 45, 104 – 110.

Dutta, S., Parsons, S.A., Bhattacharjee, C., Bandhyopadhyay, S. & Datta, S. (2010). Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO2 surface. Expert Systems with Applications, 37, 8634 – 8638.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

Gómez, I., Franco, L. & Jerez, J.M. (2009). Neural network architecture selection: can function complexity help. Neural Processing Lett., 30, 71 – 87.

Khalilian, H., Semnani, A., Haddadi, H. & Nekoeinia, M. (2016). Multiresponse optimization of a hydraulic oil formulation by mixture design and response surface methods. J. Tribology, 138, art. no. 021801.

Kim, D., Rhee, S. & Park, H. (2002). Modelling and optimization of a GMA welding process by genetic algorithm and response surface methodology. Int. J. Production Res., 40, 1699 – 1711.

Korcek, S. & Jensen, R.K. (1976). Relation between base oil composition and oxidation stability at increased temperatures. ASLE Transactions, 19, 83 – 94.

Kumar, K.V. & Porkodi, K. (2009). Modelling the solid–liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chem. Eng. J., 148, 20 – 25.

Lu, L. & Anderson-Cook, C.M. (2012). Rethinking the optimal response surface design for a first-order model with two-factor interactions, when protecting against curvature. Quality Engineering, 24, 404 – 422.

Mang, T. & Dresel, W (2007). Lubricants and lubrication. Weinheim: John Wiley & Sons.

Maran, J.P., Manikandan, S. & Mekala, V. (2013). Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box–Behnken design with desirability function. Ind. Crops & Products. 49, 304 – 311.

Maran, J.P., Priya, B. & Manikandan, S. (2014). Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. J. Food Sci. & Tech., 51, 1938 – 1946.

Mensah-Brown, H. (2013). Optimization of the production of lubricating oil from rerefined used lubricating oil using response surface methodology. ARPN J. Eng. & Appl. Sci., 8, 749 – 756.

Mourabet, M., El Rhilassi, A., Bennani-Ziatni, M. & Taitai, A. (2014). Comparative study of artificial neural network and response surface methodology for modelling and optimization the adsorption capacity of fluoride onto apatitic tricalcium phosphate. Universal J. Appl. Math., 2, 84 – 91.

Murray, D., Clarke, C., MacAlpine, G. & Wright, P. (1982). The effect of base stock composition on lubricant oxidation performance. SAE Technical Paper, art. no. 821236.

Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. (2016). Response surface methodology: process and product optimization using designed experiments. Hoboken: John Wiley & Sons.

Orives, J.R., Galvan, D., Coppo, R.L., Rodrigues, C.H.F., Angilelli, K.G. & Borsato, D. (2014). Multiresponse optimisation on biodiesel obtained through a ternary mixture of vegetable oil and animal fat: simplexcentroid mixture design application. Energy Conversion & Management, 79, 398 – 404.

Richardson, D.E. (2000). Review of power cylinder friction for diesel engines. J. Eng. Gas Turbines & Power, 122, 506 – 519.

Totten, G.E. (2006). Handbook of lubrication and tribology: application and maintenance. Boca Raton: CRC Press.

Tschoegl, N.W. (2012). The phenomenological theory of linear viscoelastic behavior: an introduction. Berlin: Springer.

Tung, S.C. & McMillan, M.L. (2004). Automotive tribology overview of current advances and challenges for the future. Tribology Inter., 37, 517 – 536.

Waddoups, M., Hartley, R.J. & Miyoshi, T. (2001). Molybdenum-free low volatility lubricating oil composition. US Patents 6333298 B1.

2025 година
Книжка 4
Книжка 3
ПРАЗНИК НА ХИМИЯТА 2025

Александра Камушева, Златина Златанова

ФАТАЛНИЯТ 13

Гинчо Гичев, Росица Стефанова

ХИМИЯ НА МЕДОВИНАТА

Габриела Иванова, Галя Аралова-Атанасова

Х ИМ ИЯ НА Б АНКНОТИТЕ И МОНЕТИТЕ

Ивайло Борисов, Мая Ганева

АЛУМИНИЙ – „ЩАСТЛИВИЯТ“ 13-И ЕЛЕМЕНТ

Мария Кирилова, Ралица Ранчова

МЕТАЛЪТ НА ВРЕМЕТО

Християна Христова, Мария Стойнова

СЛАДКА ЛИ Е ФРЕНСКАТА ЛУЧЕНА СУПА?

Женя Петрова, Мими Димова

ПАРИТЕ – ИСТОРИЯ И НЕОБХОДИМОСТ

Мария Александрова, Румяна Стойнева

АЛУМИНИЯТ – ОТ ОТПАДЪК ДО РЕСУРС

Стилян Атанасов, Никола Иванов, Галина Кирова

ТАЙНАТА ХИМИЯ НА ШВЕЙЦАРСКИТЕ БАНКНОТИ

Ивайла Николова, Марияна Георгиева

ХИМИЯТА – ДЕТЕКТИВ ИЛИ ПРЕСТЪПНИК?

Алвина Илин, Валентина Ткачова, Петя Петрова

БЕБЕШКИ ШАМПОАН ОТ ЯДЛИВИ СЪСТАВКИ: ФОРМУЛИРАНЕ НА НОВ КОЗМЕТИЧЕН ПРОДУКТ

Хана Крипендорф, 5, Даниел Кунев, 5, Цветелина Стоянова

БЪЛГАРСКОТО ИМЕ НА ДЪЛГОЛЕТИЕТО

Сияна Краишникова, Анелия Иванова

ХИМИЯ НА МОНЕТИТЕ

Кристина Анкова, Сияна Христова, Ростислава Цанева

ХИМИЯ НА ШОКОЛАДА

Камелия Вунчева, Мария-Сара Мандил, Марияна Георгиева

ХИМИЯТА НА ПАРИТЕ

Биляна Куртева, Ралица Ранчова

АЛУМИНИЯТ В КРИОГЕНИКАТА

Даниел Анков, Ива Петкова, Марияна Георгиева

ПРИЛОЖЕНИЕ НА АЛУМИНИЯ ВЪВ ВАКСИНИТЕ

Станислав Милчев, Петя Вълкова

АЛУМИНИЙ: „КРИЛА НА ЧОВЕЧЕСТВОТО – ЛЮБИМЕЦ 13“

Ростислав Стойков, Пепа Георгиева

ХИМИЯТА В ПЧЕЛНИЯ МЕД

Сиана Каракашева, Симона Тричкова, Майя Найденова-Георгиева

ХИМИЯ НА МЛЕЧНИТЕ ПРОДУКТИ

Пламена Боиклиева, 10 клас, Дафинка Юрчиева

ХИМИЯ В МАСЛИНИТЕ

Симона Гочева, Майя Найденова

ХИМИЯ НА ЛЮТОТО

Марта Пенчева, Васка Сотирова

ХИНАП – ИЗСЛЕДВАНЕ НА СЪДЪРЖАНИЕТО НА ВИТАМИН С

Елица Нейкова, Елисавета Григорова, Майя Найденова

ХИМИЯ НA ПAРИТE

Игликa Кoлeвa, Eмилия Ивaнoвa

ВЛИЯНИЕ НА МАРИНАТИТЕ ВЪРХУ МЕСОТО

Емил Мирчев, Галя Петрова

АНАЛИЗ НА ПРИРОДНИ ВОДИ В ОБЩИНА СЛИВЕН

Никола Урумов, Анелия Иванова

ТРИНАДЕСЕТИЯТ ЕЛЕМЕНТ – СПАСИТЕЛ ИЛИ ТИХ РАЗРУШИТЕЛ?

