Обучение по природни науки и върхови технологии

2016/2, стр. 176 - 196

THE CONTRIBUTION OF MODEL TEACHING AND MATERIAL DEVELOPMENT TO PHYSICS TEACHING: FARADAY’S LAW OF INDUCTION

Резюме:

Ключови думи:

Introduction

It is of great importance to make Physics teaching effective and enjoyable in terms of both teachers and students. Since some subjects in Physics are abstract, it is rather diffi cult for students to comprehend these subjects. Therefore, in order to provide an effective teaching particularly while teaching abstract subjects in Physics it is very signifi cant to priorities visuality as much as possible and involve the students into their own learning processes. One of the ways of providing that situation is the model teaching (Saari & Viiri, 2003).

The model teaching and teaching material development are among the indispensable factors that facilitate comprehension of Physics subjects. The students have to know how the models are constructed and how they are used in daily life in order to understand the Physics (Hestenes, 1992). Hence, use of analogy and models in teaching Physics are the significant topics commonly studied (Gilbert et al., 1998; 2000).

While teaching models and modelling, it is not enough to only know to what extent the students already have knowledge about modelling in order to construct modelling in a particular scientific topic. In addition, it is also of necessity to know what kind of notions the students’ have of models. However, few studies conducted on the students’ notions of models have demonstrated that the students have trouble detecting the models (Finegold & Smit 1993; Gilbert, 1997; Grosslight et al., 1991; Stephens et al., 1999).

There are great differences between the models that Physics teachers show their students and the students’ notions of models (Table 1).

Table 1. Differences between the school science and students’ everyday views about models (Saari & Viiri, 2003).

Models in school scienceStudents’ everyday views about modelsA scientic model represents a target thatis known or unknownA model is an object or an act.The purpose of the model is torepresent a target and to help in itsconceptualizationThe purpose of the model is that ofcopying.A model gives us the vocabulary fordiscussing the structures and properties ofthe target.A model’stness depends on who ismaking the model, but the model has tobe as accurate as possibleModels can be tested and changedaccording to the testsA model can be changed if it containserrors or if its maker wishes to change it

The students generally think that we can construct the models of only what we can see. In physical sciences, on the contrary, the models are mostly related to what cannot be observed, even what we can imagine. Similarly, the students tend to believe that a model is an object or a tangible thing. However, in science the models are generally abstract. According to the students, the model is a thing that can be copied (e.g., drawing a picture of an object or a target); in science, the models are mostly used for making predictions about the structures and processes of the unknown objects and to describe them. In this sense, the students believe that there is a great harmony and simulation between the model and the aim described by the model.

By comparing different views explained in Table 1, it can be reached following conclusions on students’ learning tasks; accordingly, the students should be aware that (Saari & Viiri, 2003): (1) models can be concrete or abstract rather than being simply artefacts; (2) models are used to represent a target (its structure and processes) rather than a copy of a target or its image; (3) a model simplifi es its target rather than being an accurate copy of it; (4) a model can be used to predict and explain the behavior of its target; (5) models can be applied generally to a wide range of contexts rather than simply to the situation of immediate concern.

Literature has suggested different pedagogical ideas that can be applied in teaching the modelling. For instance, according to Van Driel & Verloop (1999), while teaching models the focus is generally on the content of the models being taught and learned; the nature of the models, however, is not saliently discussed. Van Driel & Verloop (1999) also report that the students are rarely involved in the process of construction and revision of the models. On the contrary, teachers assert that the models should be learned as static facts. Similar opinions are brought forwards by Harrison & Treagust (2000) suggesting that the students need time to make models and that the idea of modelling should be taught in a wide range of context. The same researchers also point out that the model development should take place when students learn unobservable phenomena (Harrison & Treagust 1996).

The teaching model to visualize the formation of Faraday Induction Current is serves an observable and tangible example. Therefore, this model developed as a teaching material is both an example of reality and its tangible and visual version. Teaching materials to be constructed for unobservable objects will enable highlevel cognitive learnings (analysis, synthesis and evaluation) to take place as much as increasing students’ levels of understanding. On the contrary, the students will have trouble understanding abstract concepts.

Most of the students are not able to explore abstract views on their own since they regard teaching materials as concrete copies. Hence, the teacher has a key role in carrying the scientifi c information. Although discussions made by students are significant for learning, teacher’s guidance is highly necessary while learning such an abstract content. Then, the findings obtained from the studies on this topic have revealed that discussions made under the guidance of a teacher are the most effective way to reach the high level of investigation (Llewellyn & Hogan, 2000).

The steps of the model teaching

Selection of the material for the model teaching

The diversity of possible roles for models is commonly accepted in science. The purpose of the model teaching and material development is to make the complex events easy and evaluate them in terms of setup, representation and functionality. The complex events mean to make the abstract Physics topics visual like concrete materials (Francoeur, 1997). At the same time, the material should be such as to represent the topic dealt with and provide a basis for the interpretation of experimental results in terms of functionality (Bent, 1984). The material developed should have a role that involves the explanations regarding the Physics topic mentioned and provides meaningful learning (Tomasi, 1988;

Erduran, 1998; Gilbert et al., 1998). Modelling-the production and organization of models, has occurred as the dynamic and non-linear processes in terms of the development of scientific knowledge (Leatherdale, 1974; Tomasi, 1988; 1999;

Prather, 1992, Gilbert, 1993).

Three aspects playing a central role in development of the models and materials (modelling) in science teaching can be mentioned (Cosgrove & Schvaverien 1997; Gilbert, 1997; Gilbert & Boulter 1997; Erduran, 1998; Gilbert et al., 1998; Spitulnik & Krajcik, 1998; Greca & Moreira, 2000; Harrison & Treagust, 2000): (a) To learn science: Students should learn major scientifi c/historical models and know the scope and limitations of the models; (b) To learn about science: Students should have enough knowledge about the nature of the models.

Furthermore, they should also know the role of the models in the accreditation and how the outcomes of the scientific investigation are disseminated; (c) To learn how to do science: students are required to produce, explain and test their own models. In other words, inasmuch as major scientifi c/historical models involve the current physics topics and support the necessary explanations and experimental results, the models to be constructed by the students should also possess these features.

That is also significant for teachers. The teachers observe the cognitive activities of the students in search of scientific or historical models and they, hence, can obtain the opportunity to observe the students’ processes of modelling and their progress in the development of teaching models. In this way, they gain insight about at which stages the students have trouble.

If it is aimed to teach the Physics topic through the teaching model, processes of modelling development are also significant (Roth, 1985). How these processes should be need to be sought in the applications of guidance science.

It is clear that in the literature there is not enough information about how the teaching model should be. That probably results from the fact that there are no general rules for modelling, the development of teaching material is a skill and therefore should be learned rather than be taught. Meanwhile, it is also known that learning scientific modelling commonly take place in the curricula. Therefore, a way of modelling and material development should be discovered.

In literature, the steps of models and modelling are presented as in Fig. 1.

Therefore, the model of modelling presented in Fig. 1 (suggested by Gilbert et al. (1998)) will be appropriate to be used for a purpose whether it be to describe a phenomenon, to establish the entities thought to consist (involving their spatial and temporal distribution), to attribute the causes and effects of that behavior, to predict how it will behave under other circumstances, or several or all of these. The person constructing a cognitive model of the model accepted from all perspectives to enable the topic to be learned, modifying an existing model, or creating their own model need to be clear as to the purpose of the related topic. Decision process and the student’s idea for material development start with the script regarding the phenomenon that already exists. This process will be built with direct or indirect, qualitative or quantitative experience of the phenomenon. Furthermore, that is also related to the student’s skill of observation. The relationship between the processes involved in the selection of the source and objective factors in the source should be similar to those in the target and its transfer to the model teaching should be also appropriate to the approach proposed as structuring map (Gentner & Gentner, 1983). After producing a model in this way, it is of necessity to take decision on whether the material will be represented visually, orally or mathematically (Boulter & Buckley, 2000). This process of expression appears cyclically in terms of the cognitive model and the act of expression also leads to a change in the model. After constructing a model or appreciating a scientific model, the following step is to explore its inferences through ‘thought experimentation’ conducted in the mind. As Reiner & Gilbert (2000) have interpreted, the scientists always mentally rehearse the design and implication of a model. However, it is only possible to test when the results of this mental activity seem successful. If the model fails to produce predictions confirmed in the testing phase of the thought experimentation, it is required to make an attempt to modify it and reenter the cycle. Nonetheless, if it passes the phase of thought experimentation, it can go on to the phase of ‘empirical testing’. That first entails to design and conduct the practice study, then collects and analyzes the data and lastly evaluates the results of the model. If the model fails at this stage, it should be attempted to make modifications on it and re-enter the cycle. Nevertheless, if it passes the practical testing phase, the modeler will be sure that the purpose of constructing the model was fulfi lled.

If all these come true, the following step is to make an attempt to compare the teaching model constructed and persuade others into its functionality and representation with a scientific/historical model. That is the process of advocacy, which reveals the scope and limitations of the model, leading to a reconsideration of the earliest elements in the model-production cycle. If the targeted results are obtained and a material appropriate to the target is formed, the model production takes place. In the opposite case, it is necessary to make some changes in the production of the model. These changes can be made on empirical testing phases as much as mentality. However, if the model repeatedly fails, it will have to be rejected. This will lead to a radical reconsideration of the earliest elements in the model-production cycle.

Construction of teaching material and description of its relationship with the topics of Physics

The material constructed as a scientific model or for the purpose of teaching should be a simplified version of the scientific model. The teaching material to be constructed should also represent a scientific/historical model.

Glynn et al. (1994) have proposed a six-step introduction for any teaching material specially constructed. These six steps are: the introduction of the model; the introduction of the teaching material; the identification of relevant and corresponding features between the target and the teaching model; the mapping of the similarities between the two; and the identification of where the analogy breaks down; the drawing of conclusions about the nature of the target as modelled.

Whereas Treagust et al. (1996) have demonstrated how this procedure will be used successfully in terms of teaching material introduced or produced by the teacher; Pittman (1999) has showed that the students can successfully construct and use their own teaching materials. On the other hand, Idling (1997) has generally summarized good practice in learning through teaching models.

Modelling requires obtaining a cognitive model. Since the target model at the center of attention is already completely developed and known by the teacher, all other features of the model of modelling will be suppressed. Of course, as the process by which the target model has been initially developed is ‘cognitively reconstructed’ (Nersessian, 1984), it is required to represent all the elements of the model of modelling framework to the students in a reasonably original way.

Preparing teaching model enables students to gain more skills than just learning the nature of a particular model. If this results in success, the students come to learn to develop skills of making the events regarded as abstract in Physics tangible. The model teaching applied in suitable situations provides high-level learning. Arnold & Millar (1996) used a series of combined teaching models so as to teach the concepts of heat, temperature and thermal equilibrium to 12-13-year-old students in England and following this practice, they asked them to use these ideas in other contexts.

Halloun (1996; 1998) had students use scientifi c models while solving a series of sample problems in physics. On the other hand, in their studies on drawing of models in physics Karaman et al. (2003) required the students to model the movement of the molecules heated when water is heated. These studies mentioned above are the applications of the ‘model of modelling’ and what is emphasized in thought experimentation is to make the topics of physics understandable. Furthermore, this is also a sign of empirical experimentation on the application of the ‘model of modelling’.

Fig. 1. A ‘model of modelling’ framework (Clement, 1989)

Introducing the material in class and reporting

Introducing the constructed material in class is the responsibility of the teacher. However, who will introduce are the students constructing the teaching model. This requires both the students and teachers to make good preparation and have planned lesson content.

Preparing teaching models (modelling) is a complex procedure and involves many component activities, one of which should be learned very well. Lehrer et al. (1994) have pointed out that the ability of model production requires a series of epistemological commitments. These commitments entails firstly to be able to appreciate the notion of separation between phenomena and noumena, that is, what is being represented- not the representation itself; secondly, the possibility of producing a representation through the development and application of a system of formal elements; thirdly, the notion of prediction using simplified representations that provide the opportunity to identify emergent behavior. If these epistemological commitments are acquired gradually, the students can see their progress in the framework of ‘the model of modelling’ outlined in Fig. 1.

Five approaches to learning about models and modelling that enable to acquire the abilities have been identifi ed. Although these fi ve approaches to acquiring the skills and epistemological commitments required in modelling seem distinct from each other, they are to a large extent only related to representational convenience (Justi & Gilbert, 2002a).

1. Learning consensus/curricular models, if necessary by means of teaching models;

2. Learning the use of models;

3. Learning how to revise models;

4. Learning the reconstruction of a model;

5. Learning to construct new models.

The aforementioned approaches to representational convenience will support the modelling to be learned by students. Learning to construct models seems a long-term and also haphazard process characterized as high-level of uncertainty, partial success and even failure. Inasmuch as modelling needs to be gradually introduced to the students, in this process the teachers are also required to teach what modelling entails in an appropriate way.

