Обучение по природни науки и върхови технологии

https://doi.org/10.53656/nat2023-3-4.05

2023/3-4, стр. 281 - 304

MODELLING THE IMPACT OF VACCINATION ON THE TRANSMISSION DYNAMICS OF COVID-19 IN THE PRESENCE OF ENVIRONMENTAL FACTOR

Deborah O. Daniel
OrcID: 0000-0003-4025-1448
E-mail: omolikiarinola@gmail.com
Department of Mathematics and Computer Science
Southwestern University Nigeria
Okun Owa Ogun State Nigeria
Shola A. Akinboboye
OrcID: 0000-0002-0399-6822
E-mail: shola.akinboboye@mysun.edu.ng
Department of Biological Sciences
Southwestern University Nigeria
Okun Owa Ogun State Nigeria

Резюме: The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic, as reported by the World Health Organisation (WHO), originating from Wuhan, China in late 2019, poses a significant and formidable challenge to worldwide public health. As a result, more than 20 nations experienced the impact of this lethal illness. This research introduces a mathematical model, namely SEIQRV, which incorporates the SEIR model to analyse the ongoing COVID-19 epidemic in Nigeria. The model incorporates nonlinear forces of infection. The present model takes into account the many modes of transmission involved in the dynamics of infection, as well as the influence of the environmental reservoir on the dissemination of this particular illness to human populations. The establishment of the area in which the model is epidemiologically viable has been confirmed. A comprehensive numerical simulation of the model was performed using the data given by the Nigeria Centre for Disease Control (NCDC). The findings from our analysis and simulation suggest that administering an inadequate dose of vaccination will result in an elevated number of persons who are exposed to and infected by the virus. Additionally, this incomplete dosage is also likely to contribute to an increase in the concentration of the virus within the environmental reservoir. Hence, the need for effective vaccination with a zero-wane-off vaccine and compliance with vaccination dose, which can be achieved through educational campaign and public awareness of the need to be vaccinated, and not to be vaccinated alone but to complete the dose as incomplete dosage is dangerous to the community and the country at large. This will help a great deal in eradicating the spread of the COVID-19.

Ключови думи: COVID-19; Vaccination; Infection dynamics; Mathematical model; SEIQRV model; Transmission; Basic reproduction number

1. Introduction

Coronaviruses are zoonotic pathogens that may infect both people and animals, exhibiting a diverse spectrum of clinical manifestations, ranging from asymptomatic cases to severe illness requiring hospitalisation in critical care units. These viruses can cause infections in several systems of the body, including the respiratory, gastrointestinal, hepatic, and neurologic systems. The perception of their pathogenicity in humans did not reach significant levels until their association with the outbreak of severe acute respiratory syndrome (SARS) in Guangdong, China, between the years 2000 and 2003.According to Weiss and Navas-Martin (2005), these viruses are prevalent among animals on a global scale; nevertheless, their impact on humans has been limited, with just a small number of documented instances.

The 2019 new coronavirus, as designated by the World Health Organisation (WHO), is a kind of coronavirus that specifically impacts the lower respiratory tract of individuals diagnosed with pneumonia in Wuhan, China on December 29, 2019 (Li et al., 2019). The World Health Organisation (WHO) has officially designated the name of the illness caused by the 2019 new coronavirus as COVID-19. This disease has garnered significant worldwide interest since it is associated with a pneumonia epidemic of uncertain origin (Zhu et al., 2019). The virus is now referred to as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). According to Zhu et al. (2019), there was a documented association between a group of individuals suffering from pneumonia of uncertain aetiology and the Huanan South China Seafood Market located in Wuhan, during the month of December in the year 2019.

Prior to the onset of the COVID-19 pandemic, two prominent strains of coronavirus, namely CoV OC43 and CoV 229E, were responsible for mostly inducing mild illnesses in individuals with a robust immune system. Nearly a decade after the emergence of the Severe Acute Respiratory Syndrome (SARS), a new highly contagious coronavirus known as the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has emerged in urban areas of the Middle East.

In addition to SARS-CoV-2, there are six documented coronaviruses that infect humans, namely HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63, HCoV-HKU1, and MERS-CoV. The occurrence of two significant pandemics, namely Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), may be attributed to the coronavirus during the last twenty years (Li et al., 2019).

Figure 1. Structure of COVID-19

Various mathematical modelling studies have been undertaken to analyse the dynamics of the propagation of the COVID-19 pandemic. In their work, Okhuese (2020) used the SEIRU model as a tool for examining and forecasting the spread of COVID-19 on a global scale. There is a projected possibility of a reduction in secondary infections if comprehensive preventive measures are universally adhered to. Chen et al. (2020) proposed a mathematical model that aimed to explain a transmission network including bats, hosts, reservoirs, and humans. This model was specifically designed to simulate the possible transmission of infections from the source of infection to humans. To simplify the complexity of the model, it was referred to as the Reservoir-People transmission network model. The calculation of the reproduction number was derived from the Reservoir-People model, using the next-generation matrix as a means to quantify the transmissibility of the virus within the geographical region of Wuhan, China. The predicted value of was found to be 2.30 when considering the transmission from the ambient reservoir to people, and 3.58 when considering transmission from humans to humans. In their study, Yang and Wang (2020) introduced a compartmental model that incorporates many components, including the vulnerable population, the exposed population, the infected population, the recovered population, and the concentration of the pathogen in the environmental reservoir. The reproduction number was determined by using the next-generation matrix methodology to assess the transmissibility of the virus. This analysis focused on the transmission of the virus from individuals who were exposed, infected, or carrying pathogens in the environmental reservoir to vulnerable individuals in Wuhan, China. The projected value of is 4.25, with 1.5 attributed to the indirect transmission route and 2.7 attributed to the direct transmission route. In his study, Daniel (2020) examined the transmission dynamics of infectious diseases in Nigeria, specifically focusing on the transmissibility between individuals and the environmental reservoir. The analysis used nonlinear forces of infection to better understand the spread of the disease throughout the population. According to projections, it is anticipated that Nigeria would have a total of 55,000 confirmed cases by December 25, 2020. Consequently, the implementation of mitigation techniques is recommended, as its efficacy in curtailing the transmission of COVID-19 throughout Nigeria is being emphasised. Previous investigations conducted by Onitilo et al. \((2021,2022)\) have undertaken rigorous study pertaining to the topic at hand.

However, previous literature did not take into consideration the transmission route from the confirmed cases to the susceptible because, they are isolated and treated. But in a country like Nigeria where it is reported that the clinical practitioners were infected in the process of treating patients with COVID-19. Hence, the need to include this transmission route. Hence, we present a mathematical model for the pandemic COVID-19 to describe the several transmission pathways including the disease-induced rates for humans, and direct and indirect transmission routes. The direct transmission routes through contact describe the transmission from the exposed individuals to the susceptible individuals; from the infected individuals to the susceptible individuals, and from the quarantine individuals/confirmed cases to susceptible individuals while the indirect transmission routes come from the interaction of the susceptible individuals with these pathogens in the environmental reservoir.

2. Model Analysis and Formulation

2.1. Formulation

To investigate the transmission dynamics of COVID-19 among humans, we utilise the SEIR model framework, which considers a total population size \(N\). We incorporate the presence of quarantined individuals and the concentration of the virus in the environmental reservoir into our model. Consequently, we propose a mathematical model denoted as SEIQRV to examine the ongoing epidemic in Nigeria.

The susceptible compartment, represented by \(S\), comprises persons who are at risk of being infected. The exposed compartment, designated by \(E\), consists of individuals who have been infected but have not yet shown symptoms. The infected population, denoted by \(I\), represents individuals who are displaying complete illness symptoms. The compartments that are exposed and infected consist of individuals who are respectively asymptomatic and symptomatic with the infection. The quarantine compartment, referred to as \(Q\), comprises individuals who have been proven positive for a certain condition, have been placed under quarantine, and have received vaccination. Individuals who decline to undergo therapy or vaccination are reclassified into the susceptible compartment. Following a period of therapy and completion of all necessary observational procedures to ensure the successful recuperation from the aforementioned infectious ailment, individuals are then transferred to the designated recovery compartment, signified by \(R\). Finally, the variable \(V\) denotes the concentration of the pathogen in the environmental reservoir. The following diagram illustrates the transmission dynamics of the COVID-19 pandemic using the SEICRV model, under the premise that people who have recovered from the disease develop immunity and are not susceptible to reinfection. In order to study the transmission dynamics of COVID-19 among humans, we adopt the SEIR model framework with total population of human size \(N N\) and formulate a model that include the quarantine individuals and the concentration of the virus in the environmental reservoir, hence propose a mathematical model of the form SEIQRV to investigate the present epidemic in Nigeria.

Figure 2. Transmission dynamics of the infectious disease

Virus

The transmission dynamics of the disease are described by a six-dimensional system of ordinary differential equations, as seen in Figures 1 and 2.

(1.1)\[ \left\{\begin{array}{l} \tfrac{d S}{d t}=\Phi-b(E, I, Q, V)+d_{q s} Q-\left(d_{s q}+\mu\right) S \\ \tfrac{d E}{d t}=b(E, I, Q, V)-\left(\gamma+d_{e q}+\mu\right) E \\ \tfrac{d I}{d t}=\gamma E-\left(\phi_{i}+d_{i q}+\mu\right) I \\ \tfrac{d Q}{d t}=d_{s q} S+d_{e q} E+d_{i q} I-\left(d_{q s}+d_{q r}+\phi_{q}+\mu\right) Q \\ \tfrac{d R}{d t}=d_{q r} Q-\mu R \\ \tfrac{d V}{d t}=h_{1} E+h_{2} I+h_{3} Q-\mu_{v} V \end{array}\right. \]

Together with the initial conditions

(1.2)\[ \left\{\begin{array}{l} S(0)=S_{0}, \quad E(0)=E_{0} \\ I(0)=I_{0}, \quad Q(0)=Q_{0} \\ R(0)=R_{0}, \quad V(0)=V_{0} \end{array}\right. \]

The variable \(\Phi\) denotes the population inflow within the context of the study. The symbol \(\mu\) represents the fatality rate, where it is assumed that all individuals in the compartment experience natural death. The symbol \(\phi\) represents the rate of death produced by the illness, whereas \(\gamma^{-1}\) represents the duration of the incubation period between the time of infection and the start of symptoms. The variable d_qr represents the rate at which individuals recover from the sickness. The variable \(d_{i q}\) represents the rate at which persons who are verified to be infected with the illness are classified as infectious. The variable \(d_{\text {eq }}\) represents the rate at which people who have been exposed to COVID-19 are tested and provide positive results. The variable \(d_{s q}\) represents the rate at which individuals in the susceptible compartment choose to undergo testing and vaccination, resulting in their transition to the recovery compartment. However, if individuals fail to complete their vaccination or if any confirmed cases fail to complete their treatments, they are returned to the susceptible compartment at a rate denoted by \(d_{q s}\). The rates at which the exposed, infected, and quarantined individuals contribute the virus to the environmental reservoir are denoted as \(h_{1}, h_{2}\), and \(h_{3}\), respectively. The removal of the virus from the environmental reservoir is represented by \(\mu \_\mathrm{v}\).