Виктория Дечкова, Никола Велчев, Нели Иванова

Книжка 2
Книжка 1
MATHEMATICAL MODELLING OF THE TRANSMISSION DYNAMICS OF PNEUMONIA AND MENINGITIS COINFECTION WITH VACCINATION

Deborah O. Daniel, Sefiu A. Onitilo, Omolade B. Benjamin, Ayoola A. Olasunkanmi

2024 година
Книжка 5-6
Книжка 3-4
Книжка 1-2
2023 година
Книжка 5-6
ПОДКАСТ – КОГА, АКО НЕ СЕГА?

Христо Чукурлиев

Книжка 3-4
Книжка 2
Книжка 1
2022 година
Книжка 6
METEOROLOGICAL DETERMINANTS OF COVID-19 DISEASE: A LITERATURE REVIEW

Z. Mateeva, E. Batchvarova, Z. Spasova, I. Ivanov, B. Kazakov, S. Matev, A. Simidchiev, A. Kitev

Книжка 5
MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A, Usman M. A., Daniel D. O. Odetunde O. S., Ogunwobi Z. O., Hammed F. A., Olubanwo O. O., Ajani A. S., Sanusi A. S., Haruna A. H.

ПОСТАНОВКА ЗА ИЗМЕРВАНЕ СКОРОСТТА НА ЗВУКА ВЪВ ВЪЗДУХ

Станислав Сланев, Хафизе Шабан, Шебнем Шабан, Анета Маринова

Книжка 4
MAGNETIC PROPERTIES

Sofija Blagojević, Lana Vujanović, Andreana Kovačević Ćurić

„TAP, TAP WATER“ QUANTUM TUNNELING DEMONSTRATION

Katarina Borković, Andreana Kovačević Ćurić

Книжка 3
Книжка 2
КОМЕТИТЕ – I ЧАСТ

Пенчо Маркишки

Книжка 1
DISTANCE LEARNING: HOMEMADE COLLOIDAL SILVER

Ana Sofía Covarrubias-Montero, Jorge G. Ibanez

2021 година
Книжка 6
STUDY OF COMPOSITIONS FOR SELECTIVE WATER ISOLATION IN GAS WELLS

Al-Obaidi S.H., Hofmann M., Smirnov V.I., Khalaf F.H., Alwan H.H.

Книжка 5
POTENTIAL APPLICATIONS OF ANTIBACTERIAL COMPOUNDS IN EDIBLE COATING AS FISH PRESERVATIVE

Maulidan Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, Nisrina Rahma Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto

Книжка 4
Книжка 3
Книжка 2
INVESTIGATION OF 238U, 234U AND 210PO CONTENT IN SELECTED BULGARIAN DRINKING WATER

Bozhidar Slavchev, Elena Geleva, Blagorodka Veleva, Hristo Protohristov, Lyuben Dobrev, Desislava Dimitrova, Vladimir Bashev, Dimitar Tonev

Книжка 1
DEMONSTRATION OF DAMPED ELECTRICAL OSCILLATIONS

Elena Grebenakova, Stojan Manolev

2020 година
Книжка 6
ДОЦ. Д-Р МАРЧЕЛ КОСТОВ КОСТОВ ЖИВОТ И ТВОРЧЕСТВО

Здравка Костова, Елена Георгиева

Книжка 5
Книжка 4
JACOB’S LADDER FOR THE PHYSICS CLASSROOM

Kristijan Shishkoski, Vera Zoroska

КАЛЦИЙ, ФОСФОР И ДРУГИ ФАКТОРИ ЗА КОСТНО ЗДРАВЕ

Радка Томова, Светла Асенова, Павлина Косева

Книжка 3
MATHEMATICAL MODELING OF 2019 NOVEL CORONAVIRUS (2019 – NCOV) PANDEMIC IN NIGERIA

Sefiu A. Onitilo, Mustapha A. Usman, Olutunde S. Odetunde, Fatai A. Hammed, Zacheous O. Ogunwobi, Hammed A. Haruna, Deborah O. Daniel

Книжка 2

Книжка 1
WATER PURIFICATION WITH LASER RADIATION

Lyubomir Lazov, Hristina Deneva, Galina Gencheva

2019 година
Книжка 6
LASER MICRO-PERFORATION AND FIELDS OF APPLICATION

Hristina Deneva, Lyubomir Lazov, Edmunds Teirumnieks

ПРОЦЕСЪТ ДИФУЗИЯ – ОСНОВА НА ДИАЛИЗАТА

Берна Сабит, Джемиле Дервиш, Мая Никова, Йорданка Енева

IN VITRO EVALUATION OF THE ANTIOXIDANT PROPERTIES OF OLIVE LEAF EXTRACTS – CAPSULES VERSUS POWDER

Hugo Saint-James, Gergana Bekova, Zhanina Guberkova, Nadya Hristova-Avakumova, Liliya Atanasova, Svobodan Alexandrov, Trayko Traykov, Vera Hadjimitova

Бележки върху нормативното осигуряване на оценяването в процеса

БЕЛЕЖКИ ВЪРХУ НОРМАТИВНОТО ОСИГУРЯВАНЕ, НА ОЦЕНЯВАНЕТО В ПРОЦЕСА НА ОБУЧЕНИЕТО

ТЕХНОЛОГИЯ

Б. В. Тошев

Книжка 5
ON THE GENETIC TIES BETWEEN EUROPEAN NATIONS

Jordan Tabov, Nevena Sabeva-Koleva, Georgi Gachev

Иван Странски – майсторът на кристалния растеж [Ivan Stranski

ИВАН СТРАНСКИ – МАЙСТОРЪТ, НА КРИСТАЛНИЯ РАСТЕЖ

Книжка 4

CHEMOMETRIC ANALYSIS OF SCHOOL LIFE IN VARNA

Radka Tomova, Petinka Galcheva, Ivajlo Trajkov, Antoaneta Hineva, Stela Grigorova, Rumyana Slavova, Miglena Slavova

ЦИКЛИТЕ НА КРЕБС

Ивелин Кулев

Книжка 3
ПРИНЦИПИТЕ НА КАРИЕРНОТО РАЗВИТИЕ НА МЛАДИЯ УЧЕН

И. Панчева, М. Недялкова, С. Кирилова, П. Петков, В. Симеонов

UTILISATION OF THE STATIC EVANS METHOD TO MEASURE MAGNETIC SUSCEPTIBILITIES OF TRANSITION METAL ACETYLACETONATE COMPLEXES AS PART OF AN UNDERGRADUATE INORGANIC LABORATORY CLASS

Anton Dobzhenetskiy, Callum A. Gater, Alexander T. M. Wilcock, Stuart K. Langley, Rachel M. Brignall, David C. Williamson, Ryan E. Mewis

THE 100

Maria Atanassova, Radoslav Angelov

A TALE OF SEVEN SCIENTISTS

Scerri, E.R. (2016). A Tale of Seven Scientists and a New Philosophy of Science.