Reporting the study is proposed to record the stages of modelling constructed by the students, to have details of a well-planned study, to make association with the topic of physics to be explained through the constructed model and to represent the model as planned before. Moreover, for the future the students will have a ready resource to use while teaching by reporting the study of modelling conducted.

Research questions

How are the notions of students about modelling?

Does the model teaching contribute to better comprehend the abstract topics of Physics?

Does the model teaching make contributions to the development of the students’ self-esteem?

Method

Sample group

The sample group of this study conducted by qualitative research design consists of 20 pre-service teachers studying at Physics Teaching Department, Kazım Karabekir Faculty of Education, Ataturk University in 2011 – 2012 academic year.

Process

Theoric information of the model teaching and material development were fi rst provided for the participants. Then, the students were divided into 4 four group consisting of 5 students, each group was required to represent a teaching model they constructed on a topic in the classroom and fi nd out the topic’s usage in daily life by reporting their activities. In the light of these required activities, identifi yng their purposes and job-sharing among themselves, each group were asked to plan their activities for investigation, material development, representation and reporting during a one-term teaching and education period.

Conducting the activities in line with the plans, the data were collected through interviews with students and here was just mentioned about the model of a group concerned with Faraday’s Induction Current in order to prevent the study to be broaden.

Data collection instrument

In this study, the semi structured interviews consisting of four main parts were used as a data collection instrument. Before taking the participants’ views on the model teaching a pilot study was conducted and the last version of the interview to be used in data collection was, thus, identified. In the beginning of the interviews, the participants were clearly informed about the purpose of the interviews. The participants’ views were obtained through revised interviews carried out to 8 participants. The data were recorded by taking notes during the interviews lasting about 25 minutes,.

Data analysis

Content analysis was carried out for data analysis of this study (Bardin, 1991). The interviews were transcribed and codes were obtained. The codes were presented as sentences.

Present four steps here

It has been thought that using the framework of the “model of modelling” constructed by Clement (1989) will be appropriate for this study (Fig. 1). In this sense, it has been believed that model teaching method and teaching material to be constructed in this study will make physics topics that are abstract and students have difficulty understanding more understandable.

Modelling: Faraday’s law of induction

In this study, the students are asked to construct a model through which they will be able to explain Faraday’s Induction Current visually. The purpose of constructing this teaching model is to teach Faraday’s law of induction and show the students what to do in their daily lives through this law. The working principle of the teaching model will be based on electromagnetic theory. This theory is Faraday‘s Law of Induction discovered by Michael Faraday (17911867). According to this theory, a voltage is inducted in a static transistor in changeable magnetic field. The value of this inducted voltage depends on the speed of change in magnetic field at a unit of time and the number of coils of the transistor.

The students have stated to have learned Faraday’s induction current in physics labs through the scientific/historical model. However, in this study the students were asked to construct a model similar to that model and to be used in daily life. It has been stated that while constructing this model, the stages theoretical basis of which has been explained above should be taken into consideration. In this sense, pre-service teachers were required to make the topic concrete constructing the teaching model of Faraday’s Induction current, to represent it in the classroom, and to explore its usage in daily life reporting all the activities conducted. In line with this purpose, the students job-shared among themselves. The pre-service teachers were asked to gradually plan all the activities of making research for the model they would construct, representing it in the classroom and reporting them during the term.

Materials required for the teaching model (1) A plastic pipe in 40 mm diameter and 18 centimeters length; (2) 4 neodymium magnets; (3)180 m magnet wire; (4) 1 bridge rectifier; (5) 1 LED; (6) a chargeable battery; (7) USB kit; (8) plastic protecting band; (9) a sponge.

Constructing teaching model

From the before-mentioned materials, the plastic pipe is firstly taken. Its nearly 3 cm part which will come up to its center is sculped in depth of 2 mm. This procedure enables not only the conducting wire to be coiled easily but also the coil made by the conducting wire to be more close to the magnetic field the magnet provides.

The conducting wire should be wrapped around the sculped-part. 180meter-height wire constitutes 1200-wound-instructor. The conducting wire 20-cm-part from both sides will be left unwrapped. The rectifier, LED lamp, chargeable battery or a kit to charge a mobile phone will be put in these unwrapped parts. In addition, 4 neodymium magnets will be put into the plastic pipe (Figs. 2-6).

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Working principle of the teaching model

Faraday’s Law of Induction” provides a basis for this teaching model. Moving inside the static conducting wire wrapped around the plastic pipe, the neodymium magnets (Fig. 5) changes the magnetic field and induct electrical voltage in the conducting wire. Inducted voltage accumulates in two empty points. The current in the conducting wire is alternating current. Alternating current is required to turn into continuous current to be used in electronic items. For this purpose, linking two points of the wire with the bridge rectifier shown in Fig. 6, alternating current is turned into continuous current.

Continuous current obtained through bridge rectifier is transmitted to the LED lamp. Thus, the LED shines in each shake. If the rectifier is not used, the LED will shine in unilateral transmission but not in other –sided transmission. Through the continuous current, the LED placed on the rectifi er shines when shaking the material by confirming that the current constitutes. If wanted, the current in the wire is transmitted to the slot formed to charge the battery. The battery placed into the slot begins to be charged with the current that occurs in each shake. Instead of the battery, a high capacity condenser (capacitor) can be also charged in the same way. The teaching model, thus, functions as required. Owing to the kit placed on the tip of the charged battery (Fig. 7), electrical potential energy stored in the battery can charge the batteries used in mobile phones, MP3 players and Electronical items Fig. 8 shows the last form of the teaching model, Fig. 9 illustrates its schematic form.

Fig. 9. Conducting sample

The teaching model to visualize how Faraday’s Induction Current occurs serves as a concrete and observable example. This model constructed as a teaching material is, thus, both a simple form of the fact and its concrete and visual form. The teaching models to be constructed for unobservable objects can also provide such high-level learnings as analysis, syntheses and evaluation in addition to increasing the students’ understanding levels. On the contrary, the students may have trouble understanding abstract notions.

The reason why Faraday’s Induction Current is visualized as a teaching model in this study results from the fact that it is necessary to enable the students comprehend this topic regarded as abstract, the materials to be used in construction of the model are accessible, and several items constructed benefiting from Faraday’s Law are commonly used in daily life. Furthermore, in this study it is also estimated to show the students that the topics of Physics to be taught are not only theoretical but also can be used in many fields of life and to make contributions to the development of their self-esteem by using information.

Results

Purposes for constructing model

A must for success necessitates that a modeler (a scientist or another person) should have a clear target in model production. In line with this purpose, responses of the students’ interviewed are as follows: The targets to construct a model should be clear and in what situation the models can be used should be known. It is of importance that you should keep in mind what opinions you try to explain and clearly state them.While constructing a model, it is significant to take its aims into consideration.

The responses presented above are the results obtained from the students’ views on the target. The modeler to construct teaching material has started to present some obvious views on the classroom, a described mass. Therefore, most of the responses given by the students are as follows.

For instance: It may be possible to produce different models based on the levels of people to whom the model will be represented. The person producing the model should consider all the problems faced when the other people try to understand the model.

The other purpose is regarding the extensiveness of the model. The students are of opinion that any model as complete as possible- that is, it presents all aspects of the notion- is the thing to be desired.

For instance: In my opinion, a model should demonstrate all the details of a notion. I think that a model should point all main lines of an object or a notion one way or another.

However, they have noticed that it is not always true.

For instance: There is nothing as a complete model. The current models are those more complete and appropriate for a certain level of explanation than other models.

In each situation, the model has to achieve, to a certain extent, similarity to the notion identifi ed by the modeler. It should be similar, as much as possible, (to the notion) so as to provide a better understanding. What is different is the complexity of the model. Everybody can make a model of something in a way that it will be convenient with their own reality knowledge. Anyone else can produce a model different from mine. It may be better or worse than mine depending on both the level the person has and the diffi culty that model requires.

It may be possible to think different models; even some may be more complex than others.

Experience, knowledge and characteristic of the modeler

The participants have given following responses to the questions on experience, knowledge and special talents of the individuals to construct a teaching model:

For instance: Another person may produce a model different from mine. That relates to the individual’s experience with the notion that is being modelling.

In addition, the experiences with the other notions and models may be also benefi cial.

For instance: I believe that others may produce a model different from mine since personal effects may inuence the model. Everyone is tending to make comparison with those they have experienced before. Scientists have other models with which they will make associations. In my opinion, a scientist attempts to organize his opinions and make associations with what he already knows so as to demonstrate what he thinks.

It has been seen that success in modelling is closely related to individual features of the modeler. The students’ views on the question of “What are the characteristics of a successful modeler?” are: first, in constructing a model, the modeler has to have current knowledge and the scientists are more successful in this sense.

For instance: I think, if interested in the topic, everybody can produce something. In my opinion, the model a scientist constructs is, of course, distinct from that constructed by an ordinary person. The scientists tend to be more careful in terms of reality, validity and trustworthiness. I think, when an ordinary person produces a model, he does not consider other subjects; however, the scientists are always concerned with extra things to be explained.

Secondly, a successful modeler should be a successful person in broad sense. In addition, scientists have been thought to be more successful than other people.

For instance: A person needs a lot of creativity to make a model of something. Even, the individual may have to apply his feelings. It is possible to make models more than one for a certain thing; because it (model construction) relates with how the individual thinks, what opinions he has and how creative he is. A scientist always has to be creative. After his first observations, he begins to construct simple models and at the same time to test them.

I think, it is necessary to have creativity and courage to cope with new ideas.

Thirdly, the modeler should be decisive.The person should be decisive, because he should not give up if the fi rst model fails.

Selection of appropriate material for model

In their responses to the questions on selection of material, the participants have stated that they have benefi ted from similar materials for both the topic and scientific/ historical modelling.

For instance: When I have to make a model of something, I always think something that I know and will help me. When a scientist has to make explanation of something unknown, he tries to associate that with something known.

The participants seem to have noticed the importance of similarity between the scientific/ historical modelling and their own teaching model. It is signifi cant to pay attention to use similar materials to those used while making the experiment of Faraday’s Induction Current, because these materials are necessary to form current. While constructing a model, it is significant to consider its purposes and required level of accuracy.

Some of the participants interviewed have proposed that there is a difference between a scientist’ modelling process and their own modelling process.

For instance: I think, the process of a model production followed by a scientist is distinct from that followed by another person. Because, a scientist always tests his model, develops hypotheses, analyzes each situation and controls whether the model meets a certain case. On the other hand, we make models by copying something.

On the other hand, some students believe that the process is the same but the quality is different.

For instance: In my opinion, while constructing a model both scientists and other people follow the same cognitive process. Differences result from the fact that throughout the process, the scientists observe the features of the notion in more detail and are more determined compared to other people.

Other students could not make a clear distinction between scientists and others.

For instance: First of all, the individual, whether a scientist or a student, needs to have some information on the topic of the model. Then, the individual has to create the model and confi rm whether it is appropriate to the reality.

In addition, some of the students have regarded modelling as an inductive process.

For instance: The scientists firstly observe something, and then obtain concrete materials to reflect what he observes and convey their opinions on that to other people. Scientists gather a lot of information; since such a process is not easy, this task may sometimes last a lot. Then, they try to make complex things simple and produce models presenting their opinions in different ways.

On the other hand, some participants have considered it as a deductive process.

For instance: Scientists start with hypotheses, and test them in different situations; if the model can be repeated well as a result of these tests, a scientifi c law or model is, then, obtained.

Most of the participants believe that deductive and inductive processes in modelling are intertwined.

For instance: I think, a scientist tries to organize his opinions and associate with those he already knows in order to demonstrate what he thinks. Then, he will test his model against reality.

Success in preparing a teaching material or constructing a model is related to having a clear view on the approach to the accepted task. In other words, if those who plan to devise a teaching material or to construct a model fi rstly have scientifi c knowledge about the topic and perform the task thoroughly, success is inevitable.

Use of an appropriate way of representation

The students interviewed have been asked questions on how representation should be and their views have been obtained. Furthermore, they have been also asked some questions on the visuality of the material to be applied in representation. The students have emphasized that using material when possible is signifi cant while explaining the topic.

For instance: If a notion is not abstract, it is significant to see and hold the object.

The students have stated that explaining the subjects, particularly abstract subjects, by modelling is better.

For instance: Making the model of an object is more difficult than making the model of a process. For instance, while making a model of a car, I just observe it and then make its miniature; however, I have to imagine the moves of electron in atom.

On the other hand, the students’ views on making abstract and invisible physics subjects concrete and visible, thus making the representation more understandable, are as follows: I think, a model should make a thing to be modeled visible. I have some information about the moves of electrons in atom, no matter how diffi cult it is to make its model; I need to make these ideas concrete.