For the infection degree \(b(E, I, Q, V)\) of COVID-19 pandemic in the susceptible compartment, the mathematical expression is as follows:

\[ b(E, I, Q, V)=\beta_{E} S E+\beta_{I} S I+\beta_{Q} S Q+\beta_{v} S V \]

The terms \(\beta_{E} S E, \beta_{I} S I, \beta_{Q} S Q, \beta_{V} S V\),βI SI ,βQSQ ,βV SV , bilinear incidences define respectively the transmission rates between susceptible and exposed, susceptible and infected, susceptible and confirmed and from the environment to humans.

2.2. Boundedness of the Solution

It is necessary to demonstrate that the transmission dynamics defined by system exhibit epidemiological and mathematical well-posedness within a viable area denoted by \(\mathcal{F}\)

\[ \mathcal{F}_{h}=\left\{(S, E, I, Q, R) \in \mathbb{R}_{+}^{5}: N \leq \tfrac{\Phi}{\mu}\right\} \] and

\[ \left.=\left\{\in \mathbb{R} \quad \leq \tfrac{\left({ }_{1}+{ }_{2}\right.}{\mu} 3\right) \Phi\right\} \]

where,

\[ N(t)=S(t)+E(t)+I(t)+Q(t)+R(t)+D(t) \]

Theorem 1: There exist a domain \(\mathcal{F}\) in which the solution set \(\{S, E, I, Q, R, V\}\) is contained and bounded.

Proof:

Let

\[ U_{1}(S, E, I, Q, R)=S(t)+E(t)+I(t)+Q(t)+R(t)+D(t) \] and

\[ U_{1}(V)=V(t) \]

Then the time derivatives \(U_{1}^{\prime}\) and \(U_{2}^{\prime}\) along solutions of the system are: \[ U_{1}^{\prime}=\tfrac{\partial U_{1}}{\partial S} \tfrac{d S}{d t}+\tfrac{\partial U_{1}}{\partial E} \tfrac{d E}{d t}+\tfrac{\partial U_{1}}{\partial I} \tfrac{d I}{d t}+\tfrac{\partial U_{1}}{\partial Q} \tfrac{d Q}{d t}+\tfrac{\partial U_{1}}{\partial R} \tfrac{d R}{d t}+\tfrac{\partial U_{1}}{\partial D} \tfrac{d D}{d t} \] and

\[ U_{2}^{\prime}=\tfrac{\partial U_{2}}{\partial V} \tfrac{d V}{d t} \] It follows that

(1.3)\[ U_{1}^{\prime} \leq \Phi-\mu U_{1} \text { and } U_{2}^{\prime} \leq\left(h_{1}+h_{2}+h_{3}\right) \Phi-\mu \mu_{v} U_{2} \]

Solving the differential equations yield

\[ U_{1} \leq \tfrac{\Phi}{\mu}(1-\exp (-\mu t))+U_{1}\left(S_{0}, E_{0}, I_{0}, Q_{0}, R_{0}\right) \exp (-\mu t) \] and

\[ U_{2} \leq \tfrac{\left(h_{1}+h_{2}+h_{3}\right) \Phi}{\mu \mu_{v}}\left(1-\exp \left(-\mu \mu_{v} t\right)\right)+U_{2}\left(V_{0}\right) \exp \left(-\mu \mu_{v} t\right) \]

Therefore, taking the limits as \(t \rightarrow \infty\) yields

\[ U_{1} \leq \tfrac{\Phi}{\mu} \text { and } U_{2} \leq \tfrac{\left(h_{1}+h_{2}+h_{3}\right) \Phi}{\mu \mu_{v}} \] Hence, every possible solution of the population belongs inside the feasible zone, indicating the existence and definition of the feasible region for the specified model in equation and is defined by

\[ \mathcal{D}=\left\{(S, E, I, Q, R, V) \in \mathbb{R}_{+}^{6}: N \leq \tfrac{\Phi}{\mu}, V \leq \tfrac{\left(h_{1}+h_{2}+h_{3}\right) \Phi}{\mu \mu_{v}}\right\} \]

2.3. Equilibrium Point

2.3.1. Existence of Disease-free Equilibrium Point (DFE)

The DFE point are equilibrium point where no infection of COVID-19 occurred. Let

\[ E_{0}=\left(S^{*}, E^{*}, I^{*}, Q^{*}, R^{*}, V^{*}\right) \]

Thus at DFE point \(E_{0}, E^{*}, I^{*}, Q^{*}, R^{*}, V^{*}=0\). In respect of this, solving , the resulting DFE point obtained is

\[ \begin{aligned} E_{0} & =\left(S_{0}, 0,0,0,0,0,0\right) \\ & =\left(\tfrac{\Phi}{\mu+d_{s q}}, 0,0,0,0,0,0\right) \end{aligned} \]

2.3.2. Stability of the Free Disease Equilibrium Point

Here, we show that the disease free state \(E_{0}\) is asymptotically stable if \(J\left(E_{0}\right)\) is negative and unstable if \(J\left(E_{0}\right)\) is positive.

To start with, we find the Jacobian matrix of the system at the disease-free equilibrium point \(E_{0}\) which is obtained as

\[ J\left(E_{0}\right)=\left(\begin{array}{cccccc} -\left(\mu+d_{s c}\right) & -\beta_{E} S_{0} & -\beta_{I} S_{0} & -\beta_{Q} S_{0}+d_{q s} & 0 & -\beta_{V} S_{0} \\ 0 & -w_{1} & 0 & 0 & 0 & 0 \\ 0 & \gamma & -w_{2} & 0 & 0 & 0 \\ d_{s q} & d_{e q} & d_{i q} & -w_{3} & 0 & 0 \\ 0 & 0 & 0 & d_{q r} & -\mu & 0 \\ 0 & h_{1} & h_{2} & h_{3} & 0 & -\mu_{v} \end{array}\right) \] Where, \(w_{1}=\gamma+d_{e q}+\mu, \quad w_{2}=\phi+\mu+d_{i q}\), and \(w_{3}=\phi+\mu+d_{q r}+d_{q s}\)

The column(s) or row(s) with diagonal terms forms the first set of eigenvalue(s), the remaining eigenvalues are then obtained from the sub-matrix \(J_{n}\left(E_{0}\right), n \in \mathbb{N}\) which is formed by excluding the column(s) and row(s) of the associated eigenvalue(s). For matrix \(J\left(E_{0}\right)\), the eigenvalues are \(-\mu\) and \(-w_{1}\), for sub-matrix \({ }_{1}\left({ }_{0}\right)\), we have \(-w_{2}\). The remaining three eigenvalues are obtained from the sub-matrix

\[ J_{2}\left(E_{0}\right)=\left(\begin{array}{ccc} -\left(\mu+d_{s q}\right) & -\beta_{Q} S_{0}+d_{q s} & -\beta_{v} S_{0} \\ d_{s q} & -w_{3} & 0 \\ 0 & h_{3} & -\mu_{v} \end{array}\right) \]

The eigenvalues of the matrix \(J_{2}\left(E_{0}\right)\) are the roots of the characteristics equation

(1.4)\[ \begin{aligned} & \lambda^{3}+\left(\mu+d_{s q}+w_{3}+\mu_{v}\right) \lambda^{2}+\left(d_{s q} w_{3}+d_{s q} \mu_{v}+w_{3} \mu+\mu \mu_{v}+w_{3} \mu_{v}+\beta_{C} S_{0} d_{s q}-d_{q s} d_{s q}\right) \lambda \\ & +w_{3} \mu_{v}\left(d_{s q}+\mu\right)+d_{s q} S_{0}\left(\beta_{V} h_{3}+\beta_{Q} \mu_{v}\right)-d_{s q} \mu_{v}=0 \end{aligned} \]

Where

(1.5)\[ \begin{aligned} & A_{3}=1 \\ & A_{2}=\mu+d_{s q}+w_{3}+\mu_{v} \\ & A_{1}=d_{s q} w_{3}+d_{s q} \mu_{v}+w_{3} \mu+\mu \mu_{v}+w_{3} \mu_{v}+\beta_{Q} S_{0} d_{s q}-d_{q s} d_{s q} \\ & A_{0}=w_{3} \mu_{v}\left(d_{s q}+\mu\right)+d_{s q} S_{0}\left(\beta_{V} h_{3}+\beta_{Q} \mu_{v}\right)-d_{s q} \mu_{v} \end{aligned} \]

Employing the Routh-Hurwitz criterion (Murray, 2001) which states that all roots of the polynomial has negative real parts if and only if the coefficient \(A_{i} \gt 0\) and matrices \(H_{i} \gt 0\) for \(i=0,1,2,3\). From equation , we have that \(A_{0} \gt 0, A_{2} \gt 0, A_{3} \gt 0\). Also, \(A_{1} \gt 0\) provided \(w_{3}, \mu_{v} \gt d_{c s}\). Also, the Hurwitz matrices for the polynomial are positive i.e

\[ H_{1}=A_{2} \gt 0, H_{2}=\left|\begin{array}{ll} A_{2} & A_{3} \\ A_{0} & A_{1} \end{array}\right| \gt 0, H_{3}=\left|\begin{array}{ccc} A_{2} & A_{3} & 0 \\ A_{0} & A_{1} & A_{2} \\ 0 & 0 & A_{0} \end{array}\right| \gt 0 \]

Hence, it follows that the eigenvalues of the Jacobian matrix \(\mathrm{J}\left(\mathrm{E} \_0\right)\) possess a negative real component, so establishing the local or asymptotic stability of the disease-free equilibrium point. This suggests that in order for a state to achieve freedom from the virus, the rate of individuals transitioning from the confirmed cases category to the recovered category must exceed the rate at which individu als transition back from the confirmed cases category to the susceptible category, while also ensuring effective removal of the virus from the environmental reservoir. The attainment of a disease-free condition may be ensured by eliminating pathogens from the environmental reservoir and ensuring a higher number of individuals who have received treatment compared to those who have declined it.