Книжка 2
DEVELOPMENT OF A LESSON PLAN ON THE TEACHING OF MODULE “WATER CONDUCTIVITY”

A. Thysiadou, S. Christoforidis, P. Giannakoudakis

AMPEROMETRIC NITRIC OXIDE SENSOR BASED ON MWCNT CHROMIUM(III) OXIDE NANOCOMPOSITE

Arsim Maloku, Epir Qeriqi, Liridon S. Berisha, Ilir Mazreku, Tahir Arbneshi, Kurt Kalcher

THE EFFECT OF AGING TIME ON Mg/Al HYDROTALCITES STRUCTURES

Eddy Heraldy, Triyono, Sri Juari Santosa, Karna Wijaya, Shogo Shimazu

Книжка 1
A CONTENT ANALYSIS OF THE RESULTS FROM THE STATE MATRICULATION EXAMINATION IN MATHEMATICS

Elena Karashtranova, Nikolay Karashtranov, Vladimir Vladimirov

SOME CONCEPTS FROM PROBABILITY AND STATISTICS AND OPPORTUNITIES TO INTEGRATE THEM IN TEACHING NATURAL SCIENCES

Elena Karashtranova, Nikolay Karashtranov, Nadezhda Borisova, Dafina Kostadinova

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Василева

2018 година
Книжка 6

ЗДРАВЕ И ОКОЛНА СРЕДА

Кадрие Шукри, Светлана Великова, Едис Мехмед

РОБОТИКА ЗА НАЧИНАЕЩИ ЕНТУСИАСТИ

Даниела Узунова, Борис Велковски, Илко Симеонов, Владислав Шабански, Димитър Колев

DESIGN AND DOCKING STUDIES OF HIS-LEU ANALOGUES AS POTENTIOAL ACE INHIBITORS

Rumen Georgiev, , Tatyana Dzimbova, Atanas Chapkanov

X-RAY DIFFRACTION STUDY OF M 2 Zn(TeО3)2 (M - Na, K) ТELLURIDE

Kenzhebek T. Rustembekov, Mitko Stoev, Aitolkyn A. Toibek

CALIBRATION OF GC/MS METHOD FOR DETERMINATION OF PHTHALATES

N. Dineva, I. Givechev, D. Tanev, D. Danalev

ELECTROSYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES WITH SIMULTANEOUS EXTRACTION INTO P-XYLENE

S. S. Fomanyuk, V. O. Smilyk, G. Y. Kolbasov, I. A. Rusetskyi, T. A. Mirnaya

БИОЛОГИЧЕН АСПЕКТ НА РЕКАНАЛИЗАЦИЯ С ВЕНОЗНА ТРОМБОЛИЗА

Мариела Филипова, Даниела Попова, Стоян Везенков

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО VOLUME 27 / ГОДИНА XXVII, 2018 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА 3 / NUMBER 3: 313 – 472 КНИЖКА 4 / NUMBER 4: 473 – 632 КНИЖКА 5 / NUMBER 5: 633 – 792 КНИЖКА 6 / NUMBER 6: 793 – 952 КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА

(South Africa), A. Ali, M. Bashir (Pakistan) 266 – 278: j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)fx and nd1 Configurations and Correlation with L-S Terms / P. L. Meena (India) 760 – 770: Methyl, тhe Smallest Alkyl Group with Stunning Effects / S. Moulay 771 – 776: The Fourth State of Matter / R. Tsekov

Книжка 5
ИМОБИЛИЗИРАНЕНАФРУКТОЗИЛТРАНСФЕРАЗА ВЪРХУКОМПОЗИТНИФИЛМИОТПОЛИМЛЕЧНА КИСЕЛИНА, КСАНТАН И ХИТОЗАН

Илия Илиев, Тонка Василева, Веселин Биволарски, Ася Виранева, Иван Бодуров, Мария Марудова, Теменужка Йовчева

ELECTRICAL IMPEDANCE SPECTROSCOPY OF GRAPHENE-E7 LIQUID-CRYSTAL NANOCOMPOSITE

Todor Vlakhov, Yordan Marinov, Georgi. Hadjichristov, Alexander Petrov

ON THE POSSIBILITY TO ANALYZE AMBIENT NOISERECORDED BYAMOBILEDEVICETHROUGH THE H/V SPECTRAL RATIO TECHNIQUE

Dragomir Gospodinov, Delko Zlatanski, Boyko Ranguelov, Alexander Kandilarov

RHEOLOGICAL PROPERTIES OF BATTER FOR GLUTEN FREE BREAD

G. Zsivanovits, D. Iserliyska, M. Momchilova, M. Marudova

ПОЛУЧАВАНЕ НА ПОЛИЕЛЕКТРОЛИТНИ КОМПЛЕКСИ ОТ ХИТОЗАН И КАЗЕИН

Антоанета Маринова, Теменужка Йовчева, Ася Виранева, Иван Бодуров, Мария Марудова

CHEMILUMINESCENT AND PHOTOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF COCOON EXTRACTS

Y. Evtimova, V. Mihailova, L. A. Atanasova, N. G. Hristova-Avakumova, M. V. Panayotov, V. A. Hadjimitova

ИЗСЛЕДОВАТЕЛСКИ ПРАКТИКУМ

Ивелина Димитрова, Гошо Гоев, Савина Георгиева, Цвета Цанова, Любомира Иванова, Борислав Георгиев

Книжка 4
PARAMETRIC INTERACTION OF OPTICAL PULSES IN NONLINEAR ISOTROPIC MEDIUM

A. Dakova, V. Slavchev, D. Dakova, L. Kovachev

ДЕЙСТВИЕ НА ГАМА-ЛЪЧИТЕ ВЪРХУ ДЕЗОКСИРИБОНУКЛЕИНОВАТА КИСЕЛИНА

Мирела Вачева, Хари Стефанов, Йоана Гвоздейкова, Йорданка Енева

RADIATION PROTECTION

Natasha Ivanova, Bistra Manusheva

СТАБИЛНОСТ НА ЕМУЛСИИ ОТ ТИПА МАСЛО/ ВОДА С КОНЮГИРАНА ЛИНОЛОВА КИСЕЛИНА

И. Милкова-Томова, Д. Бухалова, К. Николова, Й. Алексиева, И. Минчев, Г. Рунтолев