The teaching material or the model constructed should be tested experimentally. It should be compared to the results of the historical/scientific model. If the results are successful, there will be two questions to be answered in the process of explanation. How should the person making the representation state his/her views in different ways? The students’ views regarding the characteristics of the person to make the representation are as follows: The individual may express his/her opinions in different ways. S/he should keep in mind what opinions s/he tries to explain and state them in a clear way. If the model is qualitative, the person should demonstrate its association with the topic and state it one way or another. If the model is quantitative, the person should translate what s/he sees into a different language. It is signifi cant to make the created things and opinions visible.

The interviews do not contain any questions that ask students to reject or modify an individual cognitive model. Therefore, the study has obtained no data regarding that feature of “the model of modelling”.

Discussion and conclusion

In terms of students, it is of great importance to teach the topics of Physics through constructing teaching model. In such learning, the students themselves use the abstract notions and formula in the teaching material and thus learn. Experiential learning (learning-by-doing) is also known as structural learning. The best teaching method advocating such learning is teaching by models. Many researchers studying on learning, teaching and education have differently named such learning. Whereas some of them call it as model and modelling (constructing a teaching material), the other have used such names as effective learning, cooperative learning, and structural learning. This study is believed to provide permanent learning.

If a student wants to learn a scientific/historical model successfully, s/he should have those: understanding the scientists’ views on the structure of that model, enough experience with the notion being represented, knowing why the model is constructed and what should be learned, understanding how similarities and comparisons are demonstrated, and knowing the material from which the target model and/or teaching model is constructed. In such practices, one of the compulsory conditions of learning is that the teacher is capable in all these features of modelling. In their study concerning this subject, Justi & Gilbert (2003) have reported that the teachers do not have satisfactory knowledge on historical/scientifi c structure of model and suggested in-service training for teachers so as to overcome that.

If a student needs to learn to use an identified model, s/he, then, needs to know all conditions mentioned above. Furthermore, the students should know how thought experiments are designed, how practice and evaluation will be and also construction steps of learning transfer while using a model. Education faculties should allow for activities to provide opportunities for developing teaching materials. In research regarding this topic, it has been observed that the teachers do not have enough skill of thought-experiment (Reiner & Gilbert, 2000). That is the notion confirmed here temporarily. It is also suggested that thought experiment should be involved in the list of teacher education themes. Since most of the experiments regarding the topic dealt with in several education faculties seem to confirm the practice (Wellington, 1998), it has been seen that graduate teachers do not have enough skill of model teaching.

Students have some deficiencies in how to revise a model and how to modify it. They should first have knowledge about development steps of cognitive/ historical model and restructuring it as consciously (Nersessian, 1994). There have been some studies on consciously restructuring of all the main models in historical order (Justi & Gilbert, 2002a). Although they are available, use of mixed models in teaching hinders their use effectively (Justi & Gilbert, 2002b). If a student follows such a historical order, s/he will gain new experience in terms of pre-steps of model learning, and s/he will also gain required skill of evaluating scope and limits of the models. That is of highly importance for teacher-candidates.

After teachers have accepted that students are well-prepared for applying fi rst three steps of modelling and profi cient in all of these, the progress should be relatively linear towards the last two. Following that, learning construction of new models will be the last step. Students will be working like a scientist without knowing the result. On the other hand, main trouble for the teacher is time management since remodeling cannot be fit into schedule.

It has been also seen that developing teaching material enables the students to have positive attitudes towards the Physics. In addition, modelling shows the students that the topics of Physics are not just limited in what is written in books; and also shows how these topics are used in everyday life. The world technologically developed is understood by the students and their attitudes to technological developments, thus, change. Besides changing the students’ attitudes to the Physics positively, that situation also raises the wish to learn the topics of Physics.

The students who have succeeded developing teaching material have the feeling that they themselves can also do something. When assessed individually, the greatest acquisition is probably that phenomenon. That phenomenon develops the feeling of being able to do, to comprehend and succeed in all their life.

Teaching some topics of Physics through teaching materials will also contribute to learning to occur at the level of analysis, synthesis and evaluation. The students developing teaching material internalizes the Physics topic taught and sees that his all learnings have a practice fi eld.

In this study, learning the subject of Faraday’s Law of Induction is provided in a different way by model teaching and developing a teaching material. The interviews carried out with students have demonstrated that use of model teaching has many advantages for teaching Physics and that is highly signifi cant for the institutions training teachers.

REFERENCES

Arnold, M. & Millar, R. (1996). Learning the scientifi c ‘story’: a case study in the teaching and learning of elementary thermodynamics. Sci. Educ., 80, 249 – 281.

Bent, H.A. (1984). Uses (and abuses) of models in teaching chemistry. J. Chem. Educ., 61, 774–777.

Boulter, C.J. & Buckley, B.C. (2000). Constructing a typology of models for science education (pp. 41-57). In: Gilbert. J.K. & Boulter, C.J. (Eds.). Developing models in science education. Dordrecht: Kluwer.

Clement, J. (1989). Learning via model construction and criticism (pp. 341 – 381). In: J. A. Glover, J.A., Ronning, R.R. & Reynolds, C.R. (Eds.). Handbook of creativity. New York: Plenum.

Cosgrove, M. & Schaverien, L. (1997). Models of science education (pp. 20 – 34). In: Gilbert, J. (Ed.). Exploring models and modelling in science and technology education: contributions from the MISTRE Group. Reading: University of Reading.

Finegold, M. & Smıt, J.J.A. (1993). Learing in science as affacted by perception of the nature and functions of models. Proceed. Third Intern. Seminar on Misconceptions & Educational Strategies in Science and Mathematics: Ithaca: Misconceptions Trust.

Francoeur, E. (1997). The forgotten tool: the design and use of molecular models. Social Studies oScience, 27, 7 – 40.

Gentner, D. & Gentner, D.R. (1983). Flowing waters and teeming crowds: mental models of electricity (pp. 99 – 129). In: Gentner, D. & Stevens. A.L. (Eds.). Mental models. Hillsdale: Erlbaum.

Gilbert, J. (1993). Models and modelling in science education. Hatfi eld: Association for Science Education.

Gilbert, J.K. (1997). Models in science and science education (pp. 5 – 19). In: Gilbert. J.K. (Ed.). Exploring models and modelling in science and technology education: contributions from the MISTRE group. Reading: University of Reading.

Gilbert, J.K. & Boulter, C.J. (1997). Learning science through models and modelling (pp. 53 – 66). In: Fraser, B.J. & Tobin, K. (Eds.). The international handbook of science education. Dordrecht: Kluwer.

Gilbert, J.K., Boulter, C. & Rutherford, M. (1998). Models in explanations, part 1: horses for courses. Intern. J. Sci. Educ., 20, 83–97.

Gilbert, J.K., Boulter, C.J. & Elmer, R. (2000). Positioning models in science education and in design and technology education (pp. 3 – 17). In: J.K. Gilbert, J.K. & Boulter, C.J. (Eds.). Developing models in science education. Dordrecht: Kluwer.

Glynn, S.M., Law, M., Gibson, N.M. & Hawkins, C.H. (1994). Teaching science with analogies: a Resource for teachers and textbook writers. Atlanta: University of Georgia.

Greca, I.M. & Moreira, M.A. (2000). Mental models, conceptual models, and modelling. Intern. J. Sci. Educ., 22, 1 – 11.

Grosslight, L., Unger, C., Jay, E. & Smith, C.L. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. J. Res. Sci. Teaching, 28, 799 – 822.

Halloun, I. (1996). Schematic modeling for meaningful learning in physics. J. Res. Sci. Teaching, 33, 1019 – 1041.

Halloun, I. (1998). Schematic concepts for schematic models of the real world: the Newtonian concept of force. Sci. Educ., 82, 241 – 263.

Harrıson, A.G. & Treagust, D.F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching science. Sci. Educ., 80, 509 – 534.

Harrıson, A.G. & Treagust, D.F. (2000). A typology of school science models. Intern. J. Sci. Educ., 22, 1011 – 1026.

Hestenes, D. (1992). Modeling games in the Newtonian world. Amer. J. Phys., 60, 732 – 748.

Idling, M.E. (1997). How analogies foster learning from science texts. Instruct. Sci., 25, 233 – 253.

Justi, R. & Gilbert, J.K. (2002a). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. Intern. J. Sci. Educ., 24, 1273 – 1292.

Justi, R. & Gilbert, J.K. (2002b). Modelling, teachers’ views on the nature of modelling, and implications for the education of modelers. Intern. J. Sci, Educ., 24, 369 – 387.

Justi, R. & Gilbert, J.K. (2003) Teachers’ views on the nature of models. J, Res. Sci. Teaching, 25, 1369 – 1386.

Karaman, İ. Dilber, R. & Doğan, O. (2003). Model drawing in physics. Balkan Phys. Lett., 11(1), 27 – 33.

Leatherdale, W.H. (1974). The role of analogy, model and metaphor in science. Amsterdam: North-Holland.

Lehrer, R., Horvath, J. & Schauble, L. (1994). Developing model-based reasoning. Interactive Learning Environ., 4, 218 – 232.

Llewellyn, A. & Hogan, K. (2000). The use and abuse of models of disability. Disability & Society, 15, 157 – 165.

Nersessian, N. (1984). Faraday to Einstein: constructing meaning in scientifi c theories. Dordrecht: Matinus Nijhoff.

Pittman, K.M. (1999). Student-generated analogies: another way of knowing. J. Res. Sci. Teaching, 36, 1 – 22.

Prather, J.P. (1992). Educational implications of the Kuhnian concept of normal and revolutionary science (pp. 299-312). In: Hills, S. (Ed.). History and philosophy of science in science education, vol. 2. Kingston: Queen’s University.

Reiner, M. & Gilbert, J.K. (2000). Epistemological resources for thought experimentation in science learning. Intern. J. Sci. Educ., 22, 489 – 506.

Roth, K.J. (1985). Conceptual change learning and students processing of science texts. Annual meeting of the American Education Research Association (AERA), Chicago.

Saari, H. & Viiri J. (2003). A research-based teaching sequence for teaching the concept of modelling to seventh-grade students. Intern. J. Sci. Educ., 25, 1333 – 1352.

Spitulnik, M.W. & Krajcik, J. (1998). Construction of models to promote scientifi c understanding. Annual Meeting of the National Association for Research in Science Education, San Diego, 19 – 22 April.

Stephens, S.A., McRobbie, C.J. & Lucas, K.B. (1999). Model-based reasoning in a year 10 classroom. Res. Sci. Educ., 29, 189-208.

Tomasi, J. (1988). Models and modeling in theoretical chemistry. J. Mol. Structure (THEOCHEM), 179, 273 – 292.

Tomasi, J. (1999). Towards ‘chemical congruence’ of the models in theoretical chemistry. HYLE, 5, 79 – 115.

Treagust, D.F., Harrison, A.G., Venville, G.J. & Dagher, Z. (1996). Using an analogical teaching approach to engender conceptual change. Intern. J. Sci. Educ., 18, 213 – 229.

Van Driel, J.H. & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. Intern. J. Sci. Educ., 21, 1141 – 1153.

Wellington, J J. (1998). Practical work in school science: which way now. London: Routledge.

2025 година
Книжка 3
ПРАЗНИК НА ХИМИЯТА 2025

Александра Камушева, Златина Златанова

ФАТАЛНИЯТ 13

Категория „Есе“, възрастова група 5. – 7. клас

ХИМИЯТА НА БАНКНОТИТЕ И МОНЕТИТЕ – НАПРЕДЪКЪТ НА НАУКАТА

Категория „Есе“, възрастова група 5. – 7. клас

ХИМИЯ НА МЕДОВИНАТА

Габриела Иванова, 10. клас Ръководител: Галя Аралова-Атанасова

ХИМИЯ НА БАНКНОТИТЕ И МОНЕТИТЕ

Категория „Есе“, възрастова група 8. – 10. клас

АЛУМИНИЙ – „ЩАСТЛИВИЯТ“ 13-И ЕЛЕМЕНТ

Категория „Есе“, възрастова група 8. – 10. клас

МЕТАЛЪТ НА ВРЕМЕТО

Категория „Есе“, възрастова група 8. – 10. клас

СЛАДКА ЛИ Е ФРЕНСКАТА ЛУЧЕНА СУПА?

Женя Петрова, 11. клас Ръководител: Мими Димова

АЛУМИНИЯТ – ЛЕКИЯТ „ЗДРАВЕНЯК“ В АВТОМОБИЛОСТРОЕНЕТО

Категория „Постер“, възрастова група 5. – 7. клас

ПАРИТЕ – ИСТОРИЯ И НЕОБХОДИМОСТ

Мария Александрова, 6. клас Ръководител: Румяна Стойнева

ХИМИЯ НА ХАРТИЕНИТЕ БАНКНОТИ – АМЕРИКАНСКИ ДОЛАР

Категория „Постер“, възрастова група 5. – 7. клас

АЛУМИНИЯТ – ОТ ОТПАДЪК ДО РЕСУРС

Категория „Постер“, възрастова група 8. – 10. клас

МЕТАЛЪТ ИЗЯЩЕСТВО: АЛУМИНИЯТ В СЪВРЕМЕННАТА БИЖУТЕРИЯ

Категория „Постер“, възрастова група 8. – 10. клас

ТАЙНАТА ХИМИЯ НА ШВЕЙЦАРСКИТЕ БАНКНОТИ

Категория „Постер“, възрастова група 8. – 10. клас

ХИМИЯТА – ДЕТЕКТИВ ИЛИ ПРЕСТЪПНИК?