Otherwise, if \(w_{3}, \mu_{v}, \lt d_{q s}\), we see that \(A_{1} \lt 0\) and by Descarte's rule of sign, there is at least one sign change in the sequence \(A_{3}, A_{2}, A_{1}, A_{0}\) of the coefficient of the polynomial . So, there is at least one eigenvalue with positive real part and the disease-free equilibrium point is unstable.

2.3.3. Computation of Basic Reproduction Number

The reproduction number \(\mathcal{R}_{0}\) refers to the anticipated number of cases that arise from a single case within a community in which all people are vulnerable to infection. If \(\mathcal{R}_{0} \gt 1\) implies that certain measures are implemented, as such, there would be a decrease in the number of cases. Conversely, if \(\mathcal{R}_{0} \gt 1\) such measures are not implemented, there would be a rise in the number of cases, perhaps leading to the declaration of an epidemic. The magnitude of is directly proportional to the level of difficulty in managing the epidemic. Consequently, it becomes essential to forecast the potential spread of an illness within the population.

To get \(\mathcal{R}_{0}\) for the model in equation (1.1), the next generation matrix approach is used. The components pertaining to infection in this model are \(E, I, Q, V\). The derivatives at the disease-free equilibrium point are to be determined. The infection matrix and the transition matrix are denoted as \(\mathcal{F}\) and \(\mathcal{V}\), respectively.

\[ \begin{aligned} F & =\left(\begin{array}{cccc} \beta_{E} S_{0} & \beta_{I} S_{0} & \beta_{Q} S_{0} & \beta_{V} S_{0} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \\ \mathcal{V} & =\left(\begin{array}{cccc} w_{1} & 0 & 0 & 0 \\ -\gamma & w_{2} & 0 & 0 \\ -d_{e q} & -d_{i q} & w_{3} & 0 \\ -h_{1} & -h_{2} & -h_{3} & \mu_{v} \end{array}\right) \end{aligned} \] Where \(w_{1}=\gamma+d_{e q}+\mu, \quad w_{2}=\phi+\mu+d_{i q}\), and \(w_{3}=\phi+\mu+d_{q r}+d_{q s}\). Hence, the reproduction number for the model is

\(\begin{aligned} \begin{gathered} \mathcal{R}_{0}=\rho\left(F V^{-1}\right)=\cfrac{\beta_{r} S_{0}}{w_{1}}+\cfrac{\beta_{1} S_{9}}{w_{1} w_{2}}+\cfrac{\beta_{p} S_{0}}{w_{1} w_{2} w_{9}}\left(d_{w} w_{2}+d_{4} v\right) \\ +\cfrac{\beta_{r} S_{0}}{\mu_{r} w_{1} w_{2} w_{9}}\left(d_{q}{h_{3}}{w_{3}}+{h_{1}} {w_{2}} w_{3}+\gamma d_{n} h_{3}+\gamma k_{2} w_{2}\right) \\ \end{gathered} \quad &(1.6)\\ \mathcal{R}_{0}=R_{g}+R_{t}+R_{q}+R_{7}\quad\quad \quad \quad \quad\quad & (1.7) \end{aligned}\)

The first three components \(\mathcal{R}_{0}\) in equation (1.7), namely \(\mathcal{R}_{E}, \mathcal{R}_{I}\) and \(\mathcal{R}_{Q}\), quantify the impact of human-to-human transmission channels, namely the exposure of susceptible individuals to diseased individuals, and the transfer from infected individuals to susceptible individuals. The fourth component \(\mathcal{R}_{V}\), quantifies the contribution of the environment to the human transmission route. The four transmission pathways described include the comprehensive assessment of the infection risk associated with the Covid-19 outbreak in Nigeria. The subsequent elucidation delineates each of the components of the fundamental reproductive number.

The first component \(\mathcal{R}_{E}\) quantifies the multiplication of the contact rate between susceptible people and exposed individuals in close proximity to the disease-free equilibrium \(\beta_{E}\), divided by the average length spent in the exposed class \(\tfrac{1}{w_{1}}\).

Additionally, \(\mathcal{R}_{I}\) quantifies the multiplication of the rate at which susceptible people come into contact with infected persons in close proximity to the disease-free equilibrium (DFE) \(\beta_{I}\), and the time between infection and the appearance of symptoms \(\gamma\), relative to the average duration within the combined exposed and infected population \(\tfrac{1}{w_{1}+w_{2}}\). In a similar vein, \(\mathcal{R}_{Q}\) quantifies the combined effect of the contact rate between susceptible individuals and confirmed cases in close proximity to a \(\mathrm{DFE} \beta_{Q}\). It also takes into account the multiplication of two factors: the rate at which individuals transition from the infected class to the removed class, and the rate at which exposed individuals become confirmed cases. Additionally, it considers the multiplication of the number of infected individuals who test positive for the disease after the incubation period \(\left(d_{e c} w_{2}+d_{i c} \gamma\right)\), and the average duration of individuals in the exposed, infected, and quarantine class \(\left(\tfrac{1}{w_{1} w_{2} w_{3}}\right)\). Lastly, \(\mathcal{R}_{V}\) measures the product of contact rate of susceptible individuals from the concentration of the virus in the environment near DFE \(\beta_{V}\) and the sum of the product of the following: rate at which individuals are confirmed, removal from the infected class and the contribution of the confirmed cases in the environmental reservoir to the removal of the virus from the environmental reservoir; removal from exposed class, infected class and the ratio of the contribution of the exposed individuals in the environmental reservoir to the removal of the virus from the environmental reservoir; rate at which infected individuals are positive with the infectious disease after the incubation period and the ratio of the contribution of the confirmed cases in the environmental reservoir to the removal of the virus from the environmental reservoir; removal of infected individuals after the incubation period and the ratio of the contribution of the infected individual in the environmental reservoir to the removal of the virus from the environmental reservoir \(\left(d_{e q} w_{2} h_{3} / \mu_{v}+w_{2} w_{3} h_{1} / \mu_{v}+\gamma d_{i q} h_{3} h_{3} / \mu_{v}+\gamma w_{2} h_{2} / \mu_{v}\right)\), over the average duration in the product of exposed, infected and quarantine population \(\left(\tfrac{1}{w_{1} w_{2} w_{3}}\right)\).

Sensitivity Analysis

The present research incorporates sensitivity analysis to assess the individual impact of each parameter on the basic reproduction number. The purpose of this analysis is to assess the extent to which each parameter value contributes to the reproduction number.

The calculation of the basic reproduction number is calculated as follows:

\[ \begin{aligned} \mathcal{R}_{0} & =\rho\left(F \mathcal{V}^{-1}\right)=\tfrac{\beta_{E} S_{0}}{w_{1}}+\tfrac{\gamma \beta_{I} S_{0}}{w_{1} w_{2}}+\tfrac{\beta_{Q} S_{0}}{w_{1} w_{2} w_{3}}\left(d_{e q} w_{2}+d_{i q} \gamma\right) \\ & +\tfrac{\beta_{V} S_{0}}{\mu_{v} w_{1} w_{2} w_{3}}\left(d_{e q} h_{3} w_{2}+h_{1} w_{2} w_{3}+\gamma d_{i q} h_{3}+\gamma h_{2} w_{2}\right) \end{aligned} \]

Sensitivity index of the model parameter is provided as:

(1.9)\[ S_{X}^{R_{0}}=\tfrac{\partial R_{0}}{\partial X} \times \tfrac{X}{R_{0}} \]

Where \(X\) denotes any parameter in the model.

The estimation of the sensitivity index for each of the parameters is presented in Table 1.

Table 1. The estimation of the sensitivity index for each of the parameters

SYMBOLVALUESOURCESENSITIVITYINDEX0.0364020.03347.01E-050.00053822655Daniel (2020)11111/7Yang and Wang(2020)-0.13257-0.1390.861001-0.008451/14Onitilo and Daniel(2022)-0.0173700-0.714691Yang and Wang(2020)-0.065760000.0182Daniel (2020)-0.06583-0.06123-0.08771-0.246794.103e-5Daniel (2020)-0.82216-0.84329-0.843290.0261590.626Daniel (2020)-0.002690-0.910940.0116263.366e-8Daniel (2020)0.9175411006.396e-9Daniel (2020)0.0019250101.023e-9Assumed0.0147750011.886e-8Daniel (2020)0.0657590002.010Daniel (2020)0.0548920000.235Daniel (2020)0.0013340000.035Assumed0.009533000
0.4Assumed-0.95648-0.95648-0.95648-0.956480.8667Daniel (2020)-3.6E-0600-0.000150.043Iboi et al. (2020)-0.00040-0.06257-0.008170.103Iboi et al. (2020)-0.0025100-0.10306
020406080100time(days)00.511.522.533.544.5Susceptible Individuals106dsq=0.2dsq=0.4dsq=0.6dsq=0.9

Figure 4. Simulation showing the impact of vaccination on the susceptible individuals

020406080100time(days)0123456Exposed Individuals104dsq=0.2dsq=0.4dsq=0.6dsq=0.9

Figure 5. Simulation showing the impact of vaccination on the exposed individuals

020406080100time(days)02000400060008000100001200014000Infectious Individualsdsq=0.2dsq=0.4dsq=0.6dsq=0.9

Figure 6. Simulation showing the impact of vaccination on the infectious individuals

020406080100time(days)00.20.40.60.811.21.41.61.82Quarantine Individuals106dsq=0.2dsq=0.4dsq=0.6dsq=0.9