THE EFFECT OF EXTRA VIRGIN OLIVE OIL ON THE HUMAN BODY AND QUALITY CONTROL BY USING OPTICAL METHODS

Carsten Tottmann, Valentin Hedderich, Poli Radusheva, Krastena Nikolova

ИНФРАЧЕРВЕНА ТЕРМОГРАФИЯ ЗА ДИАГНОСТИКА НА ФОКАЛНА ИНФЕКЦИЯ

Рая Грозданова-Узунова, Тодор Узунов, Пепа Узунова

ЕЛЕКТРИЧНИ СВОЙСТВА НА КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА

Ася Виранева, Иван Бодуров, Теменужка Йовчева

Книжка 3
ТРИ ИДЕИ ЗА ЕФЕКТИВНО ОБУЧЕНИЕ

Гергана Карафезиева

МАГИЯТА НА ТВОРЧЕСТВОТО КАТО ПЪТ НА ЕСТЕСТВЕНО УЧЕНЕ В УЧЕБНИЯ ПРОЦЕС

Гергана Добрева, Жаклин Жекова, Михаела Чонос

ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ ЧРЕЗ МИСЛОВНИ КАРТИ

Виолета Стоянова, Павлина Георгиева

ИГРА НА ДОМИНО В ЧАС ПО ФИЗИКА

Росица Кичукова, Ценка Маринова

ПРОБЛЕМИ ПРИ ОБУЧЕНИЕТО ПО ФИЗИКА ВЪВ ВВМУ „Н. Й. ВАПЦАРОВ“

А. Христова, Г. Вангелов, И. Ташев, М. Димидов

ИЗГРАЖДАНЕ НА СИСТЕМА ОТ УЧЕБНИ ИНТЕРНЕТ РЕСУРСИ ПО ФИЗИКА И ОЦЕНКА НА ДИДАКТИЧЕСКАТА ИМ СТОЙНОСТ

Желязка Райкова, Георги Вулджев, Наталия Монева, Нели Комсалова, Айше Наби

ИНОВАЦИИ В БОРБАТА С ТУМОРНИ ОБРАЗУВАНИЯ – ЛЕЧЕНИЕ ЧРЕЗ БРАХИТЕРАПИЯ

Георги Върбанов, Радостин Михайлов, Деница Симеонова, Йорданка Енева

NATURAL RADIONUCLIDES IN DRINKING WATER

Natasha Ivanova, Bistra Manusheva

Книжка 2

АДАПТИРАНЕ НА ОБРАЗОВАНИЕТО ДНЕС ЗА УТРЕШНИЯ ДЕН

И. Панчева, М. Недялкова, П. Петков, Х. Александров, В. Симеонов

STRUCTURAL ELUCIDATION OF UNKNOWNS: A SPECTROSCOPIC INVESTIGATION WITH AN EMPHASIS ON 1D AND 2D 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Vittorio Caprio, Andrew S. McLachlan, Oliver B. Sutcliffe, David C. Williamson, Ryan E. Mewis

j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)f

j-jCOUPLEDATOMICTERMSFORNONEQUIVALENT, ELECTRONS OF (n-f X nd CONFIGURATIONS AND, CORRELATION WITH L-S TERMS

INTEGRATED ENGINEERING EDUCATION: THE ROLE OF ANALYSIS OF STUDENTS’ NEEDS

Veselina Kolarski, Dancho Danalev, Senia Terzieva

Книжка 1
ZAGREB CONNECTION INDICES OF TiO2 NANOTUBES

Sohaib Khalid, Johan Kok, Akbar Ali, Mohsin Bashir

SYNTHESIS OF NEW 3-[(CHROMEN-3-YL)ETHYLIDENEAMINO]-PHENYL]-THIAZOLIDIN-4ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Malesore Pllana, Musaj Pacarizi, Veprim Thaçi, Gjyle Mulliqi-Osmani

2017 година
Книжка 6
GEOECOLOGICAL ANALYSIS OF INDUSTRIAL CITIES: ON THE EXAMPLE OF AKTOBE AGGLOMERATION

Zharas Berdenov, Erbolat Mendibaev, Talgat Salihov, Kazhmurat Akhmedenov, Gulshat Ataeva

TECHNOGENESIS OF GEOECOLOGICAL SYSTEMS OF NORTHEN KAZAKHSTAN: PROGRESS, DEVELOPMENT AND EVOLUTION

Kulchichan Dzhanaleyeva, Gulnur Mazhitova, Altyn Zhanguzhina, Zharas Berdenov, Tursynkul Bazarbayeva, Emin Atasoy

СПИСАНИЕ ПРОСВѢТА

Списание „Просвета“ е орган на Просветния съюз в България. Списанието е излизало всеки месец без юли и август. Годишният том съдържа 1280 стра- ници. Списанието се издава от комитет, а главен редактор от 1935 до 1943 г. е проф. Петър Мутафчиев, историк византолог и специалист по средновеков-

Книжка 5
47-А НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

В последните години тези традиционни за българското учителство конфе- ренции се организират от Българското дружество по химическо образование и история и философия на химията. То е асоцииран член на Съюза на химици- те в България, който пък е член на Европейската асоциация на химическите и

JOURNALS OF INTEREST: A REVIEW (2016)

BULGARIAN JOURNAL OF SCIENCE AND EDUCATION POLICY ISSN 1313-1958 (print) ISSN 1313-9118 (online) http://bjsep.org

INVESTIGATING THE ABILITY OF 8

Marina Stojanovska, Vladimir M. Petruševski

SYNTHESIS OF TiO -M (Cd, Co, Mn)

Candra Purnawan, Sayekti Wahyuningsih, Dwita Nur Aisyah

EFFECT OF DIFFERENT CADMIUM CONCENTRATION ON SOME BIOCHEMICAL PARAMETERS IN ‘ISA BROWN’ HYBRID CHICKEN

Imer Haziri, Adem Rama, Fatgzim Latifi, Dorjana Beqiraj-Kalamishi, Ibrahim Mehmeti, Arben Haziri

PHYTOCHEMICAL AND IN VITRO ANTIOXIDANT STUDIES OF PRIMULA VERIS (L.) GROWING WILD IN KOSOVO

Ibrahim Rudhani, Florentina Raci, Hamide Ibrahimi, Arben Mehmeti, Ariana Kameri, Fatmir Faiku, Majlinda Daci, Sevdije Govori, Arben Haziri

ПЕДАГОГИЧЕСКА ПОЕМА

Преди година-две заедно с директора на Националното издателство „Аз- буки“ д-р Надя Кантарева-Барух посетихме няколко училища в Родопите. В едно от тях ни посрещнаха в голямата учителска стая. По стените ѝ имаше големи портрети на видни педагози, а под тях – художествено написани умни мисли, които те по някакъв повод са казали. На централно място бе портретът на Антон Семьонович Макаренко (1888 – 1939). Попитах учителките кой е Макаренко – те посрещнаха въпроса ми с мълчание. А някога, в г