Алвина Илин, 12. клас , Валентина Ткачова, 12. клас Ръководител: Петя Петрова

БЕБЕШКИ ШАМПОАН ОТ ЯДЛИВИ СЪСТАВКИ: ФОРМУЛИРАНЕ НА НОВ КОЗМЕТИЧЕН ПРОДУКТ

Категория „Презентация“, възрастова група 5. – 7. клас

БЪЛГАРСКОТО ИМЕ НА ДЪЛГОЛЕТИЕТО

Сияна Краишникова, 7. клас Ръководител: Анелия Иванова

ХИМИЯ НА МОНЕТИТЕ

Категория „Презентация“, възрастова група 5. – 7. клас

ХИМИЯ НА ШОКОЛАДА

Камелия Вунчева, 9. клас , Мария-Сара Мандил, 9. клас Ръководител: Марияна Георгиева

ХИМИЯТА НА ПАРИТЕ

Категория „Презентация“, възрастова група 8. – 10. клас

АЛУМИНИЯТ В КРИОГЕНИКАТА

Категория „Презентация“, възрастова група 8. – 10. клас

ПРИЛОЖЕНИЕ НА АЛУМИНИЯ ВЪВ ВАКСИНИТЕ

Станислав Милчев, 9. клас Ръководител: Петя Вълкова

АЛУМИНИЙ: „КРИЛА НА ЧОВЕЧЕСТВОТО – ЛЮБИМЕЦ 13“

Категория „Презентация“, възрастова група 8. – 10. клас

ХИМИЯТА В ПЧЕЛНИЯ МЕД

Сиана Каракашева, 10. клас , Симона Тричкова, 10. клас Ръководител: Майя Найденова-Георгиева

ИЗПОЛЗВАНЕ НА АЛУМИНИЙ В БИЖУТЕРИЯТА: БИЖУТА ОТ АЛУМИНИЕВА ТЕЛ

Категория „Презентация“, възрастова група 8. – 10. клас

ХИМИЯ НА МЛЕЧНИТЕ ПРОДУКТИ

Пламена Боиклиева, 10 клас Ръководител: Дафинка Юрчиева

ХИМИЯ В МАСЛИНИТЕ

Категория „Презентация“, възрастова група 8. – 10. клас

ХИМИЯ НА ЛЮТОТО

Категория „Презентация“, възрастова група 8. – 10. клас

ХИНАП – ИЗСЛЕДВАНЕ НА СЪДЪРЖАНИЕТО НА ВИТАМИН С

Категория „Презентация“, възрастова група 11. – 12. клас

АЛУМИНИЯТ – ЧУДНИЯТ МЕТАЛ, ОФОРМИЛ СЪВРЕМЕННАТА ЦИВИЛИЗАЦИЯ

Категория „Презентация“, възрастова група 11. – 12. клас

ХИМИЯ НA ПAРИТE

Категория „Презентация“, възрастова група 11. – 12. клас

ВЛИЯНИЕ НА МАРИНАТИТЕ ВЪРХУ МЕСОТО

Категория „Изследователски проект“

АНАЛИЗ НА ПРИРОДНИ ВОДИ В ОБЩИНА СЛИВЕН

Категория „Изследователски проект“

ТРИНАДЕСЕТИЯТ ЕЛЕМЕНТ – СПАСИТЕЛ ИЛИ ТИХ РАЗРУШИТЕЛ?

Категория „Изследователски проект“

Книжка 2
Книжка 1
MATHEMATICAL MODELLING OF THE TRANSMISSION DYNAMICS OF PNEUMONIA AND MENINGITIS COINFECTION WITH VACCINATION

Deborah O. Daniel, Sefiu A. Onitilo, Omolade B. Benjamin, Ayoola A. Olasunkanmi

2024 година
Книжка 5-6
Книжка 3-4
Книжка 1-2
2023 година
Книжка 5-6
Книжка 3-4
Книжка 2
ПИОНЕР НА ПРИРОДОЗАЩИТНОТО ДЕЛО, БЕЛЕЖИТ УЧЕН И ПОПУЛЯРИЗАТОР НА БЪЛГАРСКАТА НАУКА

(ПО СЛУЧАЙ 100 Г. ОТ РОЖДЕНИЕТО НА ДОЦ. НИКОЛАЙ БОЕВ) Васил Големански , Златозар Боев

Книжка 1
2022 година
Книжка 6

METEOROLOGICAL DETERMINANTS OF COVID-19 DISEASE: A LITERATURE REVIEW

Z. Mateeva , E. Batchvarova , Z. Spasova , I. Ivanov , B. Kazakov , S. Matev , A. Simidchiev , A. Kitev

NATURAL SCIENCE AND ADVANCED TECHNOLOGY EDUCATION ANNUAL CONTENTS / VOLUME 31, 2022 ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ И ВЪРХОВИ ТЕХНОЛОГИИ ГОДИШНО СЪДЪРЖАНИЕ / ГОДИНА XXXI, 2022

СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 120 КНИЖКА 2 / NUMBER 2: 121 – 224 КНИЖКА 3 / NUMBER 3: 225 – 328 КНИЖКА 4 / NUMBER 4: 329 – 404 КНИЖКА 5 / NUMBER 5: 405 – 488 КНИЖКА 6 / NUMBER 6: 489 – 592

Книжка 5
MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A , Usman M. A. , Daniel D. O. , Odetunde O. S. , Ogunwobi Z. O. ,Hammed F. A. , Olubanwo O. O. , Ajani A. S. , Sanusi A. S. , Haruna A. H.

ПОСТАНОВКА ЗА ИЗМЕРВАНЕ СКОРОСТТА НА ЗВУКА ВЪВ ВЪЗДУХ

Станислав Сланев, Хафизе Шабан, Шебнем Шабан, Анета Маринова

Книжка 4
MAGNETIC PROPERTIES

Sofija Blagojević, Lana Vujanović, Andreana Kovačević Ćurić

„TAP, TAP WATER“ QUANTUM TUNNELING DEMONSTRATION

Katarina Borković, Andreana Kovačević Ćurić

Книжка 3
Книжка 2
КОМЕТИТЕ – I ЧАСТ

Пенчо Маркишки

Книжка 1
ЗА НАУЧНОТО ПРИЗНАНИЕ

Още по-високо качество на българското образование и наука и непрекъснато „атакуване“ на най-добрите европейски и световни стандарти. Така най-кратко може да бъде описан пътят към повишаване видимостта и разпознаваемостта на труда на родните учени и изследователи. Необходими са действия за отстраняване на проблеми в организацията, финансирането, системата за акредитация, за атестацията на преподавателите, както и абсолютно недопустимия проблем с пла

DISTANCE LEARNING: HOMEMADE COLLOIDAL SILVER

Ana Sofía Covarrubias-Montero, Jorge G. Ibanez

2021 година
Книжка 6
STUDY OF COMPOSITIONS FOR SELECTIVE WATER ISOLATION IN GAS WELLS

Al-Obaidi S.H. , Hofmann M. , Smirnov V.I. , Khalaf F.H. , Alwan H.H.

NATURAL SCIENCE AND ADVANCED TECHNOLOGY EDUCATION ANNUAL CONTENTS / VOLUME 30, 2021 ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ И ВЪРХОВИ ТЕХНОЛОГИИ ГОДИШНО СЪДЪРЖАНИЕ / ГОДИНА XXX, 2021

СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 122 КНИЖКА 2 / NUMBER 2: 113 – 232 КНИЖКА 3 / NUMBER 3: 233 – 329 КНИЖКА 4 / NUMBER 4: 330 – 436 КНИЖКА 5 / NUMBER 5: 436 – 548 КНИЖКА 6 / NUMBER 6: 549 – 652 FROM THE RESEARCH LABORATORIES 10 – 25 Reveal the Potency of Water Hyacinth and Red Ginger Extract as Hy- drogel Wound Dressing for Mrsa Diabetic Wound: a Short Review / Maulidan Firdaus, Muhammad Iqbal Daniswara, Khoirul Jamaluddin,

Книжка 5
POTENTIAL APPLICATIONS OF ANTIBACTERIAL COMPOUNDS IN EDIBLE COATING AS FISH PRESERVATIVE

Maulidan Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, Nisrina Rahma Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto

Книжка 4
Книжка 3

PROBLEM OF THE 8-TH EXPERIMENTAL PHYSICS OLYMPIAD, SKOPJE, 8 MAY 2021 DETERMINATION OF PLANCK CONSTANT BY LED

Todor M. Mishonov , Aleksander P. Petkov , Matteo Andreoni , Emil G. Petkov , Albert M. Varonov , Iglika M. Dimitrova , Leonora Velkoska , Riste Popeski-Dimovski

Книжка 2
INVESTIGATION OF

Bozhidar Slavchev, Elena Geleva, Blagorodka Veleva, Hristo Protohristov, Lyuben Dobrev, Desislava Dimitrova, Vladimir Bashev, Dimitar Tonev

Книжка 1
DEMONSTRATION OF DAMPED ELECTRICAL OSCILLATIONS

Elena Grebenakova, Stojan Manolev

2020 година
Книжка 6
ДОЦ. Д-Р МАРЧЕЛ КОСТОВ КОСТОВ ЖИВОТ И ТВОРЧЕСТВО

Здравка Костова, Елена Георгиева

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ANNUAL CONTENTS / VOLUME 29, 2020 ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО ГОДИШНО СЪДЪРЖАНИЕ / ГОДИНА XXIX, 2020

СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 140 КНИЖКА 2 / NUMBER 2: 141 – 276 КНИЖКА 3 / NUMBER 3: 277 – 432 КНИЖКА 4 / NUMBER 4: 433 – 548 КНИЖКА 5 / NUMBER 5: 549 – 660 КНИЖКА 6 / NUMBER 6: 661 – 764 EDUCATION: THEORY AND PRACTICE 11 – 18 Физиката – навсякъде около нас [Physics аround Us: The Honey] / Пенка Василева/ Penka Vasileva 19 – 26 Молекулите на удоволствието [The Pleasure Molecules: Introduc- tory Information] / Веселина Янкова, Снежана Демирова, Цветанка Мит

Книжка 5
Книжка 4
JACOB’S LADDER FOR THE PHYSICS CLASSROOM

Kristijan Shishkoski, Vera Zoroska

COMPARATIVE PERFORMANCE AND DIGESTIBILITY OF NUTRIENTS IN AFSHARI AND GHEZEL RAM LAMBS

Morteza Karami, Fardis Fathizadeh, Arash Yadollahi, Mehran Aboozari, Yaser Rahimian, Reza Alipoor Filabadi

КАЛЦИЙ, ФОСФОР И ДРУГИ ФАКТОРИ ЗА КОСТНО ЗДРАВЕ

Радка Томова, Светла Асенова, Павлина Косева

Книжка 3
THE DAY OF THE INDUCTANCE: PROBLEMS OF THE 7

Todor M. Mishonov, Riste Popeski-Dimovski, Leonora Velkoska, Iglika M. Dimitrova, Vassil N. Gourev, Aleksander P. Petkov, Emil G. Petkov, Albert M. Varonov

MATHEMATICAL MODELING OF 2019 NOVEL CORONAVIRUS (2019 – NCOV) PANDEMIC IN NIGERIA

Sefiu A. Onitilo, Mustapha A. Usman, Olutunde S. Odetunde, Fatai A. Hammed, Zacheous O. Ogunwobi, Hammed A. Haruna, Deborah O. Daniel

Книжка 2

ВОДОРОДЪТ – НАЙ-ЕКОЛОГИЧНО ЧИСТОТО ГОРИВО

Миглена Славова, Радка Томова

Книжка 1
НАУЧНОТО ПРИЗНАНИЕ

Престижът на един унверситет не се определя от материалните ценнос- ти – сгради, лаборатории, аудитории, библиотеки, спортни съоръжения, които

МОЛЕКУЛИТЕ НА УДОВОЛСТВИЕТО

Веселина Янкова, Снежана Демирова, Цветанка Митева, Явор Князов, Христо Желев, Димитър Георгиев, Габриела Стоянова

WATER PURIFICATION WITH LASER RADIATION

Lyubomir Lazov, Hristina Deneva, Galina Gencheva

ФИЗИКОХИМИЧНАТА ШКОЛА НА РОСТИСЛАВ КАИШЕВ В ПЕРИОДА 1950 – 1957 (СПОМЕНИ НА ЕДИН СВИДЕТЕЛ)