Figure 7. Simulation showing the impact of vaccination on the quarantine individuals

020406080100time(days)024681012141618Recovered Individuals105dsq=0.2dsq=0.4dsq=0.6dsq=0.9

Figure 8. Simulation showing the impact of vaccination on the recovered individuals

020406080100time(days)02468101214Concentration of Virus104dsq=0.2dsq=0.4dsq=0.6dsq=0.9

Figure 9. Simulation showing the impact of vaccination on the environment reservoir

020406080100time(days)00.511.522.533.544.5Susceptible Individuals106dqs=0.2dqs=0.4dqs=0.6dqs=0.9

Figure 10. Simulation showing the impact of incomplete vaccination on the susceptible individuals

020406080100time(days)0123456Exposed Individuals104dqs=0.2dqs=0.4dqs=0.6dqs=0.9

Figure 11. Simulation showing the impact of incomplete vaccination on the exposed individuals

020406080100time(days)02000400060008000100001200014000Infectious Individualsdqs=0.2dqs=0.4dqs=0.6dqs=0.9

Figure 12. Simulation showing the impact of incomplete vaccination on the infectious individuals

020406080100time(days)051015Quarantined Individuals105dqs=0.2dqs=0.4dqs=0.6dqs=0.9

Figure 13. Simulation showing the impact of incomplete vaccination on the quarantine individuals

020406080100time(days)051015Recovered Individuals105dqs=0.2dqs=0.4dqs=0.6dqs=0.9

Figure 14. Simulation showing the impact of incomplete vaccination on the recovered individuals

020406080100time(days)02468101214Conqentration of Virus104dqs=0.2dqs=0.4dqs=0.6dqs=0.9

Figure 15. Simulation showing the impact of incomplete vaccination in the environmental reservoir

Results and Discussion

In the present study, we have introduced the SEIQRV transmission model, which incorporates the pathways of transmission from the environment to humans and from humans to humans. In order to simulate the model, data from Nigeria was used, as seen in Table 1. The rates used in this study are 0.2, 0.4, 0.6, and 0.9, which correspond to percentages of \(20 \%, 40 \%, 60 \%\), and \(90 \%\) respectively. Figure 4 illustrates a simulation plot that depicts the effect of vaccination on susceptible people at several vaccination rates, namely \(d_{s q}=0.2,0.4,0.6\), and \(0.9.\) There is a correlation between the rate of vaccination and the number of persons exiting the compartment for the purpose of vaccination. Consequently, there is a decrease in the population size inside the compartment. However, a reversal of this trend is noticed in Figure 10. Figure 10 depicts a simulation plot that showcases the impact of incomplete COVID-19 dosage with rates \(\left(d_{q s}\right)\) at various levels: \(0.2,0.4,0.6\), and 0.9. It has been noticed that the number of persons increases when people fail to complete their prescribed dose.

Figures 5 and 6 depict the simulation plot illustrating the influence of vaccination on the populations of exposed and infectious individuals, with varying vaccination rates of \(d_{s q}=0.2,0.4,0.6\), and \(0.90.9\) , respectively. Similarly, Figures 11 and 12 present the impact of incomplete vaccination on the populations of exposed and infectious individuals, with rates of \(d_{q s}=0.2,0.4,0.6\), and \(0.9\) , respectively. Figures 5 and 6 illustrate a decline in the population inside these compartments, which may be attributed to an increase in the vaccination rate among people. This demonstrates that the implementation of vaccinations may significantly decrease the frequency of interactions between susceptible persons and those who are exposed or infectious, resulting in a notable reduction in infection rates. However, the phenomenon described in Figures 11 and 12, which illustrate an increase in the population of exposed and infected persons due to a corresponding increase in infection rates.

Figures 7 and 8 depict the simulation plot illustrating the influence of vaccination on the populations of quarantined and recovered individuals, with varying vaccination rates \(\left(d_{s q}=0.2,0.4,0.6,0.9\right)\). Similarly, Figures 13 and 14 provide a description of the impact of incomplete vaccination on the populations of quarantined and recovered individuals, also considering the rates (\(d_{q s}=0.2,0.4,0.6,0.9\) ) . The observed data in Figures 7 and 8 indicate a notable rise in the population size inside these compartments. This increase is attributed to a corresponding increase in the rate of vaccination among people. Due to the observed rise in vaccination rates, there has been a corresponding increase in the population of vaccinated persons inside the quarantine compartment, thereby leading to an upsurge in the number of individuals who have successfully recovered from the illness. A reversal of the aforementioned trend is seen in Figures 13 and 14, whereby a decrease in the population sizes of the quarantine and recovered compartments is noted. This suggests that a significant proportion of people die prior entering these compartments. Nevertheless, it is shown in Figure 9 that an increase in vaccination rates leads to a decrease in pathogen concentration inside environmental reservoirs. Conversely, Figure 15 demonstrates that insufficient dose of the COVID-19 vaccine tends to increase the number of pathogens present in these reservoirs. The presence of a significant population of persons with inadequate dose has been identified as a contributing factor to the proliferation of these diseases in environmental reservoirs.

Table 1 presents the basic reproduction number and the respective contributions from persons who are exposed, infected, and quarantined. The data indicates that persons who are exposed demonstrate a higher level of contribution, followed by those who are isolated, and lastly, individuals who are infectious. Persons who are asymptomatic yet infected with the illness have the potential to spread it in public settings. Despite being without symptoms, these persons may freely move about in their surroundings. The primary determinant for the impact of the basic reproduction number on persons in quarantine compartment is the medical practitioner. The healthcare professional becomes infected by a confirmed patient and then transmits the infection to additional patients with unrelated conditions, either via negligence or unintentionally. Finally, the persons who are infected but not yet showing symptoms contribute more than those who are unwell and unable to move about due to their illness.

Table 1 presents the sensitivity analysis results for the parameters in the model. The primary objective is to investigate the degree of sensitivity shown by a model in response to variations in both its parameter values and structural configuration. According to the data shown in Table 1, it can be seen that the sensitivity index for \(\Phi=+1\) indicates a positive relationship between \(\Phi\) and \(R_{0}\). Specifically, a rise in \(\Phi\) will result in a proportional increase in \(R_{0}\). Likewise, a reduction in the value of \(\Phi\) will result in a corresponding drop in the value of \(R_{0}\). Therefore, the variable \(\Phi\) exhibits a direct relationship with the values of \(R_{0}, R_{E}, R_{I}\), and \(R_{C}\). Similarly, it can be noted from Table 1 that the variables \(\beta_{E}, \beta_{I}, \beta_{Q}, h_{1}, h_{2}\), and \(h_{3}\) exhibit a direct proportionality with \(R_{0}\). Additionally, the sensitivity index for \(d_{s q}\) is calculated to be -0.95648. This indicates that an increase in \(d_{e q}\) will result in a proportional drop in the basic reproduction number ( \(R_{0}\) ). Likewise, an augmentation in the value of \(d_{s q}\) will result in a reduction in the value of \(R_{0}\). Therefore, the variable \(d_{s q}\) exhibits an inverse relationship with the variables \(R_{0}, R_{E}, R_{I}\), and \(R_{C}\). The variables \(d_{e q}, \gamma, \mu, \mu_{v}, d_{q r}, d_{i q}, \phi_{Q}, \phi_{I}\), and \(d_{q s} d_{q s}\) exhibit an inverse relationship with \(R_{0}\), as shown by the data presented in Table 1.

Conclusion

The present study investigated the transmission dynamics of COVID-19 by the use of a deterministic model consisting of systems of ordinary differential equations. The model incorporates persons who are susceptible, exposed, infectious, quarantined, and recovered, as well as the concentration of pathogens in the environmental reservoir. The efficacy of COVID-19 vaccination in mitigating the transmission of the virus was further examined by the use of numerical simulation. The impact of the model’s parameters on the basic reproduction number, as well as the evaluation of the parameters’ sensitivity, was also conducted. Based on the research results, a high vaccination rate has the potential to decrease the rate of interactions between suusceptible individuals and those who are exposed or infectious. Consequently, this reduction in contact rates would contribute to a decrease in the overall infection rate. As a result, there is a decrease in the population’s exposure and infection rates, leading to a rise in the number of persons undergoing quarantine and seeking medical care. Therefore, the synergistic impact of implementing a successful vaccination strategy using a non-waning vaccine and ensuring full completion of COVID-19 vaccination will provide a more substantial outcome. This approach would effectively decrease infection rates among the human population and mitigate the contribution of people to the environmental reservoir. This will result in the expeditious elimination of COVID-19. This study highlights the importance of implementing a robust vaccination strategy that includes the use of a long-lasting vaccine with no waning efficacy. Additionally, it emphasises the significance of ensuring compliance with the recommended vaccination schedule. This can be accomplished through the implementation of educational campaigns and raising public awareness regarding the necessity of receiving the complete vaccine dosage. It is crucial to emphasise that incomplete vaccination poses a significant risk to both the community and the nation as a whole. This intervention will significantly contribute to mitigating the transmission of the COVID-19 virus.

REFERENCES

CHEN, T., RUI, J., WANG, Q., ZHAO, Z., CUI, J., & YIN, L., 2020. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty. vol. 9, no. 24. https://doi.org/10.1186/s40249-020-00640-3.

COUNTRYMETERS. Nigeria Population 2020 live. Online: https://countrymeters.info/en/Nigeria.

DANIEL, D. O., 2020. Mathematical Model for the Transmission of COVID-19 with Nonlinear Forces of Infection and the Need for Prevention Measure in Nigeria. Journal of Infectious Diseases and Epidemiology. vol. 6, no. 5, p. 158.

EMORINKEN, M., 2020. “BREAKING: COVID-19: NCDC confirms one new case in FCT” (https://thenationonlineng.net/breaking-covid-19ncdc-confirms-one-new-case-in-fct). The Nation Newspaper. Retrieved 22 September 2020.

EMORINKEN, M., 2020. “UPDATED: Nigeria records 10 new positive cases of COVID-19” (https://thenationonlineng.net/updated-nigeria-records-10-new-positive-cases-of-covid-19). The Nation Newspaper. Retrieved 21 September 2023.