Книжка 4
„СИМВОЛНИЯТ КАПИТАЛ“ НА БЪЛГАРСКОТО УЧИЛИЩЕ

Николай Цанков, Веска Гювийска

KINETICS OF PHOTO-ELECTRO-ASSISTED DEGRADATION OF REMAZOL RED 5B

Fitria Rahmawati, Tri Martini, Nina Iswati

ALLELOPATHIC AND IN VITRO ANTICANCER ACTIVITY OF STEVIA AND CHIA

Asya Dragoeva, Vanya Koleva, Zheni Stoyanova, Eli Zayova, Selime Ali

NOVEL HETEROARYLAMINO-CHROMEN-2-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Gjyle Mulliqi-Osmani, Veprim Thaçi

Книжка 3
Quantum Connement of Mobile Na+ Ions in Sodium Silicate Glassy

QUANTUM CONFINEMENT OF MOBILE Na + IONS, IN SODIUM SILICATE GLASSY NANOPARTICLES

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon, Abolfazl Semnani, Ramin Jaberzadeh Ansari, Hamid Shakoori Langeroodi, Mahboube Shirani, Shima Ghanavati Nasab

EVALUATION OF ANTIBACTERIAL ACTIVITY OF DIFFERENT SOLVENT EXTRACTS OF TEUCRIUM CHAMAEDRYS (L.) GROWING WILD IN KOSOVO

Arben Haziri, Fatmir Faiku, Roze Berisha, Ibrahim Mehmeti, Sevdije Govori, Imer Haziri

Книжка 2
COMPUTER SIMULATORS: APPLICATION FOR GRADUATES’ADAPTATION AT OIL AND GAS REFINERIES

Irena O. Dolganova, Igor M. Dolganov, Kseniya A. Vasyuchka

SYNTHESIS OF NEW [(3-NITRO-2-OXO-2H-CHROMEN4-YLAMINO)-PHENYL]-PHENYL-TRIAZOLIDIN-4-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Hamit Ismaili, Idriz Vehapi, Naser Troni, Gjyle Mulliqi-Osmani, Veprim Thaçi

STABILITY OF RJ-5 FUEL

Lemi Türker, Serhat Variş

A STUDY OF BEGLIKTASH MEGALITHIC COMPLEX

Diana Kjurkchieva, Evgeni Stoykov, Sabin Ivanov, Borislav Borisov, Hristo Hristov, Pencho Kyurkchiev, Dimitar Vladev, Irina Ivanova

Книжка 1
2016 година
Книжка 6
THE EFFECT OF KOH AND KCL ADDITION TO THE DESTILATION OF ETHANOL-WATER MIXTURE

Khoirina Dwi Nugrahaningtyas, Fitria Rahmawati, Avrina Kumalasari

Книжка 5

ОЦЕНЯВАНЕ ЛИЧНОСТТА НА УЧЕНИКА

Министерството на народното просвещение е направило допълне- ния към Правилника за гимназиите (ДВ, бр. 242 от 30 октомври 1941 г.), според които в бъдеще ще се оценяват следните прояви на учениците: (1) трудолюбие; (2) ред, точност и изпълнителност; (3) благовъзпитаност; (4) народностни прояви. Трудолюбието ще се оценява с бележките „образцово“, „добро“, „незадо- волително“. С „образцово“ ще се оценяват учениците, които с любов и по- стоянство извършват всяка възложена им ил

Книжка 4
VOLTAMMERIC SENSOR FOR NITROPHENOLS BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH REDUCED GRAPHENE OXIDE

Arsim Maloku, Liridon S. Berisha, Granit Jashari, Eduard Andoni, Tahir Arbneshi

Книжка 3
ИЗСЛЕДВАНЕ НА ПРОФЕСИОНАЛНО-ПЕДАГОГИЧЕСКАТА РЕФЛЕКСИЯ НА УЧИТЕЛЯ ПО БИОЛОГИЯ (ЧАСТ ВТОРА)

Надежда Райчева, Иса Хаджиали, Наташа Цанова, Виктория Нечева

EXISTING NATURE OF SCIENCE TEACHING OF A THAI IN-SERVICE BIOLOGY TEACHER

Wimol Sumranwanich, Sitthipon Art-in, Panee Maneechom, Chokchai Yuenyong

NUTRIENT COMPOSITION OF CUCURBITA MELO GROWING IN KOSOVO

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

НАГРАДИТЕ „ЗЛАТНА ДЕТЕЛИНА“ ЗА 2016 Г.

На 8 март 2016 г. в голямата зала на Националния политехнически музей в София фондация „Вигория“ връчи годишните си награди – почетен плакет „Златна детелина“. Тази награда се дава за цялостна професионална и творче- ска изява на личности с особени заслуги към обществото в трите направления на фондация „Вигория“ – образование, екология, култура. Наградата цели да се даде израз на признателност за високи постижения на личности, които на професионално равнище и на доброволни начала са рабо

Книжка 2
СТО ГОДИНИ ОТ РОЖДЕНИЕТО НА ПРОФЕСОР ХРИСТО ИВАНОВ (1916 – 2004)

СТО ГОДИНИ ОТ РОЖДЕНИЕТО, НА ПРОФЕСОР ХРИСТО ИВАНОВ, (96 – 00

CONTEXT-BASED CHEMISTRY LAB WORK WITH THE USE OF COMPUTER-ASSISTED LEARNING SYSTEM

N. Y. Stozhko, A. V. Tchernysheva, E.M. Podshivalova, B.I. Bortnik

Книжка 1
ПО ПЪТЯ

Б. В. Тошев

INTERDISCIPLINARY PROJECT FOR ENHANCING STUDENTS’ INTEREST IN CHEMISTRY

Stela Georgieva, Petar Todorov , Zlatina Genova, Petia Peneva

2015 година
Книжка 6
COMPLEX SYSTEMS FOR DRUG TRANSPORT ACROSS CELL MEMBRANES

Nikoleta Ivanova, Yana Tsoneva, Nina Ilkova, Anela Ivanova

SURFACE FUNCTIONALIZATION OF SILICA SOL-GEL MICROPARTICLES WITH EUROPIUM COMPLEXES

Nina Danchova , Gulay Ahmed , Michael Bredol , Stoyan Gutzov

INTERFACIAL REORGANIZATION OF MOLECULAR ASSEMBLIES USED AS DRUG DELIVERY SYSTEMS

I. Panaiotov, Tz. Ivanova, K. Balashev, N. Grozev, I. Minkov, K. Mircheva

KINETICS OF THE OSMOTIC PROCESS AND THE POLARIZATION EFFECT

Boryan P. Radoev, Ivan L. Minkov, Emil D. Manev

WETTING BEHAVIOR OF A NATURAL AND A SYNTHETIC THERAPEUTIC PULMONARY SURFACTANTS

Lidia Alexandrova, Michail Nedyalkov, Dimo Platikanov

Книжка 5
TEACHER’S ACCEPTANCE OF STUDENTS WITH DISABILITY

Daniela Dimitrova-Radojchikj, Natasha Chichevska-Jovanova

IRANIAN UNIVERSITY STUDENTS’ PERCEPTION OF CHEMISTRY LABORATORY ENVIRONMENTS

Zahra Eskandari, Nabi.A Ebrahimi Young Researchers & Elite Club, Arsanjan Branch,