На 7 януари 2020 г. във Франция по- чина Боян Mутафчиев – учен с висока ре- путация във Франция и света. Той беше президент на Френската асоциация по кристален растеж, председател на Ко- мисията за изследвания в областта на микрогравитацията към Националния център за космически изследвания на Франция. Той беше ключова фигура в Ев- ропейската космическа агенция, в Евро-

2019 година
Книжка 6
LASER MICRO-PERFORATION AND FIELDS OF APPLICATION

Hristina Deneva, Lyubomir Lazov, Edmunds Teirumnieks

ПРИЛОЖНА ФОТОНИКА И АНТИОКСИДАНТНИ СВОЙСТВА НА ВИСОКООЛЕИНОВО СЛЪНЧОГЛЕДОВО МАСЛО С БИЛКОВИ ПРИМЕСИ

Кръстена Николова, Стефка Минкова, Поли Радушева, Георги Бошев, Еркан Фаридин, Нурал Джамбазов, Мариана Перифанова-Немска

ПРОЦЕСЪТ ДИФУЗИЯ – ОСНОВА НА ДИАЛИЗАТА

Берна Сабит, Джемиле Дервиш, Мая Никова, Йорданка Енева

IN VITRO EVALUATION OF THE ANTIOXIDANT PROPERTIES OF OLIVE LEAF EXTRACTS – CAPSULES VERSUS POWDER

Hugo Saint-James, Gergana Bekova, Zhanina Guberkova, Nadya Hristova-Avakumova, Liliya Atanasova, Svobodan Alexandrov, Trayko Traykov, Vera Hadjimitova

2019 − THE INTERNATIONAL YEAR OF THE PERIODIC TABLE OF CHEMICAL ELEMENTS

Maria Atanassova, Radoslav Angelov, Dessislava Gerginova, Alexander Zahariev

ТЕХНОЛОГИЯ

Б. В. Тошев

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ANNUAL CONTENTS / VOLUME 28, 2019 ХИМИЯ. ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО ГОДИШНО СЪДЪРЖАНИЕ / ГОДИНА XXVIII, 2019

СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 160 КНИЖКА 2 / NUMBER 2: 161 – 280 КНИЖКА 3 / NUMBER 3: 281 – 424 КНИЖКА 4 / NUMBER 4: 425 – 552 КНИЖКА 5 / NUMBER 5: 553 – 680 КНИЖКА 6 / NUMBER 6: 681 – 832

Книжка 5
ЗЕЛЕНА ХИМИЯ В УЧИЛИЩНАТА ЛАБОРАТОРИЯ

Александрия Генджова, Мая Тавлинова-Кирилова, Александра Камушева

ON THE GENETIC TIES BETWEEN EUROPEAN NATIONS

Jordan Tabov, Nevena Sabeva-Koleva, Georgi Gachev

SCIENCE CAN BRING PEOPLE TOGETHER

Nadya Kantareva-Baruh

Книжка 4

CHEMOMETRIC ANALYSIS OF SCHOOL LIFE IN VARNA

Radka Tomova, Petinka Galcheva, Ivajlo Trajkov, Antoaneta Hineva, Stela Grigorova, Rumyana Slavova, Miglena Slavova

ЦИКЛИТЕ НА КРЕБС

Ивелин Кулев

Книжка 3
ПРИНЦИПИТЕ НА КАРИЕРНОТО РАЗВИТИЕ НА МЛАДИЯ УЧЕН

И. Панчева, М. Недялкова, С. Кирилова, П. Петков, В. Симеонов

UTILISATION OF THE STATIC EVANS METHOD TO MEASURE MAGNETIC SUSCEPTIBILITIES OF TRANSITION METAL ACETYLACETONATE COMPLEXES AS PART OF AN UNDERGRADUATE INORGANIC LABORATORY CLASS

Anton Dobzhenetskiy, Callum A. Gater, Alexander T. M. Wilcock, Stuart K. Langley, Rachel M. Brignall, David C. Williamson, Ryan E. Mewis

THE 100

Maria Atanassova, Radoslav Angelov

A TALE OF SEVEN SCIENTISTS

Scerri, E.R. (2016). A Tale of Seven Scientists and a New Philosophy of Science.

Книжка 2
DEVELOPMENT OF A LESSON PLAN ON THE TEACHING OF MODULE “WATER CONDUCTIVITY”

A. Thysiadou, S. Christoforidis, P. Giannakoudakis

AMPEROMETRIC NITRIC OXIDE SENSOR BASED ON MWCNT CHROMIUM(III) OXIDE NANOCOMPOSITE

Arsim Maloku, Epir Qeriqi, Liridon S. Berisha, Ilir Mazreku, Tahir Arbneshi, Kurt Kalcher

THE EFFECT OF AGING TIME ON Mg/Al HYDROTALCITES STRUCTURES

Eddy Heraldy, Triyono, Sri Juari Santosa, Karna Wijaya, Shogo Shimazu

Книжка 1
2019: ДВЕ ВАЖНИ СЪБИТИЯ

На 20 декември 2017 г. Общото събрание на Организацията на обединени- те нации (ООН), на своята 72-ра сесия, прокламира годината 2019 за „Между- народна година на Периодичната таблица на химичните елементи“ (IYPT 2019). Съгласно представите на Томас Кун раз- витието на „нормалната наука“ става на основата на малък брой основополагащи научни резултати, наречени „научни пара- дигми“. За химията научните парадигми са три: (1) откриването на кислорода от Лавоазие; (

A CONTENT ANALYSIS OF THE RESULTS FROM THE STATE MATRICULATION EXAMINATION IN MATHEMATICS

Elena Karashtranova, Nikolay Karashtranov, Vladimir Vladimirov

SOME CONCEPTS FROM PROBABILITY AND STATISTICS AND OPPORTUNITIES TO INTEGRATE THEM IN TEACHING NATURAL SCIENCES

Elena Karashtranova, Nikolay Karashtranov, Nadezhda Borisova, Dafina Kostadinova

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Василева

2018 година
Книжка 6

ЗДРАВЕ И ОКОЛНА СРЕДА

Кадрие Шукри, Светлана Великова, Едис Мехмед

СЕМИНАР-ПРАКТИКУМЪТ В НЕФОРМАЛНОТО ОБУЧЕНИЕ – ВЪЗМОЖНОСТ И РАЗВИТИЕ НА УМЕНИЯ И ТВОРЧЕСТВО ПРЕЗ ПРИЗМАТА НА ФИЗИКАТА

Асен Пашов, Снежана Йорданова-Дюлгерова, Бонка Караиванова-Долчинкова, Руска Драганова-Христова

РОБОТИКА ЗА НАЧИНАЕЩИ ЕНТУСИАСТИ

Даниела Узунова, Борис Велковски, Илко Симеонов Владислав Шабански, Димитър Колев

DESIGN AND DOCKING STUDIES OF HIS-LEU ANALOGUES AS POTENTIOAL ACE INHIBITORS

Rumen Georgiev, Tatyana Dzimbova, Atanas Chapkanov

X-RAY DIFFRACTION STUDY OF M Zn(TeО )

Kenzhebek T. Rustembekov, Mitko Stoev, Aitolkyn A. Toibek

ELECTROCHEMICAL IMPEDANCE STUDY OF BSCCO (2212) CUPRATE CERAMIC ADDITIVE TO THE ZINC ELECTRODE IN Ni-Zn BATTERIES

A. Vasev, P. Lilov, G. Ivanova, Y. Marinov, A. Stoyanova, V. Mikli, A. Stoyanova-Ivanova

CALIBRATION OF GC/MS METHOD FOR DETERMINATION OF PHTHALATES

N. Dineva, I. Givechev, D. Tanev, D. Danalev

SONOCHEMICAL SYNTHESIS OF 4-AMINOANTIPYRINE SCHIFF BASES A ND EVALUATION OF THEIR ANTIMICROBIAL, ANTI-TYROSINASE AND DPPH SCAVENGING ACTIVITIES

Maya Chochkova, Boyka Stoykova, Iva Romanova, Petranka Petrova, Iva Tsvetkova, Hristo Najdenski, Lubomira Nikolaeva- Glomb, Nadya Nikolova, Galya Ivanova, Atanas Chapkanov, Tsenka Milkova, Martin Štícha, Ivan Nemec

ELECTROSYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES WITH SIMULTANEOUS EXTRACTION INTO P-XYLENE

S. S. Fomanyuk, V. O. Smilyk, G. Y. Kolbasov, I. A. Rusetskyi, T. A. Mirnaya

БИОЛОГИЧЕН АСПЕКТ НА РЕКАНАЛИЗАЦИЯ С ВЕНОЗНА ТРОМБОЛИЗА

Мариела Филипова, Даниела Попова, Стоян Везенков

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО VOLUME 27 / ГОДИНА XXVII, 2018 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА 3 / NUMBER 3: 313 – 472 КНИЖКА 4 / NUMBER 4: 473 – 632 КНИЖКА 5 / NUMBER 5: 633 – 792 КНИЖКА 6 / NUMBER 6: 793 – 952 КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА

(South Africa), A. Ali, M. Bashir (Pakistan) 266 – 278: j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)fx and nd1 Configurations and Correlation with L-S Terms / P. L. Meena (India) 760 – 770: Methyl, тhe Smallest Alkyl Group with Stunning Effects / S. Moulay 771 – 776: The Fourth State of Matter / R. Tsekov

Книжка 5
ИМОБИЛИЗИРАНЕ НА ФРУКТОЗИЛТРАНСФЕРАЗА ВЪРХУ КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА, КСАНТАН И ХИТОЗАН

Илия Илиев, Тонка Василева, Веселин Биволарски, Ася Виранева, Иван Бодуров, Мария Марудова, Теменужка Йовчева

ELECTRICAL IMPEDANCE SPECTROSCOPY OF GRAPHENE-E7 LIQUID-CRYSTAL NANOCOMPOSITE

Todor Vlakhov, Yordan Marinov, Georgi. Hadjichristov, Alexander Petrov

ON THE POSSIBILITY TO ANALYZE AMBIENT NOISE RECORDED BY A MOBILE DEVICE THROUGH THE H/V SPECTRAL RATIO TECHNIQUE

Dragomir Gospodinov, Delko Zlatanski, Boyko Ranguelov, Alexander Kandilarov

RHEOLOGICAL PROPERTIES OF BATTER FOR GLUTEN FREE BREAD

G. Zsivanovits, D. Iserliyska, M. Momchilova, M. Marudova

ПОЛУЧАВАНЕ НА ПОЛИЕЛЕКТРОЛИТНИ КОМПЛЕКСИ ОТ ХИТОЗАН И КАЗЕИН

Антоанета Маринова, Теменужка Йовчева, Ася Виранева, Иван Бодуров, Мария Марудова

CHEMILUMINESCENT AND PHOTOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF COCOON EXTRACTS

Y. Evtimova, V. Mihailova, L. A. Atanasova, N. G. Hristova-Avakumova, M. V. Panayotov, V. A. Hadjimitova

ИЗСЛЕДОВАТЕЛСКИ ПРАКТИКУМ

Ивелина Димитрова, Гошо Гоев, Савина Георгиева, Цвета Цанова, Любомира Иванова, Борислав Георгиев

H O O H H H C H 104.45° 108.9° H A B

Figure 1. A – Water; B – Methanol Indeed, the literature survey reveals a trove of reports on methylation of such molecules and the effects of thus-tethered methyl groups were illustrated (Barreiro et al., 2011). An astounding fact is the link between the methyl group in methylated DNA and the cancer development (Newberne & Rogers, 1986; Wajed et al., 2001); methylation of biological molecules contributes to the regulation of gene expression and protein function, and RNA proces

Книжка 4
PARAMETRIC INTERACTION OF OPTICAL PULSES IN NONLINEAR ISOTROPIC MEDIUM

A. Dakova, V. Slavchev, D. Dakova, L. Kovachev

ДЕЙСТВИЕ НА ГАМА-ЛЪЧИТЕ ВЪРХУ ДЕЗОКСИРИБОНУКЛЕИНОВАТА КИСЕЛИНА

Мирела Вачева, Хари Стефанов, Йоана Гвоздейкова, Йорданка Енева

RADIATION PROTECTION

Natasha Ivanova, Bistra Manusheva

СРАВНИТЕЛЕН АНАЛИЗ НА СЪДЪРЖАЩИТЕ СЕ ЕСТЕСТВЕНИ РАДИОНУКЛИДИ В НЕВЕН И ЛАЙКА

Сияна Димова, Цветелина Стефанова, Йорданка Енева, Нина Архангелова

СТАБИЛНОСТ НА ЕМУЛСИИ ОТ ТИПА МАСЛО/ ВОДА С КОНЮГИРАНА ЛИНОЛОВА КИСЕЛИНА

И. Милкова-Томова, Д. Бухалова, К. Николова, Й. Алексиева, И. Минчев, Г. Рунтолев