European Centre for Disease Prevention and Control 2020. Disease background of COVID-19. www.ecdc.europa.eu/en/2019-ncov-backgrounddisease. (accessed 12.09.23)

IBOI, E. A., SHAROMI, O. O., NGONGHALA, C. N., & GUMEL, A. B., 2020. Mathematical Modeling and Analysis of COVID-19 Pandemic in Nigeria. Mathematical Biosciences and Engineering. vol. 17, pp. 7192 – 7220. https://doi.org/10.3934/mbe.2020369.

INDEX MUNDI. Nigeria death rate- Demography. www.indexmundi.com/ nigeria/death_rate.html (accessed 12.09.23)

KUCHARSKI, A.J., RUSSELL, T.W., DIAMOND, C., LIU, Y., | EDMUNDS, J., FUNK, S., & EGGO, R.M., 2020. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancert Infect Dis. https://doi.org/10.1016/s14733099(20)30144-4.

MURRAY, J.D., 2001. Mathematical Biology I: An introduction. 3rd Edition. Berlin, Heidelberg: Springer-Verla.

LI, Q., GUAN, X., WU, P., WANG, X., ZHOU, L., & TONG, Y. 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine https://doi.org/10.1056/ NEJMoa2001316.

LIN, Q., ZHAO, S., GAO, D., LOU, Y., YANG, S., MUSA, SS, WANG, M. H., CAI, Y., WANG, W., YANG, L., & HE, D., 2020. A conceptual model for the coronavirus disease 2019 (COVID-10) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases. vol. 93, pp. 211 – 216. https://doi.org/10.1016/j. ijid.2020.02.058.

NIGERIA CENTRE FOR DISEASE CONTROL, 2020. First case of Corona virus disease in Nigeria. Accessed 12th Sept., 2023. Online: http:// covid19.ncdc.gov.ng/news/227/first-case-of-corona-virus-disease-confirmed-in-nigera (accessed 12.09.23).

NIGERIA CENTRE FOR DISEASE CONTROL, 2020. NCDC Coronavirus COVID-19 Microsite, 2020. Online: http://covid19.ncdc.gov.ng (accessed 14.09.23).

OHIA, C., BAKAREY, A.S., & AHMAD, T., 2020. COVID-19 and Nigeria: Putting the realities in context, International Journal of Infectious Diseases. vol. 95, pp. 279 – 289. http://doi.org/10.1016/j.ijid.2020.04.062.

OKHUESE V.A., 2020. Mathematical predictions for COVID-19 as a global pandemic. medRxiv. https://doi.org/10.1101/2020.03.19.20038794.

ONITILO, S. A., USMAN, M. A., ODETUNDE, O. S., HAMMED, F. A., OGUNWOBI, Z. O., HARUNA, H. A., & DANIEL, D O., 2020. Mathematical modeling of 2019 novel Coronavirus (2019 – NCOV) Pandemic in Nigeria. Chemistry: Bulgarian Journal of Science Education. vol. 29, no. 3, pp. 398 – 413.

ONITILO, S. A., DANIEL, D. O., & HARUNA, H. A., 2021. Modeling analysis of coronavirus epidemic in Nigeria using Lyapunov functions. FUW Trends in Science & Technology Journal. vol. 6, no 2, pp. 627 – 632.

ONITILO, S. A., & DANIEL, D. O., 2022. Mathematical Modeling and Simulation of Coronavirus (COVID-19) in Lagos State, Nigeria. Çankaya University Journal of Science and Engineering, vol. 19, no. 2, pp. 078 – 094.

ONYEDIKA-UGOEZE, N., 2023. “Nigeria’s coronavirus cases now 40” (https://guardian.ng/breakingnews/nigerias-coronavirus-toll-cases-now-40). The Guardian Newspaper. Retrieved 24 September 2023.

OYELEKE, S., 2020. “UPDATED: 10 dead as Nigeria’s coronavirus cases rise to 318” (https://punchng.com/breaking-nige ria-records-13-newcases-total-now-318). The Punch Newspaper. Retrieved 11 September, 2023

OYELEKE, S., 2020. “UPDATED: Italian who brought coronavirus to Nigeria discharged” (https://punchng.com/breaking- italian-who-brought-coronavirus-to-nigeria-discharged). The Punch Newspaper. Retrieved 21 September 2023.

TUITE, A.R., FISMAN, D. N., & GREER, A. L., 2020. Mathematical modeling of COVID-19 transmission and mitigation strategies in the population of Ontario. Canada. medRxiv. https://doi.org/10.1101/2020.03.24 .20042705.

WEISS, S. & NAVAS-MARTIN, S., 2005. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome Coronavirus. Microbiology and Molecular Biology Reviews. vol. 69, no. 4, pp. 635 – 664. https://doi.org/10.1128/mmbr.69.4.635-664.2005

World Health Organization, 2020 Q&A: Influenza and COVID-19-similarities and differences. Online: https://www.who.int/emergencies//diseases/ novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza (accessed 12.09.2023).

World Health Organization, 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Online: https:www.who.int/ publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19) (accessed 12.09.23).

World Health Organization, 2020. WHO characterized COVID-19 as a pandemic. Online: http://www.who.int/dg/speeces/detail/who-directorgeneral-s-opening-remarks-at-the-media-briefing-on-covid-19---11march-2020 (accessed 12.09.2023).

YANG, C., & WANG, J. A., 2020. Mathematical model for the novel coronavirus epidemic in Wuhan, China. AIMS Mathematical Biosciences and Engineering. http://www.aimspress.com/journal/MBE.

ZHU, N., ZHANG, D., WANG, W., LI, X., YANG, B., & SONG, J., 2019. A novel coronavirus from patients with pneumonia in China. New England Journal of Medicine. https://doi.org/10.1056/nejmoa2001017

2025 година
Книжка 4
Книжка 3
ПРАЗНИК НА ХИМИЯТА 2025

Александра Камушева, Златина Златанова

ФАТАЛНИЯТ 13

Гинчо Гичев, Росица Стефанова

ХИМИЯ НА МЕДОВИНАТА

Габриела Иванова, Галя Аралова-Атанасова

Х ИМ ИЯ НА Б АНКНОТИТЕ И МОНЕТИТЕ

Ивайло Борисов, Мая Ганева

АЛУМИНИЙ – „ЩАСТЛИВИЯТ“ 13-И ЕЛЕМЕНТ

Мария Кирилова, Ралица Ранчова

МЕТАЛЪТ НА ВРЕМЕТО

Християна Христова, Мария Стойнова

СЛАДКА ЛИ Е ФРЕНСКАТА ЛУЧЕНА СУПА?

Женя Петрова, Мими Димова

ПАРИТЕ – ИСТОРИЯ И НЕОБХОДИМОСТ

Мария Александрова, Румяна Стойнева

АЛУМИНИЯТ – ОТ ОТПАДЪК ДО РЕСУРС

Стилян Атанасов, Никола Иванов, Галина Кирова

ТАЙНАТА ХИМИЯ НА ШВЕЙЦАРСКИТЕ БАНКНОТИ

Ивайла Николова, Марияна Георгиева

ХИМИЯТА – ДЕТЕКТИВ ИЛИ ПРЕСТЪПНИК?

Алвина Илин, Валентина Ткачова, Петя Петрова

БЕБЕШКИ ШАМПОАН ОТ ЯДЛИВИ СЪСТАВКИ: ФОРМУЛИРАНЕ НА НОВ КОЗМЕТИЧЕН ПРОДУКТ

Хана Крипендорф, 5, Даниел Кунев, 5, Цветелина Стоянова

БЪЛГАРСКОТО ИМЕ НА ДЪЛГОЛЕТИЕТО

Сияна Краишникова, Анелия Иванова

ХИМИЯ НА МОНЕТИТЕ

Кристина Анкова, Сияна Христова, Ростислава Цанева

ХИМИЯ НА ШОКОЛАДА

Камелия Вунчева, Мария-Сара Мандил, Марияна Георгиева

ХИМИЯТА НА ПАРИТЕ

Биляна Куртева, Ралица Ранчова

АЛУМИНИЯТ В КРИОГЕНИКАТА

Даниел Анков, Ива Петкова, Марияна Георгиева

ПРИЛОЖЕНИЕ НА АЛУМИНИЯ ВЪВ ВАКСИНИТЕ

Станислав Милчев, Петя Вълкова

АЛУМИНИЙ: „КРИЛА НА ЧОВЕЧЕСТВОТО – ЛЮБИМЕЦ 13“

Ростислав Стойков, Пепа Георгиева

ХИМИЯТА В ПЧЕЛНИЯ МЕД

Сиана Каракашева, Симона Тричкова, Майя Найденова-Георгиева

ХИМИЯ НА МЛЕЧНИТЕ ПРОДУКТИ

Пламена Боиклиева, 10 клас, Дафинка Юрчиева

ХИМИЯ В МАСЛИНИТЕ

Симона Гочева, Майя Найденова

ХИМИЯ НА ЛЮТОТО

Марта Пенчева, Васка Сотирова

ХИНАП – ИЗСЛЕДВАНЕ НА СЪДЪРЖАНИЕТО НА ВИТАМИН С

Елица Нейкова, Елисавета Григорова, Майя Найденова

ХИМИЯ НA ПAРИТE

Игликa Кoлeвa, Eмилия Ивaнoвa

ВЛИЯНИЕ НА МАРИНАТИТЕ ВЪРХУ МЕСОТО

Емил Мирчев, Галя Петрова

АНАЛИЗ НА ПРИРОДНИ ВОДИ В ОБЩИНА СЛИВЕН

Никола Урумов, Анелия Иванова

ТРИНАДЕСЕТИЯТ ЕЛЕМЕНТ – СПАСИТЕЛ ИЛИ ТИХ РАЗРУШИТЕЛ?

Виктория Дечкова, Никола Велчев, Нели Иванова

Книжка 2
Книжка 1
MATHEMATICAL MODELLING OF THE TRANSMISSION DYNAMICS OF PNEUMONIA AND MENINGITIS COINFECTION WITH VACCINATION

Deborah O. Daniel, Sefiu A. Onitilo, Omolade B. Benjamin, Ayoola A. Olasunkanmi

2024 година
Книжка 5-6
Книжка 3-4
Книжка 1-2
2023 година
Книжка 5-6
ПОДКАСТ – КОГА, АКО НЕ СЕГА?