APPLICATION OF LASER INDUCED BREAKDOWN SPECTROSCOPY AS NONDESDUCTRIVE AND SAFE ANALYSIS METHOD FOR COMPOSITE SOLID PROPELLANTS

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, Seyyed Mohamad Reza Darbany, Mehran Karimi, Amir Hossein Rezayi Optics & Laser Science and Technology Research Center,

THE EFFECT OF DIOCTYLPHTHALATE ON INITIAL PROPERTIES AND FIELD PERFORMANCE OF SOME SEMISYNTHETIC ENGINE OILS

Azadeh Ghasemizadeh, Abolfazl Semnani, Hamid Shakoori Langeroodi, Alireza Nezamzade Ejhieh

QUALITY ASSESSMENT OF RIVER’S WATER OF LUMBARDHI PEJA (KOSOVO)

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

Книжка 4
БЛАГОДАРЯ ВИ!

Александър Панайотов

ТЕМАТА ВЪГЛЕХИДРАТИ В ПРОГРАМИТЕ ПО ХИМИЯ И БИОЛОГИЯ

Радка Томова, Елена Бояджиева, Миглена Славова , Мариан Николов

BILINGUAL COURSE IN BIOTECHNOLOGY: INTERDISCIPLINARY MODEL

V. Kolarski, D. Marinkova, R. Raykova, D. Danalev, S. Terzieva

ХИМИЧНИЯТ ОПИТ – НАУКА И ЗАБАВА

Елица Чорбаджийска, Величка Димитрова, Магдалена Шекерлийска, Галина Бальова, Методийка Ангелова

ЕКОЛОГИЯТА В БЪЛГАРИЯ

Здравка Костова

Книжка 3
SYNTHESIS OF FLUORINATED HYDROXYCINNAMOYL DERIVATIVES OF ANTI-INFLUENZA DRUGS AND THEIR BIOLOGICAL ACTIVITY

Boyka Stoykova, Maya Chochkova, Galya Ivanova, Luchia Mukova, Nadya Nikolova, Lubomira Nikolaeva-Glomb, Pavel Vojtíšek, Tsenka Milkova, Martin Štícha, David Havlíček

SYNTHESIS AND ANTIVIRAL ACTIVITY OF SOME AMINO ACIDS DERIVATIVES OF INFLUENZA VIRUS DRUGS

Radoslav Chayrov, Vesela Veselinova, Vasilka Markova, Luchia Mukova, Angel Galabov, Ivanka Stankova

NEW DERIVATIVES OF OSELTAMIVIR WITH BILE ACIDS

Kiril Chuchkov, Silvia Nakova, Lucia Mukova, Angel Galabov, Ivanka Stankova

MONOHYDROXY FLAVONES. PART III: THE MULLIKEN ANALYSIS

Maria Vakarelska-Popovska, Zhivko Velkov

LEU-ARG ANALOGUES: SYNTHESIS, IR CHARACTERIZATION AND DOCKING STUDIES

Tatyana Dzimbova, Atanas Chapkanov, Tamara Pajpanova

MODIFIED QUECHERS METHOD FOR DETERMINATION OF METHOMYL, ALDICARB, CARBOFURAN AND PROPOXUR IN LIVER

I. Stoykova, T. Yankovska-Stefenova, L.Yotova, D. Danalev Bulgarian Food Safety Agency, Sofi a, Bulgaria

LACTOBACILLUS PLANTARUM AC 11S AS A BIOCATALYST IN MICROBIAL ELECYTOLYSIS CELL

Elitsa Chorbadzhiyska, Yolina Hubenova, Sophia Yankova, Dragomir Yankov, Mario Mitov

STUDYING THE PROCESS OF DEPOSITION OF ANTIMONY WITH CALCIUM CARBONATE

K. B. Omarov, Z. B. Absat, S. K. Aldabergenova, A. B. Siyazova, N. J. Rakhimzhanova, Z. B. Sagindykova

Книжка 2
TEACHING CHEMISTRY AT TECHNICAL UNIVERSITY

Lilyana Nacheva-Skopalik, Milena Koleva

ФОРМИРАЩО ОЦЕНЯВАНЕ PEER INSTRUCTION С ПОМОЩТА НА PLICКERS ТЕХНОЛОГИЯТА

Ивелина Коцева, Мая Гайдарова, Галина Ненчева

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Javid Safarov, Bahruz Ahmadov, Saleh Mirzayev, Astan Shahverdiyev, Egon Hassel

Книжка 1
РУМЕН ЛЮБОМИРОВ ДОЙЧЕВ (1938 – 1999)

Огнян Димитров, Здравка Костова

NAMING OF CHEMICAL ELEMENTS

Maria Atanassova

НАЙДЕН НАЙДЕНОВ, 1929 – 2014 СПОМЕН ЗА ПРИЯТЕЛЯ

ИНЖ. НАЙДЕН ХРИСТОВ НАЙДЕНОВ, СЕКРЕТАР, НА СЪЮЗА НА ХИМИЦИТЕ В БЪЛГАРИЯ (2.10.1929 – 25.10.2014)

2014 година
Книжка 6
145 ГОДИНИ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

145 ANNIVERSARY OF THE BULGARIAN ACADEMY OF SCIENCES

ПАРНО НАЛЯГАНЕ НА РАЗТВОРИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

LUBRICATION PROPERTIES OF DIFFERENT PENTAERYTHRITOL-OLEIC ACID REACTION PRODUCTS

Abolfazl Semnani, Hamid Shakoori Langeroodi, Mahboube Shirani

THE ORIGINS OF SECONDARY AND TERTIARY GENERAL EDUCATION IN RUSSIA: HISTORICAL VIEWS FROM THE 21ST CENTURY

V. Romanenko, G. Nikitina Academy of Information Technologies in Education, Russia

ALLELOPATHIC AND CYTOTOXIC ACTIVITY OF ORIGANUM VULGARE SSP. VULGARE GROWING WILD IN BULGARIA

Asya Pencheva Dragoeva, Vanya Petrova Koleva, Zheni Dimitrova Nanova, Mariya Zhivkova Kaschieva, Irina Rumenova Yotova

Книжка 5
GENDER ISSUES OF UKRAINIAN HIGHER EDUCATION

Н.H.Petruchenia, M.I.Vorovka

МНОГОВАРИАЦИОННА СТАТИСТИЧЕСКА ОЦЕНКА НА DREEM – БЪЛГАРИЯ: ВЪЗПРИЕМАНЕ НА ОБРАЗОВАТЕЛНАТА СРЕДА ОТ СТУДЕНТИТЕ В МЕДИЦИНСКИЯ УНИВЕРСИТЕТ – СОФИЯ