THE EFFECT OF EXTRA VIRGIN OLIVE OIL ON THE HUMAN BODY AND QUALITY CONTROL BY USING OPTICAL METHODS

Carsten Tottmann, Valentin Hedderich, Poli Radusheva, Krastena Nikolova

ИНФРАЧЕРВЕНА ТЕРМОГРАФИЯ ЗА ДИАГНОСТИКА НА ФОКАЛНА ИНФЕКЦИЯ

Рая Грозданова-Узунова, Тодор Узунов, Пепа Узунова

ЕЛЕКТРИЧНИ СВОЙСТВА НА КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА

Ася Виранева, Иван Бодуров, Теменужка Йовчева

Книжка 3
PHYSICS IS AN EVER YOUNG SCIENCE

Temenuzhka Yovcheva

ТРИ ИДЕИ ЗА ЕФЕКТИВНО ОБУЧЕНИЕ

Гергана Карафезиева

МАГИЯТА НА ТВОРЧЕСТВОТО КАТО ПЪТ НА ЕСТЕСТВЕНО УЧЕНЕ В УЧЕБНИЯ ПРОЦЕС

Гергана Добрева, Жаклин Жекова, Михаела Чонос

ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ ЧРЕЗ МИСЛОВНИ КАРТИ

Виолета Стоянова, Павлина Георгиева

ИГРА НА ДОМИНО В ЧАС ПО ФИЗИКА

Росица Кичукова, Ценка Маринова

ТЪМНАТА МАТЕРИЯ В КЛАСНАТА СТАЯ

Симона Стоянова, Анета Маринова

ПРОБЛЕМИ ПРИ ОБУЧЕНИЕТО ПО ФИЗИКА ВЪВ ВВМУ „Н. Й. ВАПЦАРОВ“

А. Христова, Г. Вангелов, И. Ташев, М. Димидов

ИЗГРАЖДАНЕ НА СИСТЕМА ОТ УЧЕБНИ ИНТЕРНЕТ РЕСУРСИ ПО ФИЗИКА И ОЦЕНКА НА ДИДАКТИЧЕСКАТА ИМ СТОЙНОСТ

Желязка Райкова, Георги Вулджев, Наталия Монева, Нели Комсалова, Айше Наби

ИНОВАЦИИ В БОРБАТА С ТУМОРНИ ОБРАЗУВАНИЯ – ЛЕЧЕНИЕ ЧРЕЗ БРАХИТЕРАПИЯ

Георги Върбанов, Радостин Михайлов, Деница Симеонова, Йорданка Енева

NATURAL RADIONUCLIDES IN DRINKING WATER

Natasha Ivanova, Bistra Manusheva

Книжка 2

АДАПТИРАНЕ НА ОБРАЗОВАНИЕТО ДНЕС ЗА УТРЕШНИЯ ДЕН

И. Панчева, М. Недялкова, П. Петков, Х. Александров, В. Симеонов

STRUCTURAL ELUCIDATION OF UNKNOWNS: A SPECTROSCOPIC INVESTIGATION WITH AN EMPHASIS ON 1D AND 2D

Vittorio Caprio, Andrew S. McLachlan, Oliver B. Sutcliffe, David C. Williamson, Ryan E. Mewis

INTEGRATED ENGINEERING EDUCATION: THE ROLE OF ANALYSIS OF STUDENTS’ NEEDS

Veselina Kolarski, Dancho Danalev, Senia Terzieva

Книжка 1
ZAGREB CONNECTION INDICES OF TiO NANOTUBES

Sohaib Khalid, Johan Kok, Akbar Ali, Mohsin Bashir

2017 година
Книжка 6
GEOECOLOGICAL ANALYSIS OF INDUSTRIAL CITIES: ON THE EXAMPLE OF AKTOBE AGGLOMERATION

Zharas Berdenov, Erbolat Mendibaev, Talgat Salihov, Kazhmurat Akhmedenov, Gulshat Ataeva

TECHNOGENESIS OF GEOECOLOGICAL SYSTEMS OF NORTHEN KAZAKHSTAN: PROGRESS, DEVELOPMENT AND EVOLUTION

Kulchichan Dzhanaleyeva, Gulnur Mazhitova, Altyn Zhanguzhina, Zharas Berdenov, Tursynkul Bazarbayeva, Emin Atasoy

СПИСАНИЕ ПРОСВѢТА

Списание „Просвета“ е орган на Просветния съюз в България. Списанието е излизало всеки месец без юли и август. Годишният том съдържа 1280 стра- ници. Списанието се издава от комитет, а главен редактор от 1935 до 1943 г. е проф. Петър Мутафчиев, историк византолог и специалист по средновеков-

Книжка 5

47-А НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

В последните години тези традиционни за българското учителство конфе- ренции се организират от Българското дружество по химическо образование и история и философия на химията. То е асоцииран член на Съюза на химици- те в България, който пък е член на Европейската асоциация на химическите и

JOURNALS OF INTEREST: A REVIEW (2016)

BULGARIAN JOURNAL OF SCIENCE AND EDUCATION POLICY ISSN 1313-1958 (print) ISSN 1313-9118 (online) http://bjsep.org

INVESTIGATING THE ABILITY OF 8

Marina Stojanovska, Vladimir M. Petruševski

SYNTHESIS OF TiO -M (Cd, Co, Mn)

Candra Purnawan, Sayekti Wahyuningsih, Dwita Nur Aisyah

EFFECT OF DIFFERENT CADMIUM CONCENTRATION ON SOME BIOCHEMICAL PARAMETERS IN ‘ISA BROWN’ HYBRID CHICKEN

Imer Haziri, Adem Rama, Fatgzim Latifi, Dorjana Beqiraj-Kalamishi, Ibrahim Mehmeti, Arben Haziri

PHYTOCHEMICAL AND IN VITRO ANTIOXIDANT STUDIES OF PRIMULA VERIS (L.) GROWING WILD IN KOSOVO

Ibrahim Rudhani, Florentina Raci, Hamide Ibrahimi, Arben Mehmeti, Ariana Kameri, Fatmir Faiku, Majlinda Daci, Sevdije Govori, Arben Haziri

ПЕДАГОГИЧЕСКА ПОЕМА

Преди година-две заедно с директора на Националното издателство „Аз- буки“ д-р Надя Кантарева-Барух посетихме няколко училища в Родопите. В едно от тях ни посрещнаха в голямата учителска стая. По стените ѝ имаше големи портрети на видни педагози, а под тях – художествено написани умни мисли, които те по някакъв повод са казали. На централно място бе портретът на Антон Семьонович Макаренко (1888 – 1939). Попитах учителките кой е Макаренко – те посрещнаха въпроса ми с мълчание. А някога, в г

Книжка 4
„СИМВОЛНИЯТ КАПИТАЛ“ НА БЪЛГАРСКОТО УЧИЛИЩЕ

Николай Цанков, Веска Гювийска

KINETICS OF PHOTO-ELECTRO-ASSISTED DEGRADATION OF REMAZOL RED 5B

Fitria Rahmawati, Tri Martini, Nina Iswati

ALLELOPATHIC AND IN VITRO ANTICANCER ACTIVITY OF STEVIA AND CHIA

Asya Dragoeva, Vanya Koleva, Zheni Stoyanova, Eli Zayova, Selime Ali

NOVEL HETEROARYLAMINO-CHROMEN-2-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni*, Hamit Ismaili, Gjyle Mulliqi-Osmani, Veprim Thaçi

ОСНОВИ НА ОБЩАТА МЕТОДИКА ПО ЕСТЕСТВОЗНАНИЕ – 1925 Г.

Проф. Валериан Викторович Половцов (1862 – 1918)

Книжка 3
НАЦИОНАЛЕН КОНКУРС НА ФОНДАЦИЯ „ВИГОРИЯ“ – „С ЛЮБОВ КЪМ НАУКАТА“

Класирането на участниците в конкурса – учители и ученици, бе извър- шено от комисия в състав: проф. д.х.н. Борислав Тошев – председател; доц. д-р Свобода Бенева; Мария Петрова – учител по химия; Милка Джиджова – учител по физика; Наско Стаменов – химик в Националния политехнически музей, София. КЛАСИРАНЕ НА УЧИТЕЛИ – РЪКОВОДИТЕЛИ НА ДЕЙНОСТИТЕ НА СВОИ УЧЕНИЦИ Всички училища, които бяха подали заявка за участие в конкурса „С лю- бов към науката“, получиха предварително през ноември 201

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon, Abolfazl Semnani, Ramin Jaberzadeh Ansari, Hamid Shakoori Langeroodi, Mahboube Shirani, Shima Ghanavati Nasab

CHEMOMETRIC ASSISTED SPECTROPHOTOMETRIC ESTIMATION OF LANSOPRAZOLE AND DOMEPERIDONE IN BULK AND COMMERCIAL DOSAGE FORM

Farheen Sami, Shahnaz Majeed, Tengku Azlan Shah Tengku Mohammed, Noor Fatin Amalina Kamaruddin, Mohammad Zulhimi Atan, Syed Amir Javid Bukhari, Namra, Bushra Hasan, Mohammed Tahir Ansari

EVALUATION OF ANTIBACTERIAL ACTIVITY OF DIFFERENT SOLVENT EXTRACTS OF TEUCRIUM CHAMAEDRYS (L.) GROWING WILD IN KOSOVO

Arben Haziri, Fatmir Faiku, Roze Berisha, Ibrahim Mehmeti, Sevdije Govori, Imer Haziri

АЛЕКСАНДЪР ПАНАЙОТОВ

Не много отдавна доц. д.п.н. Александър Панайотов бе удостоен с най- високата академична награда – Почетен знак със синя лента на Софийския

Книжка 2
ПРИРОДОНАУЧНАТА ГРАМОТНОСТ НА УЧЕНИЦИТЕ В НАЧАЛОТО НА XXI ВЕК – В ТЪРСЕНЕ НА КОНЦЕПТУАЛНО ЕДИНСТВО

Теодора Коларова, Иса Хаджиали, Мимия Докова, Веселин Александров

COMPUTER SIMULATORS: APPLICATION FOR GRADUATES’ ADAPTATION AT OIL AND GAS REFINERIES

Irena O. Dolganova, Igor M. Dolganov, Kseniya A. Vasyuchka

SYNTHESIS OF NEW [(3-NITRO-2-OXO-2H-CHROMEN- 4-YLAMINO)-PHENYL]-PHENYL-TRIAZOLIDIN-4-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Hamit Ismaili, Idriz Vehapi, Naser Troni, Gjyle Mulliqi-Osmani, Veprim Thaçi

STABILITY OF RJ-5 FUEL

Lemi Türker, Serhat Variş

A STUDY OF BEGLIKTASH MEGALITHIC COMPLEX

Diana Kjurkchieva, Evgeni Stoykov, Sabin Ivanov, Borislav Borisov, Hristo Hristov, Pencho Kyurkchiev, Dimitar Vladev, Irina Ivanova

Книжка 1
ASSESSING LEVELS OF CO , CO, NO AND SO

Shyqri Dumani, Fatbardh Gashi, Naser Troni

2016 година
Книжка 6
THE EFFECT OF KOH AND KCL ADDITION TO THE DESTILATION OF ETHANOL-WATER MIXTURE

Khoirina Dwi Nugrahaningtyas, Fitria Rahmawati, Avrina Kumalasari

Книжка 5

ОЦЕНЯВАНЕ ЛИЧНОСТТА НА УЧЕНИКА

Министерството на народното просвещение е направило допълне- ния към Правилника за гимназиите (ДВ, бр. 242 от 30 октомври 1941 г.), според които в бъдеще ще се оценяват следните прояви на учениците: (1) трудолюбие; (2) ред, точност и изпълнителност; (3) благовъзпитаност; (4) народностни прояви. Трудолюбието ще се оценява с бележките „образцово“, „добро“, „незадо- волително“. С „образцово“ ще се оценяват учениците, които с любов и по- стоянство извършват всяка възложена им ил

Книжка 4
VOLTAMMERIC SENSOR FOR NITROPHENOLS BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH REDUCED GRAPHENE OXIDE

Arsim Maloku, Liridon S. Berisha, Granit Jashari, Eduard Andoni, Tahir Arbneshi

Книжка 3
ИЗСЛЕДВАНЕ НА ПРОФЕСИОНАЛНО-ПЕДАГОГИЧЕСКАТА РЕФЛЕКСИЯ НА УЧИТЕЛЯ ПО БИОЛОГИЯ (ЧАСТ ВТОРА)

Надежда Райчева, Иса Хаджиали, Наташа Цанова, Виктория Нечева

EXISTING NATURE OF SCIENCE TEACHING OF A THAI IN-SERVICE BIOLOGY TEACHER

Wimol Sumranwanich, Sitthipon Art-in, Panee Maneechom, Chokchai Yuenyong

NUTRIENT COMPOSITION OF CUCURBITA MELO GROWING IN KOSOVO

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

НАГРАДИТЕ „ЗЛАТНА ДЕТЕЛИНА“ ЗА 2016 Г.