Христо Чукурлиев

Книжка 3-4
Книжка 2
Книжка 1
2022 година
Книжка 6
METEOROLOGICAL DETERMINANTS OF COVID-19 DISEASE: A LITERATURE REVIEW

Z. Mateeva, E. Batchvarova, Z. Spasova, I. Ivanov, B. Kazakov, S. Matev, A. Simidchiev, A. Kitev

Книжка 5
MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A, Usman M. A., Daniel D. O. Odetunde O. S., Ogunwobi Z. O., Hammed F. A., Olubanwo O. O., Ajani A. S., Sanusi A. S., Haruna A. H.

ПОСТАНОВКА ЗА ИЗМЕРВАНЕ СКОРОСТТА НА ЗВУКА ВЪВ ВЪЗДУХ

Станислав Сланев, Хафизе Шабан, Шебнем Шабан, Анета Маринова

Книжка 4
MAGNETIC PROPERTIES

Sofija Blagojević, Lana Vujanović, Andreana Kovačević Ćurić

„TAP, TAP WATER“ QUANTUM TUNNELING DEMONSTRATION

Katarina Borković, Andreana Kovačević Ćurić

Книжка 3
Книжка 2
КОМЕТИТЕ – I ЧАСТ

Пенчо Маркишки

Книжка 1
DISTANCE LEARNING: HOMEMADE COLLOIDAL SILVER

Ana Sofía Covarrubias-Montero, Jorge G. Ibanez

2021 година
Книжка 6
STUDY OF COMPOSITIONS FOR SELECTIVE WATER ISOLATION IN GAS WELLS

Al-Obaidi S.H., Hofmann M., Smirnov V.I., Khalaf F.H., Alwan H.H.

Книжка 5
POTENTIAL APPLICATIONS OF ANTIBACTERIAL COMPOUNDS IN EDIBLE COATING AS FISH PRESERVATIVE

Maulidan Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, Nisrina Rahma Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto

Книжка 4
Книжка 3
Книжка 2
INVESTIGATION OF 238U, 234U AND 210PO CONTENT IN SELECTED BULGARIAN DRINKING WATER

Bozhidar Slavchev, Elena Geleva, Blagorodka Veleva, Hristo Protohristov, Lyuben Dobrev, Desislava Dimitrova, Vladimir Bashev, Dimitar Tonev

Книжка 1
DEMONSTRATION OF DAMPED ELECTRICAL OSCILLATIONS

Elena Grebenakova, Stojan Manolev

2020 година
Книжка 6
ДОЦ. Д-Р МАРЧЕЛ КОСТОВ КОСТОВ ЖИВОТ И ТВОРЧЕСТВО

Здравка Костова, Елена Георгиева

Книжка 5
Книжка 4
JACOB’S LADDER FOR THE PHYSICS CLASSROOM

Kristijan Shishkoski, Vera Zoroska

КАЛЦИЙ, ФОСФОР И ДРУГИ ФАКТОРИ ЗА КОСТНО ЗДРАВЕ

Радка Томова, Светла Асенова, Павлина Косева

Книжка 3
MATHEMATICAL MODELING OF 2019 NOVEL CORONAVIRUS (2019 – NCOV) PANDEMIC IN NIGERIA

Sefiu A. Onitilo, Mustapha A. Usman, Olutunde S. Odetunde, Fatai A. Hammed, Zacheous O. Ogunwobi, Hammed A. Haruna, Deborah O. Daniel

Книжка 2

Книжка 1
WATER PURIFICATION WITH LASER RADIATION

Lyubomir Lazov, Hristina Deneva, Galina Gencheva

2019 година
Книжка 6
LASER MICRO-PERFORATION AND FIELDS OF APPLICATION

Hristina Deneva, Lyubomir Lazov, Edmunds Teirumnieks

ПРОЦЕСЪТ ДИФУЗИЯ – ОСНОВА НА ДИАЛИЗАТА

Берна Сабит, Джемиле Дервиш, Мая Никова, Йорданка Енева

IN VITRO EVALUATION OF THE ANTIOXIDANT PROPERTIES OF OLIVE LEAF EXTRACTS – CAPSULES VERSUS POWDER

Hugo Saint-James, Gergana Bekova, Zhanina Guberkova, Nadya Hristova-Avakumova, Liliya Atanasova, Svobodan Alexandrov, Trayko Traykov, Vera Hadjimitova

Бележки върху нормативното осигуряване на оценяването в процеса

БЕЛЕЖКИ ВЪРХУ НОРМАТИВНОТО ОСИГУРЯВАНЕ, НА ОЦЕНЯВАНЕТО В ПРОЦЕСА НА ОБУЧЕНИЕТО

ТЕХНОЛОГИЯ

Б. В. Тошев

Книжка 5
ON THE GENETIC TIES BETWEEN EUROPEAN NATIONS

Jordan Tabov, Nevena Sabeva-Koleva, Georgi Gachev

Иван Странски – майсторът на кристалния растеж [Ivan Stranski

ИВАН СТРАНСКИ – МАЙСТОРЪТ, НА КРИСТАЛНИЯ РАСТЕЖ

Книжка 4

CHEMOMETRIC ANALYSIS OF SCHOOL LIFE IN VARNA

Radka Tomova, Petinka Galcheva, Ivajlo Trajkov, Antoaneta Hineva, Stela Grigorova, Rumyana Slavova, Miglena Slavova

ЦИКЛИТЕ НА КРЕБС

Ивелин Кулев

Книжка 3
ПРИНЦИПИТЕ НА КАРИЕРНОТО РАЗВИТИЕ НА МЛАДИЯ УЧЕН

И. Панчева, М. Недялкова, С. Кирилова, П. Петков, В. Симеонов

UTILISATION OF THE STATIC EVANS METHOD TO MEASURE MAGNETIC SUSCEPTIBILITIES OF TRANSITION METAL ACETYLACETONATE COMPLEXES AS PART OF AN UNDERGRADUATE INORGANIC LABORATORY CLASS

Anton Dobzhenetskiy, Callum A. Gater, Alexander T. M. Wilcock, Stuart K. Langley, Rachel M. Brignall, David C. Williamson, Ryan E. Mewis

THE 100

Maria Atanassova, Radoslav Angelov

A TALE OF SEVEN SCIENTISTS

Scerri, E.R. (2016). A Tale of Seven Scientists and a New Philosophy of Science.

Книжка 2
DEVELOPMENT OF A LESSON PLAN ON THE TEACHING OF MODULE “WATER CONDUCTIVITY”

A. Thysiadou, S. Christoforidis, P. Giannakoudakis

AMPEROMETRIC NITRIC OXIDE SENSOR BASED ON MWCNT CHROMIUM(III) OXIDE NANOCOMPOSITE

Arsim Maloku, Epir Qeriqi, Liridon S. Berisha, Ilir Mazreku, Tahir Arbneshi, Kurt Kalcher

THE EFFECT OF AGING TIME ON Mg/Al HYDROTALCITES STRUCTURES

Eddy Heraldy, Triyono, Sri Juari Santosa, Karna Wijaya, Shogo Shimazu

Книжка 1
A CONTENT ANALYSIS OF THE RESULTS FROM THE STATE MATRICULATION EXAMINATION IN MATHEMATICS

Elena Karashtranova, Nikolay Karashtranov, Vladimir Vladimirov

SOME CONCEPTS FROM PROBABILITY AND STATISTICS AND OPPORTUNITIES TO INTEGRATE THEM IN TEACHING NATURAL SCIENCES

Elena Karashtranova, Nikolay Karashtranov, Nadezhda Borisova, Dafina Kostadinova

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Василева

2018 година
Книжка 6

ЗДРАВЕ И ОКОЛНА СРЕДА

Кадрие Шукри, Светлана Великова, Едис Мехмед

РОБОТИКА ЗА НАЧИНАЕЩИ ЕНТУСИАСТИ

Даниела Узунова, Борис Велковски, Илко Симеонов, Владислав Шабански, Димитър Колев

DESIGN AND DOCKING STUDIES OF HIS-LEU ANALOGUES AS POTENTIOAL ACE INHIBITORS

Rumen Georgiev, , Tatyana Dzimbova, Atanas Chapkanov

X-RAY DIFFRACTION STUDY OF M 2 Zn(TeО3)2 (M - Na, K) ТELLURIDE

Kenzhebek T. Rustembekov, Mitko Stoev, Aitolkyn A. Toibek

CALIBRATION OF GC/MS METHOD FOR DETERMINATION OF PHTHALATES

N. Dineva, I. Givechev, D. Tanev, D. Danalev

ELECTROSYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES WITH SIMULTANEOUS EXTRACTION INTO P-XYLENE

S. S. Fomanyuk, V. O. Smilyk, G. Y. Kolbasov, I. A. Rusetskyi, T. A. Mirnaya

БИОЛОГИЧЕН АСПЕКТ НА РЕКАНАЛИЗАЦИЯ С ВЕНОЗНА ТРОМБОЛИЗА

Мариела Филипова, Даниела Попова, Стоян Везенков

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО VOLUME 27 / ГОДИНА XXVII, 2018 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА 3 / NUMBER 3: 313 – 472 КНИЖКА 4 / NUMBER 4: 473 – 632 КНИЖКА 5 / NUMBER 5: 633 – 792 КНИЖКА 6 / NUMBER 6: 793 – 952 КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА

(South Africa), A. Ali, M. Bashir (Pakistan) 266 – 278: j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)fx and nd1 Configurations and Correlation with L-S Terms / P. L. Meena (India) 760 – 770: Methyl, тhe Smallest Alkyl Group with Stunning Effects / S. Moulay 771 – 776: The Fourth State of Matter / R. Tsekov

Книжка 5
ИМОБИЛИЗИРАНЕНАФРУКТОЗИЛТРАНСФЕРАЗА ВЪРХУКОМПОЗИТНИФИЛМИОТПОЛИМЛЕЧНА КИСЕЛИНА, КСАНТАН И ХИТОЗАН

Илия Илиев, Тонка Василева, Веселин Биволарски, Ася Виранева, Иван Бодуров, Мария Марудова, Теменужка Йовчева