Радка Томова, Павлина Гатева, Радка Хаджиолова, Зафер Сабит, Миглена Славова, Гергана Чергарова, Васил Симеонов

MUSSEL BIOADHESIVES: A TOP LESSON FROM NATURE

Saâd Moulay Université Saâd Dahlab de Blida, Algeria

Книжка 4
ЕЛЕКТРОННО ПОМАГАЛO „ОТ АТОМА ДО КОСМОСА“ ЗА УЧЕНИЦИ ОТ Х КЛАС

Силвия Боянова Професионална гимназия „Акад. Сергей П. Корольов“ – Дупница

ЕСЕТО КАТО ИНТЕГРАТИВЕН КОНСТРУКТ – НОРМАТИВЕН, ПРОЦЕСУАЛЕН И ОЦЕНЪЧНО-РЕЗУЛТАТИВЕН АСПЕКТ

Надежда Райчева, Иван Капурдов, Наташа Цанова, Иса Хаджиали, Снежана Томова

44

Донка Ташева, Пенка Василева

ДОЦ. Д.П.Н. АЛЕКСАНДЪР АТАНАСОВ ПАНАЙОТОВ

Наташа Цанова, Иса Хаджиали, Надежда Райчева

COMPUTER ASSISTED LEARNING SYSTEM FOR STUDYING ANALYTICAL CHEMISTRY

N. Y. Stozhko, A. V. Tchernysheva, L.I. Mironova

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА: БОРБА С ЕДНА ЛЕДЕНА ЕПОХА В ГОДИНАТА 3000 СЛЕД ХРИСТА. 3.

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА:, БОРБА С ЕДНА ЛЕДЕНА ЕПОХА, В ГОДИНАТА 000 СЛЕД ХРИСТА. .

Книжка 3
KNOWLEDGE OF AND ATTITUDES TOWARDS WATER IN 5

Antoaneta Angelacheva, Kalina Kamarska

ВИСША МАТЕМАТИКА ЗА УЧИТЕЛИ, УЧЕНИЦИ И СТУДЕНТИ: ДИФЕРЕНЦИАЛНО СМЯТАНЕ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ВАСИЛ ХРИСТОВ БОЗАРОВ

Пенка Бозарова, Здравка Костова

БИБЛИОГРАФИЯ НА СТАТИИ ЗА МИСКОНЦЕПЦИИТЕ В ОБУЧЕНИЕТО ПО ПРИРОДНИ НАУКИ ВЪВ ВСИЧКИ ОБРАЗОВАТЕЛНИ НИВА

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 2
SCIENTIX – OБЩНОСТ ЗА НАУЧНО ОБРАЗОВАНИЕ В ЕВРОПА

Свежина Димитрова Народна астрономическа обсерватория и планетариум „Николай Коперник“ – Варна

BOTYU ATANASSOV BOTEV

Zdravka Kostova, Margarita Topashka-Ancheva

CHRONOLOGY OF CHEMICAL ELEMENTS DISCOVERIES

Maria Atanassova, Radoslav Angelov

Книжка 1
ОБРАЗОВАНИЕ ЗА ПРИРОДОНАУЧНА ГРАМОТНОСТ

Адриана Тафрова-Григорова

A COMMENTARY ON THE GENERATION OF AUDIENCE-ORIENTED EDUCATIONAL PARADIGMS IN NUCLEAR PHYSICS

Baldomero Herrera-González Universidad Autónoma del Estado de México, Mexico

2013 година
Книжка 6
DIFFERENTIAL TEACHING IN SCHOOL SCIENCE EDUCATION: CONCEPTUAL PRINCIPLES

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ШЕСТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО „ЧОВЕКЪТ И ПРИРОДАТА“

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

HISTORY AND PHILOSOPHY OF SCIENCE: SOME RECENT PERIODICALS (2013)

Chemistry: Bulgarian Journal of Science Education

45. НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

„Образователни стандарти и природонаучна грамотност“ – това е темата на състоялата се от 25 до 27 октомври 2013 г. в Габрово 45. Национална конфе- ренция на учителите по химия с международно участие, която по традиция се проведе комбинирано с Годишната конференция на Българското дружество за химическо образование и история и философия на химията. Изборът на темата е предизвикан от факта, че развиването на природонаучна грамотност е обща тенденция на реформите на учебните програми и главна

Книжка 5

ЗА ХИМИЯТА НА БИРАТА

Ивелин Кулев

МЕТЕОРИТЪТ ОТ БЕЛОГРАДЧИК

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
RECASTING THE DERIVATION OF THE CLAPEYRON EQUATION INTO A CONCEPTUALLY SIMPLER FORM

Srihari Murthy Meenakshi Sundararajan Engineering College, India

CHEMICAL REACTIONS DO NOT ALWAYS MODERATE CHANGES IN CONCENTRATION OF AN ACTIVE COMPONENT

Joan J. Solaz-Portolés, Vicent Sanjosé Universitat de Valènciа, Spain

POLYMETALLIC COMPEXES: CV. SYNTHESIS, SPECTRAL, THERMOGRAVIMETRIC, XRD, MOLECULAR MODELLING AND POTENTIAL ANTIBACTERIAL PROPERTIES OF TETRAMERIC COMPLEXES OF Co(II), Ni(II), Cu(II), Zn(II), Cd(II) AND Hg(II) WITH OCTADENTATE AZODYE LIGANDS

Bipin B. Mahapatra, S. N. Dehury, A. K. Sarangi, S. N. Chaulia G. M. Autonomous College, India Covt. College of Engineering Kalahandi, India DAV Junior College, India

ПРОФЕСОР ЕЛЕНА КИРКОВА НАВЪРШИ 90 ГОДИНИ

CELEBRATING 90TH ANNIVERSARY OF PROFESSOR ELENA KIRKOVA

Книжка 3
SIMULATION OF THE FATTY ACID SYNTHASE COMPLEX MECHANISM OF ACTION

M.E.A. Mohammed, Ali Abeer, Fatima Elsamani, O.M. Elsheikh, Abdulrizak Hodow, O. Khamis Haji

FORMING OF CONTENT OF DIFFERENTIAL TEACHING OF CHEMISTRY IN SCHOOL EDUCATION OF UKRAINE

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

ИЗСЛЕДВАНЕ НА РАДИКАЛ-УЛАВЯЩА СПОСОБНОСТ

Станислав Станимиров, Живко Велков

Книжка 2
Книжка 1
COLORFUL EXPERIMENTS FOR STUDENTS: SYNTHESIS OF INDIGO AND DERIVATIVES

Vanessa BIANDA, Jos-Antonio CONSTENLA, Rolf HAUBRICHS, Pierre-Lonard ZAFFALON

OBSERVING CHANGE IN POTASSIUM ABUNDANCE IN A SOIL EROSION EXPERIMENT WITH FIELD INFRARED SPECTROSCOPY

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

ЦАРСКАТА ПЕЩЕРА

Рафаил ПОПОВ

УЧИЛИЩНИ ЛАБОРАТОРИИ И ОБОРУДВАНЕ SCHOOL LABORATORIES AND EQUIPMENT

Учебни лаборатории Илюстрации от каталог на Franz Hugershoff, Лайциг, притежаван от бъдещия

2012 година
Книжка 6
ADDRESING STUDENTS’ MISCONCEPTIONS CONCERNING CHEMICAL REACTIONS AND SYMBOLIC REPRESENTATIONS

Marina I. Stojanovska, Vladimir M. Petruševski, Bojan T. Šoptrajanov

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ПЕТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО ЧОВЕКЪТ И ПРИРОДАТА

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

ЕКОТОКСИКОЛОГИЯ

Васил Симеонов

ПРОФ. МЕДОДИЙ ПОПОВ ЗА НАУКАТА И НАУЧНАТА ДЕЙНОСТ (1920 Г.)