На 8 март 2016 г. в голямата зала на Националния политехнически музей в София фондация „Вигория“ връчи годишните си награди – почетен плакет „Златна детелина“. Тази награда се дава за цялостна професионална и творче- ска изява на личности с особени заслуги към обществото в трите направления на фондация „Вигория“ – образование, екология, култура. Наградата цели да се даде израз на признателност за високи постижения на личности, които на професионално равнище и на доброволни начала са рабо

Книжка 2
Книжка 1
ПО ПЪТЯ

Б. В. Тошев

INTERDISCIPLINARY PROJECT FOR ENHANCING STUDENTS’ INTEREST IN CHEMISTRY

Stela Georgieva, Petar Todorov , Zlatina Genova, Petia Peneva

2015 година
Книжка 6
COMPLEX SYSTEMS FOR DRUG TRANSPORT ACROSS CELL MEMBRANES

Nikoleta Ivanova, Yana Tsoneva, Nina Ilkova, Anela Ivanova

SURFACE FUNCTIONALIZATION OF SILICA SOL-GEL MICROPARTICLES WITH EUROPIUM COMPLEXES

Nina Danchova , Gulay Ahmed , Michael Bredol , Stoyan Gutzov

INTERFACIAL REORGANIZATION OF MOLECULAR ASSEMBLIES USED AS DRUG DELIVERY SYSTEMS

I. Panaiotov, Tz. Ivanova, K. Balashev, N. Grozev, I. Minkov, K. Mircheva

KINETICS OF THE OSMOTIC PROCESS AND THE POLARIZATION EFFECT

Boryan P. Radoev, Ivan L. Minkov, Emil D. Manev

WETTING BEHAVIOR OF A NATURAL AND A SYNTHETIC THERAPEUTIC PULMONARY SURFACTANTS

Lidia Alexandrova, Michail Nedyalkov, Dimo Platikanov

Книжка 5
TEACHER’S ACCEPTANCE OF STUDENTS WITH DISABILITY

Daniela Dimitrova-Radojchikj, Natasha Chichevska-Jovanova

IRANIAN UNIVERSITY STUDENTS’ PERCEPTION OF CHEMISTRY LABORATORY ENVIRONMENTS

Zahra Eskandari, Nabi.A Ebrahimi Young Researchers & Elite Club, Arsanjan Branch,

APPLICATION OF LASER INDUCED BREAKDOWN SPECTROSCOPY AS NONDESDUCTRIVE AND SAFE ANALYSIS METHOD FOR COMPOSITE SOLID PROPELLANTS

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, Seyyed Mohamad Reza Darbany, Mehran Karimi, Amir Hossein Rezayi Optics & Laser Science and Technology Research Center,

THE EFFECT OF DIOCTYLPHTHALATE ON INITIAL PROPERTIES AND FIELD PERFORMANCE OF SOME SEMISYNTHETIC ENGINE OILS

Azadeh Ghasemizadeh, Abolfazl Semnani, Hamid Shakoori Langeroodi, Alireza Nezamzade Ejhieh

QUALITY ASSESSMENT OF RIVER’S WATER OF LUMBARDHI PEJA (KOSOVO)

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

Книжка 4
БЛАГОДАРЯ ВИ!

Александър Панайотов

ТЕМАТА ВЪГЛЕХИДРАТИ В ПРОГРАМИТЕ ПО ХИМИЯ И БИОЛОГИЯ

Радка Томова, Елена Бояджиева, Миглена Славова , Мариан Николов

BILINGUAL COURSE IN BIOTECHNOLOGY: INTERDISCIPLINARY MODEL

V. Kolarski, D. Marinkova, R. Raykova, D. Danalev, S. Terzieva

ХИМИЧНИЯТ ОПИТ – НАУКА И ЗАБАВА

Елица Чорбаджийска, Величка Димитрова, Магдалена Шекерлийска, Галина Бальова, Методийка Ангелова

ЕКОЛОГИЯТА В БЪЛГАРИЯ

Здравка Костова

Книжка 3
SYNTHESIS OF FLUORINATED HYDROXYCINNAMOYL DERIVATIVES OF ANTI-INFLUENZA DRUGS AND THEIR BIOLOGICAL ACTIVITY

Boyka Stoykova, Maya Chochkova, Galya Ivanova, Luchia Mukova, Nadya Nikolova, Lubomira Nikolaeva-Glomb, Pavel Vojtíšek, Tsenka Milkova, Martin Štícha, David Havlíček

SYNTHESIS AND ANTIVIRAL ACTIVITY OF SOME AMINO ACIDS DERIVATIVES OF INFLUENZA VIRUS DRUGS

Radoslav Chayrov, Vesela Veselinova, Vasilka Markova, Luchia Mukova, Angel Galabov, Ivanka Stankova

NEW DERIVATIVES OF OSELTAMIVIR WITH BILE ACIDS

Kiril Chuchkov, Silvia Nakova, Lucia Mukova, Angel Galabov, Ivanka Stankova

MONOHYDROXY FLAVONES. PART III: THE MULLIKEN ANALYSIS

Maria Vakarelska-Popovska, Zhivko Velkov

LEU-ARG ANALOGUES: SYNTHESIS, IR CHARACTERIZATION AND DOCKING STUDIES

Tatyana Dzimbova, Atanas Chapkanov, Tamara Pajpanova

MODIFIED QUECHERS METHOD FOR DETERMINATION OF METHOMYL, ALDICARB, CARBOFURAN AND PROPOXUR IN LIVER

I. Stoykova, T. Yankovska-Stefenova, L.Yotova, D. Danalev Bulgarian Food Safety Agency, Sofi a, Bulgaria

LACTOBACILLUS PLANTARUM AC 11S AS A BIOCATALYST IN MICROBIAL ELECYTOLYSIS CELL

Elitsa Chorbadzhiyska, Yolina Hubenova, Sophia Yankova, Dragomir Yankov, Mario Mitov

STUDYING THE PROCESS OF DEPOSITION OF ANTIMONY WITH CALCIUM CARBONATE

K. B. Omarov, Z. B. Absat, S. K. Aldabergenova, A. B. Siyazova, N. J. Rakhimzhanova, Z. B. Sagindykova

Книжка 2
TEACHING CHEMISTRY AT TECHNICAL UNIVERSITY

Lilyana Nacheva-Skopalik, Milena Koleva

ФОРМИРАЩО ОЦЕНЯВАНЕ PEER INSTRUCTION С ПОМОЩТА НА PLICКERS ТЕХНОЛОГИЯТА

Ивелина Коцева, Мая Гайдарова, Галина Ненчева

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Javid Safarov, Bahruz Ahmadov, Saleh Mirzayev, Astan Shahverdiyev, Egon Hassel

В новите броеве на научните списания на издателство четете

2/2015: сп. „Педагогика“ Проблеми на социалната адаптация на пътуващи ученици от малки населени места / Траян Попкочев, Бонка Гергинова, Тереза Карамангалова Текстът разглежда социалната адаптация на пътуващи ученици от малки населени места в

Книжка 1
РУМЕН ЛЮБОМИРОВ ДОЙЧЕВ (1938 – 1999)

Огнян Димитров, Здравка Костова

NAMING OF CHEMICAL ELEMENTS

Maria Atanassova

НАЙДЕН НАЙДЕНОВ, 1929 – 2014 СПОМЕН ЗА ПРИЯТЕЛЯ

ИНЖ. НАЙДЕН ХРИСТОВ НАЙДЕНОВ, СЕКРЕТАР, НА СЪЮЗА НА ХИМИЦИТЕ В БЪЛГАРИЯ (2.10.1929 – 25.10.2014)

2014 година
Книжка 6
145 ГОДИНИ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

145 ANNIVERSARY OF THE BULGARIAN ACADEMY OF SCIENCES

ПАРНО НАЛЯГАНЕ НА РАЗТВОРИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

LUBRICATION PROPERTIES OF DIFFERENT PENTAERYTHRITOL-OLEIC ACID REACTION PRODUCTS

Abolfazl Semnani, Hamid Shakoori Langeroodi, Mahboube Shirani

THE ORIGINS OF SECONDARY AND TERTIARY GENERAL EDUCATION IN RUSSIA: HISTORICAL VIEWS FROM THE 21ST CENTURY

V. Romanenko, G. Nikitina Academy of Information Technologies in Education, Russia

ALLELOPATHIC AND CYTOTOXIC ACTIVITY OF ORIGANUM VULGARE SSP. VULGARE GROWING WILD IN BULGARIA

Asya Pencheva Dragoeva, Vanya Petrova Koleva, Zheni Dimitrova Nanova, Mariya Zhivkova Kaschieva, Irina Rumenova Yotova

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО

VOLUME 23 / ГОДИНА XXII, 2014 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1–160 КНИЖКА 2 / NUMBER 2: 161–320 КНИЖКА 3 / NUMBER 3: 321–480 КНИЖКА 4 / NUMBER 4: 481–640 КНИЖКА 5 / NUMBER 5: 641–800 КНИЖКА 6 / NUMBER 6: 801–960 ADVANCED SCIENCE 260 – 267: Х. Попова, Д. Петкова, В. Тончев – Генерична нестабилност в модела на дифузионно-контролирана агрегация (ДКА): Ефект на глобалните радиуси на пораждане и изоставане [Generic Instability in the Model of Diffusion-Lim

В новите броеве на научните списания на издателство четете

7/2014: сп. „Педагогика“ Гражданското образование – интегриращ фактор за формалното и неформалното обра- зование / Лиляна Стракова Гражданското образование се интерпретира от автора като „практикуване на морален ко- декс“. В тази перспектива се разглежда и развитието на децата в образователния процес. Продължаващото обучение като споделено социално учене / Стели Петева Статията има за цел да представи ролята на продължаващото обучение в по-широк пси- хосоциален контекст и с фокус върху хората с

Книжка 5
GENDER ISSUES OF UKRAINIAN HIGHER EDUCATION

Н.H.Petruchenia, M.I.Vorovka

МНОГОВАРИАЦИОННА СТАТИСТИЧЕСКА ОЦЕНКА НА DREEM – БЪЛГАРИЯ: ВЪЗПРИЕМАНЕ НА ОБРАЗОВАТЕЛНАТА СРЕДА ОТ СТУДЕНТИТЕ В МЕДИЦИНСКИЯ УНИВЕРСИТЕТ – СОФИЯ

Радка Томова, Павлина Гатева, Радка Хаджиолова, Зафер Сабит, Миглена Славова, Гергана Чергарова, Васил Симеонов

MUSSEL BIOADHESIVES: A TOP LESSON FROM NATURE

Saâd Moulay Université Saâd Dahlab de Blida, Algeria

В новите броеве на научните списания на издателство четете

7/2014: сп. „Педагогика“ Гражданското образование – интегриращ фактор за формалното и неформалното обра- зование / Лиляна Стракова Г ражданското образование се интерпретира от автора като „практикуване на морален ко- декс“. В тази перспектива се разглежда и развитието на децата в образователния процес. Продължаващото обучение като споделено социално учене / Стели Петева Статията има за цел да представи ролята на продължаващото обучение в по-широк пси- хосоциален контекст и с фокус върху хората

Книжка 4
ЕЛЕКТРОННО ПОМАГАЛO „ОТ АТОМА ДО КОСМОСА“ ЗА УЧЕНИЦИ ОТ Х КЛАС

Силвия Боянова Професионална гимназия „Акад. Сергей П. Корольов“ – Дупница

ЕСЕТО КАТО ИНТЕГРАТИВЕН КОНСТРУКТ – НОРМАТИВЕН, ПРОЦЕСУАЛЕН И ОЦЕНЪЧНО-РЕЗУЛТАТИВЕН АСПЕКТ

Надежда Райчева, Иван Капурдов, Наташа Цанова, Иса Хаджиали, Снежана Томова

44

Донка Ташева, Пенка Василева

ДОЦ. Д.П.Н. АЛЕКСАНДЪР АТАНАСОВ ПАНАЙОТОВ

Наташа Цанова, Иса Хаджиали, Надежда Райчева

COMPUTER ASSISTED LEARNING SYSTEM FOR STUDYING ANALYTICAL CHEMISTRY

N. Y. Stozhko, A. V. Tchernysheva, L.I. Mironova

GUIDE FOR AUTHORS

Manuscripts submitted to this journal are considered if they have been submitted only to it, they have not been published already, nor are they under consideration for publication or in press elsewhere. Contributions to the Bulgarian Journal of Science Education must report original research and will be subjected to review by anonymous and independent referees at the discretion of the Editor(s). Manuscripts for consideration should be sent electronically to toshev@chem.uni-sofia.bg Electroni