ELECTRICAL IMPEDANCE SPECTROSCOPY OF GRAPHENE-E7 LIQUID-CRYSTAL NANOCOMPOSITE

Todor Vlakhov, Yordan Marinov, Georgi. Hadjichristov, Alexander Petrov

ON THE POSSIBILITY TO ANALYZE AMBIENT NOISERECORDED BYAMOBILEDEVICETHROUGH THE H/V SPECTRAL RATIO TECHNIQUE

Dragomir Gospodinov, Delko Zlatanski, Boyko Ranguelov, Alexander Kandilarov

RHEOLOGICAL PROPERTIES OF BATTER FOR GLUTEN FREE BREAD

G. Zsivanovits, D. Iserliyska, M. Momchilova, M. Marudova

ПОЛУЧАВАНЕ НА ПОЛИЕЛЕКТРОЛИТНИ КОМПЛЕКСИ ОТ ХИТОЗАН И КАЗЕИН

Антоанета Маринова, Теменужка Йовчева, Ася Виранева, Иван Бодуров, Мария Марудова

CHEMILUMINESCENT AND PHOTOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF COCOON EXTRACTS

Y. Evtimova, V. Mihailova, L. A. Atanasova, N. G. Hristova-Avakumova, M. V. Panayotov, V. A. Hadjimitova

ИЗСЛЕДОВАТЕЛСКИ ПРАКТИКУМ

Ивелина Димитрова, Гошо Гоев, Савина Георгиева, Цвета Цанова, Любомира Иванова, Борислав Георгиев

Книжка 4
PARAMETRIC INTERACTION OF OPTICAL PULSES IN NONLINEAR ISOTROPIC MEDIUM

A. Dakova, V. Slavchev, D. Dakova, L. Kovachev

ДЕЙСТВИЕ НА ГАМА-ЛЪЧИТЕ ВЪРХУ ДЕЗОКСИРИБОНУКЛЕИНОВАТА КИСЕЛИНА

Мирела Вачева, Хари Стефанов, Йоана Гвоздейкова, Йорданка Енева

RADIATION PROTECTION

Natasha Ivanova, Bistra Manusheva

СТАБИЛНОСТ НА ЕМУЛСИИ ОТ ТИПА МАСЛО/ ВОДА С КОНЮГИРАНА ЛИНОЛОВА КИСЕЛИНА

И. Милкова-Томова, Д. Бухалова, К. Николова, Й. Алексиева, И. Минчев, Г. Рунтолев

THE EFFECT OF EXTRA VIRGIN OLIVE OIL ON THE HUMAN BODY AND QUALITY CONTROL BY USING OPTICAL METHODS

Carsten Tottmann, Valentin Hedderich, Poli Radusheva, Krastena Nikolova

ИНФРАЧЕРВЕНА ТЕРМОГРАФИЯ ЗА ДИАГНОСТИКА НА ФОКАЛНА ИНФЕКЦИЯ

Рая Грозданова-Узунова, Тодор Узунов, Пепа Узунова

ЕЛЕКТРИЧНИ СВОЙСТВА НА КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА

Ася Виранева, Иван Бодуров, Теменужка Йовчева

Книжка 3
ТРИ ИДЕИ ЗА ЕФЕКТИВНО ОБУЧЕНИЕ

Гергана Карафезиева

МАГИЯТА НА ТВОРЧЕСТВОТО КАТО ПЪТ НА ЕСТЕСТВЕНО УЧЕНЕ В УЧЕБНИЯ ПРОЦЕС

Гергана Добрева, Жаклин Жекова, Михаела Чонос

ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ ЧРЕЗ МИСЛОВНИ КАРТИ

Виолета Стоянова, Павлина Георгиева

ИГРА НА ДОМИНО В ЧАС ПО ФИЗИКА

Росица Кичукова, Ценка Маринова

ПРОБЛЕМИ ПРИ ОБУЧЕНИЕТО ПО ФИЗИКА ВЪВ ВВМУ „Н. Й. ВАПЦАРОВ“

А. Христова, Г. Вангелов, И. Ташев, М. Димидов

ИЗГРАЖДАНЕ НА СИСТЕМА ОТ УЧЕБНИ ИНТЕРНЕТ РЕСУРСИ ПО ФИЗИКА И ОЦЕНКА НА ДИДАКТИЧЕСКАТА ИМ СТОЙНОСТ

Желязка Райкова, Георги Вулджев, Наталия Монева, Нели Комсалова, Айше Наби

ИНОВАЦИИ В БОРБАТА С ТУМОРНИ ОБРАЗУВАНИЯ – ЛЕЧЕНИЕ ЧРЕЗ БРАХИТЕРАПИЯ

Георги Върбанов, Радостин Михайлов, Деница Симеонова, Йорданка Енева

NATURAL RADIONUCLIDES IN DRINKING WATER

Natasha Ivanova, Bistra Manusheva

Книжка 2

АДАПТИРАНЕ НА ОБРАЗОВАНИЕТО ДНЕС ЗА УТРЕШНИЯ ДЕН

И. Панчева, М. Недялкова, П. Петков, Х. Александров, В. Симеонов

STRUCTURAL ELUCIDATION OF UNKNOWNS: A SPECTROSCOPIC INVESTIGATION WITH AN EMPHASIS ON 1D AND 2D 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Vittorio Caprio, Andrew S. McLachlan, Oliver B. Sutcliffe, David C. Williamson, Ryan E. Mewis

j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)f

j-jCOUPLEDATOMICTERMSFORNONEQUIVALENT, ELECTRONS OF (n-f X nd CONFIGURATIONS AND, CORRELATION WITH L-S TERMS

INTEGRATED ENGINEERING EDUCATION: THE ROLE OF ANALYSIS OF STUDENTS’ NEEDS

Veselina Kolarski, Dancho Danalev, Senia Terzieva

Книжка 1
ZAGREB CONNECTION INDICES OF TiO2 NANOTUBES

Sohaib Khalid, Johan Kok, Akbar Ali, Mohsin Bashir

SYNTHESIS OF NEW 3-[(CHROMEN-3-YL)ETHYLIDENEAMINO]-PHENYL]-THIAZOLIDIN-4ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Malesore Pllana, Musaj Pacarizi, Veprim Thaçi, Gjyle Mulliqi-Osmani

2017 година
Книжка 6
GEOECOLOGICAL ANALYSIS OF INDUSTRIAL CITIES: ON THE EXAMPLE OF AKTOBE AGGLOMERATION

Zharas Berdenov, Erbolat Mendibaev, Talgat Salihov, Kazhmurat Akhmedenov, Gulshat Ataeva

TECHNOGENESIS OF GEOECOLOGICAL SYSTEMS OF NORTHEN KAZAKHSTAN: PROGRESS, DEVELOPMENT AND EVOLUTION

Kulchichan Dzhanaleyeva, Gulnur Mazhitova, Altyn Zhanguzhina, Zharas Berdenov, Tursynkul Bazarbayeva, Emin Atasoy

СПИСАНИЕ ПРОСВѢТА

Списание „Просвета“ е орган на Просветния съюз в България. Списанието е излизало всеки месец без юли и август. Годишният том съдържа 1280 стра- ници. Списанието се издава от комитет, а главен редактор от 1935 до 1943 г. е проф. Петър Мутафчиев, историк византолог и специалист по средновеков-

Книжка 5
47-А НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

В последните години тези традиционни за българското учителство конфе- ренции се организират от Българското дружество по химическо образование и история и философия на химията. То е асоцииран член на Съюза на химици- те в България, който пък е член на Европейската асоциация на химическите и

JOURNALS OF INTEREST: A REVIEW (2016)

BULGARIAN JOURNAL OF SCIENCE AND EDUCATION POLICY ISSN 1313-1958 (print) ISSN 1313-9118 (online) http://bjsep.org

INVESTIGATING THE ABILITY OF 8

Marina Stojanovska, Vladimir M. Petruševski

SYNTHESIS OF TiO -M (Cd, Co, Mn)

Candra Purnawan, Sayekti Wahyuningsih, Dwita Nur Aisyah

EFFECT OF DIFFERENT CADMIUM CONCENTRATION ON SOME BIOCHEMICAL PARAMETERS IN ‘ISA BROWN’ HYBRID CHICKEN

Imer Haziri, Adem Rama, Fatgzim Latifi, Dorjana Beqiraj-Kalamishi, Ibrahim Mehmeti, Arben Haziri

PHYTOCHEMICAL AND IN VITRO ANTIOXIDANT STUDIES OF PRIMULA VERIS (L.) GROWING WILD IN KOSOVO

Ibrahim Rudhani, Florentina Raci, Hamide Ibrahimi, Arben Mehmeti, Ariana Kameri, Fatmir Faiku, Majlinda Daci, Sevdije Govori, Arben Haziri

ПЕДАГОГИЧЕСКА ПОЕМА

Преди година-две заедно с директора на Националното издателство „Аз- буки“ д-р Надя Кантарева-Барух посетихме няколко училища в Родопите. В едно от тях ни посрещнаха в голямата учителска стая. По стените ѝ имаше големи портрети на видни педагози, а под тях – художествено написани умни мисли, които те по някакъв повод са казали. На централно място бе портретът на Антон Семьонович Макаренко (1888 – 1939). Попитах учителките кой е Макаренко – те посрещнаха въпроса ми с мълчание. А някога, в г

Книжка 4
„СИМВОЛНИЯТ КАПИТАЛ“ НА БЪЛГАРСКОТО УЧИЛИЩЕ

Николай Цанков, Веска Гювийска

KINETICS OF PHOTO-ELECTRO-ASSISTED DEGRADATION OF REMAZOL RED 5B

Fitria Rahmawati, Tri Martini, Nina Iswati

ALLELOPATHIC AND IN VITRO ANTICANCER ACTIVITY OF STEVIA AND CHIA

Asya Dragoeva, Vanya Koleva, Zheni Stoyanova, Eli Zayova, Selime Ali

NOVEL HETEROARYLAMINO-CHROMEN-2-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Gjyle Mulliqi-Osmani, Veprim Thaçi