Проф. Методий Попов (1881-1954) Госпожици и Господа студенти,

Книжка 5
КОНЦЕПТУАЛНА СХЕМА НА УЧИЛИЩНИЯ КУРС П О ХИМИЯ – МАКР О СКОПСКИ ПОДХОД

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ROLE OF ULTRASONIC WAVES TO STUDY MOLECULAR INTERACTIONS IN AQUEOUS SOLUTION OF DICLOFENAC SODIUM

Sunanda S. Aswale, Shashikant R. Aswale, Aparna B. Dhote Lokmanya Tilak Mahavidyalaya, INDIA Nilkanthrao Shinde College, INDIA

SIMULTANEOUS ESTIMATION OF IBUPROFEN AND RANITIDINE HYDROCHLORIDE USING UV SPECTROPHOT O METRIC METHOD

Jadupati Malakar, Amit Kumar Nayak Bengal College of Pharmaceutical Sciences and Research, INDIA

GAPS AND OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION ASSESSMENT

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

РАДИОХИМИЯ И АРХЕОМЕТРИЯ: ПРО Ф. ДХН ИВЕЛИН КУЛЕВ RADIOCHEMISTRY AND ARCHEOMETRY: PROF. IVELIN KULEFF, DSc

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
TEACHING THE CONSTITUTION OF MATTER

Małgorzata Nodzyńska, Jan Rajmund Paśko

СЪСИРВАЩА СИСТЕМА НА КРЪВТА

Маша Радославова, Ася Драгоева

CATALITIC VOLCANO

CATALITIC VOLCANO

43-ТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка ТАШЕВА, Пенка ЦАНОВА

ЮБИЛЕЙ: ПРОФ. ДХН БОРИС ГЪЛЪБОВ JUBILEE: PROF. DR. BORIS GALABOV

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ПЪРВИЯТ ПРАВИЛНИК ЗА УЧЕБНИЦИТЕ (1897 Г.)

Чл. 1. Съставянето и издаване на учебници се предоставя на частната инициа- тива. Забележка: На учителите – съставители на учебници се запрещава сами да разпродават своите учебници. Чл. 2. Министерството на народното просвещение може да определя премии по конкурс за съставяне на учебници за горните класове на гимназиите и специ- алните училища. Чл. 3. Никой учебник не може да бъде въведен в училищата, ако предварително не е прегледан и одобрен от Министерството на народното просвещение. Чл.

JOHN DEWEY: HOW WE THINK (1910)

John Dewey (1859 – 1952)

ИНФОРМАЦИЯ ЗА СПЕЦИАЛНОСТИТЕ В ОБЛАСТТА НА ПРИРОДНИТЕ НАУКИ В СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ

1. Биология Студентите от специалност Биология придобиват знания и практически умения в областта на биологическите науки, като акцентът е поставен на организмово равнище. Те се подготвят да изследват биологията на организмите на клетъчно- организмово, популационно и екосистемно ниво в научно-функционален и прило- жен аспект, с оглед на провеждане на научно-изследователска, научно-приложна, производствена и педагогическа дейност. Чрез широк набор избираеми и факул- тативни курсове студентите

Книжка 3
УЧИТЕЛИТЕ ПО ПРИРОДНИ НАУКИ – ЗА КОНСТРУКТИВИСТКАТА УЧЕБНА СРЕДА В БЪЛГАРСКОТО УЧИЛИЩЕ

Адриана Тафрова-Григорова, Милена Кирова, Елена Бояджиева

ПОВИШАВАНЕ ИНТЕРЕСА КЪМ ИСТОРИЯТА НА ХИМИЧНИТЕ ЗНАНИЯ И ПРАКТИКИ ПО БЪЛГАРСКИТЕ ЗЕМИ

Людмила Генкова, Свобода Бенева Българско дружество за химическо образование и история и философия на химията

НАЧАЛО НА ПРЕПОДАВАНЕТО НА УЧЕБЕН ПРЕДМЕТ ХИМИЯ В АПРИЛОВОТО УЧИЛИЩЕ В ГАБРОВО

Мария Николова Национална Априловска гимназия – Габрово

ПРИРОДОНАУЧНОТО ОБРАЗОВАНИЕ В БЪЛГАРИЯ – ФОТОАРХИВ

В един дълъг период от време гимназиалните учители по математика, физика, химия и естествена

Книжка 2
„МАГИЯТА НА ХИМИЯТА“ – ВЕЧЕР НА ХИМИЯТА В ЕЗИКОВА ГИМНАЗИЯ „АКАД. Л. СТОЯНОВ“ БЛАГОЕВГРАД

Стефка Михайлова Езикова гимназия „Акад. Людмил Стоянов“ – Благоевград

МЕЖДУНАРОДНАТА ГОДИНА НА ХИМИЯТА 2011 В ПОЩЕНСКИ МАРКИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ЗА ПРИРОДНИТЕ НАУКИ И ЗА ПРАКТИКУМА ПО ФИЗИКА (Иванов, 1926)

Бурният развой на естествознанието във всичките му клонове през XIX –ия век предизвика дълбоки промени в мирогледа на културния свят, в техниката и в индустрията, в социалните отношения и в държавните интереси. Можем ли днес да си представим един философ, един държавен мъж, един обществен деец, един индустриалец, просто един културен човек, който би могъл да игнорира придобив- ките на природните науки през последния век. Какви ужасни катастрофи, какви социални сътресения би сполетяло съвре

Книжка 1
MURPHY’S LAW IN CHEMISTRY

Milan D. Stojković

42-рa МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Цанова

СЕМЕЙНИ УЧЕНИЧЕСКИ ВЕЧЕРИНКИ

Семейството трябва да познава училишето и училишето трябва да познава семейството. Взаимното познанство се налага от обстоятелството, че те, макар и да са два различни по природата си фактори на възпитанието, преследват една и съща проста цел – младото поколение да бъде по-умно, по-нравствено, физически по-здраво и по-щастливо от старото – децата да бъдат по-щастливи от родителите