Книжка 3
KNOWLEDGE OF AND ATTITUDES TOWARDS WATER IN 5

Antoaneta Angelacheva, Kalina Kamarska

ВИСША МАТЕМАТИКА ЗА УЧИТЕЛИ, УЧЕНИЦИ И СТУДЕНТИ: ДИФЕРЕНЦИАЛНО СМЯТАНЕ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ВАСИЛ ХРИСТОВ БОЗАРОВ

Пенка Бозарова, Здравка Костова

БИБЛИОГРАФИЯ НА СТАТИИ ЗА МИСКОНЦЕПЦИИТЕ В ОБУЧЕНИЕТО ПО ПРИРОДНИ НАУКИ ВЪВ ВСИЧКИ ОБРАЗОВАТЕЛНИ НИВА

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

В новите броеве на научните списания на издателство четете

3/2014: сп. „Педагогика“ Образователни възможности за свободно писмено преразказване / Мариана Мандева

Книжка 2
SCIENTIX – OБЩНОСТ ЗА НАУЧНО ОБРАЗОВАНИЕ В ЕВРОПА

Свежина Димитрова Народна астрономическа обсерватория и планетариум „Николай Коперник“ – Варна

BOTYU ATANASSOV BOTEV

Zdravka Kostova, Margarita Topashka-Ancheva

CHRONOLOGY OF CHEMICAL ELEMENTS DISCOVERIES

Maria Atanassova, Radoslav Angelov

GUIDE FOR AUTHORS

Manuscripts submitted to this journal are considered if they have been submitted only to it, they have not been published already, nor are they under consideration for publication or in press elsewhere. Contributions to the Bulgarian Journal of Science Education must report original research and will be subjected to review by anonymous and independent referees at the discretion of the Editor(s). Manuscripts for consideration should be sent electronically to toshev@chem. uni-sofia.bg Elec

Книжка 1
ОБРАЗОВАНИЕ ЗА ПРИРОДОНАУЧНА ГРАМОТНОСТ

Адриана Тафрова-Григорова

A COMMENTARY ON THE GENERATION OF AUDIENCE-ORIENTED EDUCATIONAL PARADIGMS IN NUCLEAR PHYSICS

Baldomero Herrera-González Universidad Autónoma del Estado de México, Mexico

В новите броеве на научните списания на издателство четете

4/2013: сп. „Философия“ Портфолио на преподавателя и студента по „Философия на oбразованието“ (за академич- ни цели) / Яна Рашева-Мерджанова „Философия на oбразованието“ има своите хилядолетни опити и резултати. Изследването на тази духовна вселена води до структура и до обособяването на активности, които са съответни, от една страна, на философскообразователното мислене и култура, а от друга страна – са въвеж- дащи в тяхното овладяване. За ролята на етиката в ученията на П. Рикьор и Е. Лев

2013 година
Книжка 6
DIFFERENTIAL TEACHING IN SCHOOL SCIENCE EDUCATION: CONCEPTUAL PRINCIPLES

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ШЕСТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО „ЧОВЕКЪТ И ПРИРОДАТА“

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

HISTORY AND PHILOSOPHY OF SCIENCE: SOME RECENT PERIODICALS (2013)

Chemistry: Bulgarian Journal of Science Education

45. НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

„Образователни стандарти и природонаучна грамотност“ – това е темата на състоялата се от 25 до 27 октомври 2013 г. в Габрово 45. Национална конфе- ренция на учителите по химия с международно участие, която по традиция се проведе комбинирано с Годишната конференция на Българското дружество за химическо образование и история и философия на химията. Изборът на темата е предизвикан от факта, че развиването на природонаучна грамотност е обща тенденция на реформите на учебните програми и главна

Книжка 5

ЗА ХИМИЯТА НА БИРАТА

Ивелин Кулев

МЕТЕОРИТЪТ ОТ БЕЛОГРАДЧИК

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
RECASTING THE DERIVATION OF THE CLAPEYRON EQUATION INTO A CONCEPTUALLY SIMPLER FORM

Srihari Murthy Meenakshi Sundararajan Engineering College, India

CHEMICAL REACTIONS DO NOT ALWAYS MODERATE CHANGES IN CONCENTRATION OF AN ACTIVE COMPONENT

Joan J. Solaz-Portolés, Vicent Sanjosé Universitat de Valènciа, Spain

POLYMETALLIC COMPEXES: CV. SYNTHESIS, SPECTRAL, THERMOGRAVIMETRIC, XRD, MOLECULAR MODELLING AND POTENTIAL ANTIBACTERIAL PROPERTIES OF TETRAMERIC COMPLEXES OF Co(II), Ni(II), Cu(II), Zn(II), Cd(II) AND Hg(II) WITH OCTADENTATE AZODYE LIGANDS

Bipin B. Mahapatra, S. N. Dehury, A. K. Sarangi, S. N. Chaulia G. M. Autonomous College, India Covt. College of Engineering Kalahandi, India DAV Junior College, India

ПРОФЕСОР ЕЛЕНА КИРКОВА НАВЪРШИ 90 ГОДИНИ

CELEBRATING 90TH ANNIVERSARY OF PROFESSOR ELENA KIRKOVA

Книжка 3
SIMULATION OF THE FATTY ACID SYNTHASE COMPLEX MECHANISM OF ACTION

M.E.A. Mohammed, Ali Abeer, Fatima Elsamani, O.M. Elsheikh, Abdulrizak Hodow, O. Khamis Haji

FORMING OF CONTENT OF DIFFERENTIAL TEACHING OF CHEMISTRY IN SCHOOL EDUCATION OF UKRAINE

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

ИЗСЛЕДВАНЕ НА РАДИКАЛ-УЛАВЯЩА СПОСОБНОСТ

Станислав Станимиров, Живко Велков

Книжка 2
Книжка 1
COLORFUL EXPERIMENTS FOR STUDENTS: SYNTHESIS OF INDIGO AND DERIVATIVES

Vanessa BIANDA, Jos-Antonio CONSTENLA, Rolf HAUBRICHS, Pierre-Lonard ZAFFALON

OBSERVING CHANGE IN POTASSIUM ABUNDANCE IN A SOIL EROSION EXPERIMENT WITH FIELD INFRARED SPECTROSCOPY

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

ЦАРСКАТА ПЕЩЕРА

Рафаил ПОПОВ

УЧИЛИЩНИ ЛАБОРАТОРИИ И ОБОРУДВАНЕ SCHOOL LABORATORIES AND EQUIPMENT

Учебни лаборатории Илюстрации от каталог на Franz Hugershoff, Лайциг, притежаван от бъдещия

2012 година
Книжка 6
ADDRESING STUDENTS’ MISCONCEPTIONS CONCERNING CHEMICAL REACTIONS AND SYMBOLIC REPRESENTATIONS

Marina I. Stojanovska, Vladimir M. Petruševski, Bojan T. Šoptrajanov

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ПЕТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО ЧОВЕКЪТ И ПРИРОДАТА

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

ЕКОТОКСИКОЛОГИЯ

Васил Симеонов

ПРОФ. МЕДОДИЙ ПОПОВ ЗА НАУКАТА И НАУЧНАТА ДЕЙНОСТ (1920 Г.)

Проф. Методий Попов (1881-1954) Госпожици и Господа студенти,

Книжка 5
КОНЦЕПТУАЛНА СХЕМА НА УЧИЛИЩНИЯ КУРС П О ХИМИЯ – МАКР О СКОПСКИ ПОДХОД

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ROLE OF ULTRASONIC WAVES TO STUDY MOLECULAR INTERACTIONS IN AQUEOUS SOLUTION OF DICLOFENAC SODIUM

Sunanda S. Aswale, Shashikant R. Aswale, Aparna B. Dhote Lokmanya Tilak Mahavidyalaya, INDIA Nilkanthrao Shinde College, INDIA

SIMULTANEOUS ESTIMATION OF IBUPROFEN AND RANITIDINE HYDROCHLORIDE USING UV SPECTROPHOT O METRIC METHOD

Jadupati Malakar, Amit Kumar Nayak Bengal College of Pharmaceutical Sciences and Research, INDIA

GAPS AND OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION ASSESSMENT

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

РАДИОХИМИЯ И АРХЕОМЕТРИЯ: ПРО Ф. ДХН ИВЕЛИН КУЛЕВ RADIOCHEMISTRY AND ARCHEOMETRY: PROF. IVELIN KULEFF, DSc

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
TEACHING THE CONSTITUTION OF MATTER

Małgorzata Nodzyńska, Jan Rajmund Paśko

СЪСИРВАЩА СИСТЕМА НА КРЪВТА

Маша Радославова, Ася Драгоева

CATALITIC VOLCANO

Emil Lozanov

43-ТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка ТАШЕВА, Пенка ЦАНОВА

ЮБИЛЕЙ: ПРОФ. ДХН БОРИС ГЪЛЪБОВ JUBILEE: PROF. DR. BORIS GALABOV

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ПЪРВИЯТ ПРАВИЛНИК ЗА УЧЕБНИЦИТЕ (1897 Г.)

Чл. 1. Съставянето и издаване на учебници се предоставя на частната инициа- тива. Забележка: На учителите – съставители на учебници се запрещава сами да разпродават своите учебници. Чл. 2. Министерството на народното просвещение може да определя премии по конкурс за съставяне на учебници за горните класове на гимназиите и специ- алните училища. Чл. 3. Никой учебник не може да бъде въведен в училищата, ако предварително не е прегледан и одобрен от Министерството на народното просвещение. Чл.

JOHN DEWEY: HOW WE THINK (1910)

John Dewey (1859 – 1952)

ИНФОРМАЦИЯ ЗА СПЕЦИАЛНОСТИТЕ В ОБЛАСТТА НА ПРИРОДНИТЕ НАУКИ В СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ

1. Биология Студентите от специалност Биология придобиват знания и практически умения в областта на биологическите науки, като акцентът е поставен на организмово равнище. Те се подготвят да изследват биологията на организмите на клетъчно- организмово, популационно и екосистемно ниво в научно-функционален и прило- жен аспект, с оглед на провеждане на научно-изследователска, научно-приложна, производствена и педагогическа дейност. Чрез широк набор избираеми и факул- тативни курсове студентите

Книжка 3
УЧИТЕЛИТЕ ПО ПРИРОДНИ НАУКИ – ЗА КОНСТРУКТИВИСТКАТА УЧЕБНА СРЕДА В БЪЛГАРСКОТО УЧИЛИЩЕ

Адриана Тафрова-Григорова, Милена Кирова, Елена Бояджиева

ПОВИШАВАНЕ ИНТЕРЕСА КЪМ ИСТОРИЯТА НА ХИМИЧНИТЕ ЗНАНИЯ И ПРАКТИКИ ПО БЪЛГАРСКИТЕ ЗЕМИ

Людмила Генкова, Свобода Бенева Българско дружество за химическо образование и история и философия на химията

НАЧАЛО НА ПРЕПОДАВАНЕТО НА УЧЕБЕН ПРЕДМЕТ ХИМИЯ В АПРИЛОВОТО УЧИЛИЩЕ В ГАБРОВО

Мария Николова Национална Априловска гимназия – Габрово

ПРИРОДОНАУЧНОТО ОБРАЗОВАНИЕ В БЪЛГАРИЯ – ФОТОАРХИВ

В един дълъг период от време гимназиалните учители по математика, физика, химия и естествена

Книжка 2
„МАГИЯТА НА ХИМИЯТА“ – ВЕЧЕР НА ХИМИЯТА В ЕЗИКОВА ГИМНАЗИЯ „АКАД. Л. СТОЯНОВ“ БЛАГОЕВГРАД

Стефка Михайлова Езикова гимназия „Акад. Людмил Стоянов“ – Благоевград

МЕЖДУНАРОДНАТА ГОДИНА НА ХИМИЯТА 2011 В ПОЩЕНСКИ МАРКИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ЗА ПРИРОДНИТЕ НАУКИ И ЗА ПРАКТИКУМА ПО ФИЗИКА (Иванов, 1926)

Бурният развой на естествознанието във всичките му клонове през XIX –ия век предизвика дълбоки промени в мирогледа на културния свят, в техниката и в индустрията, в социалните отношения и в държавните интереси. Можем ли днес да си представим един философ, един държавен мъж, един обществен деец, един индустриалец, просто един културен човек, който би могъл да игнорира придобив- ките на природните науки през последния век. Какви ужасни катастрофи, какви социални сътресения би сполетяло съвре

Книжка 1
MURPHY’S LAW IN CHEMISTRY

Milan D. Stojković

42

Донка Ташева, Пенка Цанова

СЕМЕЙНИ УЧЕНИЧЕСКИ ВЕЧЕРИНКИ

Семейството трябва да познава училишето и училишето трябва да познава семейството. Взаимното познанство се налага от обстоятелството, че те, макар и да са два различни по природата си фактори на възпитанието, преследват една и съща проста цел – младото поколение да бъде по-умно, по-нравствено, физически по-здраво и по-щастливо от старото – децата да бъдат по-щастливи от родителите