Книжка 3
Quantum Connement of Mobile Na+ Ions in Sodium Silicate Glassy

QUANTUM CONFINEMENT OF MOBILE Na + IONS, IN SODIUM SILICATE GLASSY NANOPARTICLES

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon, Abolfazl Semnani, Ramin Jaberzadeh Ansari, Hamid Shakoori Langeroodi, Mahboube Shirani, Shima Ghanavati Nasab

EVALUATION OF ANTIBACTERIAL ACTIVITY OF DIFFERENT SOLVENT EXTRACTS OF TEUCRIUM CHAMAEDRYS (L.) GROWING WILD IN KOSOVO

Arben Haziri, Fatmir Faiku, Roze Berisha, Ibrahim Mehmeti, Sevdije Govori, Imer Haziri

Книжка 2
COMPUTER SIMULATORS: APPLICATION FOR GRADUATES’ADAPTATION AT OIL AND GAS REFINERIES

Irena O. Dolganova, Igor M. Dolganov, Kseniya A. Vasyuchka

SYNTHESIS OF NEW [(3-NITRO-2-OXO-2H-CHROMEN4-YLAMINO)-PHENYL]-PHENYL-TRIAZOLIDIN-4-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Hamit Ismaili, Idriz Vehapi, Naser Troni, Gjyle Mulliqi-Osmani, Veprim Thaçi

STABILITY OF RJ-5 FUEL

Lemi Türker, Serhat Variş

A STUDY OF BEGLIKTASH MEGALITHIC COMPLEX

Diana Kjurkchieva, Evgeni Stoykov, Sabin Ivanov, Borislav Borisov, Hristo Hristov, Pencho Kyurkchiev, Dimitar Vladev, Irina Ivanova

Книжка 1
2016 година
Книжка 6
THE EFFECT OF KOH AND KCL ADDITION TO THE DESTILATION OF ETHANOL-WATER MIXTURE

Khoirina Dwi Nugrahaningtyas, Fitria Rahmawati, Avrina Kumalasari

Книжка 5

ОЦЕНЯВАНЕ ЛИЧНОСТТА НА УЧЕНИКА

Министерството на народното просвещение е направило допълне- ния към Правилника за гимназиите (ДВ, бр. 242 от 30 октомври 1941 г.), според които в бъдеще ще се оценяват следните прояви на учениците: (1) трудолюбие; (2) ред, точност и изпълнителност; (3) благовъзпитаност; (4) народностни прояви. Трудолюбието ще се оценява с бележките „образцово“, „добро“, „незадо- волително“. С „образцово“ ще се оценяват учениците, които с любов и по- стоянство извършват всяка възложена им ил

Книжка 4
VOLTAMMERIC SENSOR FOR NITROPHENOLS BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH REDUCED GRAPHENE OXIDE

Arsim Maloku, Liridon S. Berisha, Granit Jashari, Eduard Andoni, Tahir Arbneshi

Книжка 3
ИЗСЛЕДВАНЕ НА ПРОФЕСИОНАЛНО-ПЕДАГОГИЧЕСКАТА РЕФЛЕКСИЯ НА УЧИТЕЛЯ ПО БИОЛОГИЯ (ЧАСТ ВТОРА)

Надежда Райчева, Иса Хаджиали, Наташа Цанова, Виктория Нечева

EXISTING NATURE OF SCIENCE TEACHING OF A THAI IN-SERVICE BIOLOGY TEACHER

Wimol Sumranwanich, Sitthipon Art-in, Panee Maneechom, Chokchai Yuenyong

NUTRIENT COMPOSITION OF CUCURBITA MELO GROWING IN KOSOVO

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

НАГРАДИТЕ „ЗЛАТНА ДЕТЕЛИНА“ ЗА 2016 Г.

На 8 март 2016 г. в голямата зала на Националния политехнически музей в София фондация „Вигория“ връчи годишните си награди – почетен плакет „Златна детелина“. Тази награда се дава за цялостна професионална и творче- ска изява на личности с особени заслуги към обществото в трите направления на фондация „Вигория“ – образование, екология, култура. Наградата цели да се даде израз на признателност за високи постижения на личности, които на професионално равнище и на доброволни начала са рабо

Книжка 2
СТО ГОДИНИ ОТ РОЖДЕНИЕТО НА ПРОФЕСОР ХРИСТО ИВАНОВ (1916 – 2004)

СТО ГОДИНИ ОТ РОЖДЕНИЕТО, НА ПРОФЕСОР ХРИСТО ИВАНОВ, (96 – 00

CONTEXT-BASED CHEMISTRY LAB WORK WITH THE USE OF COMPUTER-ASSISTED LEARNING SYSTEM

N. Y. Stozhko, A. V. Tchernysheva, E.M. Podshivalova, B.I. Bortnik

Книжка 1
ПО ПЪТЯ

Б. В. Тошев

INTERDISCIPLINARY PROJECT FOR ENHANCING STUDENTS’ INTEREST IN CHEMISTRY

Stela Georgieva, Petar Todorov , Zlatina Genova, Petia Peneva

2015 година
Книжка 6
COMPLEX SYSTEMS FOR DRUG TRANSPORT ACROSS CELL MEMBRANES

Nikoleta Ivanova, Yana Tsoneva, Nina Ilkova, Anela Ivanova

SURFACE FUNCTIONALIZATION OF SILICA SOL-GEL MICROPARTICLES WITH EUROPIUM COMPLEXES

Nina Danchova , Gulay Ahmed , Michael Bredol , Stoyan Gutzov

INTERFACIAL REORGANIZATION OF MOLECULAR ASSEMBLIES USED AS DRUG DELIVERY SYSTEMS

I. Panaiotov, Tz. Ivanova, K. Balashev, N. Grozev, I. Minkov, K. Mircheva

KINETICS OF THE OSMOTIC PROCESS AND THE POLARIZATION EFFECT

Boryan P. Radoev, Ivan L. Minkov, Emil D. Manev

WETTING BEHAVIOR OF A NATURAL AND A SYNTHETIC THERAPEUTIC PULMONARY SURFACTANTS

Lidia Alexandrova, Michail Nedyalkov, Dimo Platikanov

Книжка 5
TEACHER’S ACCEPTANCE OF STUDENTS WITH DISABILITY

Daniela Dimitrova-Radojchikj, Natasha Chichevska-Jovanova

IRANIAN UNIVERSITY STUDENTS’ PERCEPTION OF CHEMISTRY LABORATORY ENVIRONMENTS

Zahra Eskandari, Nabi.A Ebrahimi Young Researchers & Elite Club, Arsanjan Branch,

APPLICATION OF LASER INDUCED BREAKDOWN SPECTROSCOPY AS NONDESDUCTRIVE AND SAFE ANALYSIS METHOD FOR COMPOSITE SOLID PROPELLANTS

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, Seyyed Mohamad Reza Darbany, Mehran Karimi, Amir Hossein Rezayi Optics & Laser Science and Technology Research Center,

THE EFFECT OF DIOCTYLPHTHALATE ON INITIAL PROPERTIES AND FIELD PERFORMANCE OF SOME SEMISYNTHETIC ENGINE OILS

Azadeh Ghasemizadeh, Abolfazl Semnani, Hamid Shakoori Langeroodi, Alireza Nezamzade Ejhieh

QUALITY ASSESSMENT OF RIVER’S WATER OF LUMBARDHI PEJA (KOSOVO)

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

Книжка 4
БЛАГОДАРЯ ВИ!

Александър Панайотов

ТЕМАТА ВЪГЛЕХИДРАТИ В ПРОГРАМИТЕ ПО ХИМИЯ И БИОЛОГИЯ

Радка Томова, Елена Бояджиева, Миглена Славова , Мариан Николов

BILINGUAL COURSE IN BIOTECHNOLOGY: INTERDISCIPLINARY MODEL

V. Kolarski, D. Marinkova, R. Raykova, D. Danalev, S. Terzieva

ХИМИЧНИЯТ ОПИТ – НАУКА И ЗАБАВА

Елица Чорбаджийска, Величка Димитрова, Магдалена Шекерлийска, Галина Бальова, Методийка Ангелова

ЕКОЛОГИЯТА В БЪЛГАРИЯ

Здравка Костова

Книжка 3
SYNTHESIS OF FLUORINATED HYDROXYCINNAMOYL DERIVATIVES OF ANTI-INFLUENZA DRUGS AND THEIR BIOLOGICAL ACTIVITY

Boyka Stoykova, Maya Chochkova, Galya Ivanova, Luchia Mukova, Nadya Nikolova, Lubomira Nikolaeva-Glomb, Pavel Vojtíšek, Tsenka Milkova, Martin Štícha, David Havlíček

SYNTHESIS AND ANTIVIRAL ACTIVITY OF SOME AMINO ACIDS DERIVATIVES OF INFLUENZA VIRUS DRUGS

Radoslav Chayrov, Vesela Veselinova, Vasilka Markova, Luchia Mukova, Angel Galabov, Ivanka Stankova

NEW DERIVATIVES OF OSELTAMIVIR WITH BILE ACIDS

Kiril Chuchkov, Silvia Nakova, Lucia Mukova, Angel Galabov, Ivanka Stankova

MONOHYDROXY FLAVONES. PART III: THE MULLIKEN ANALYSIS

Maria Vakarelska-Popovska, Zhivko Velkov

LEU-ARG ANALOGUES: SYNTHESIS, IR CHARACTERIZATION AND DOCKING STUDIES

Tatyana Dzimbova, Atanas Chapkanov, Tamara Pajpanova

MODIFIED QUECHERS METHOD FOR DETERMINATION OF METHOMYL, ALDICARB, CARBOFURAN AND PROPOXUR IN LIVER

I. Stoykova, T. Yankovska-Stefenova, L.Yotova, D. Danalev Bulgarian Food Safety Agency, Sofi a, Bulgaria

LACTOBACILLUS PLANTARUM AC 11S AS A BIOCATALYST IN MICROBIAL ELECYTOLYSIS CELL

Elitsa Chorbadzhiyska, Yolina Hubenova, Sophia Yankova, Dragomir Yankov, Mario Mitov

STUDYING THE PROCESS OF DEPOSITION OF ANTIMONY WITH CALCIUM CARBONATE

K. B. Omarov, Z. B. Absat, S. K. Aldabergenova, A. B. Siyazova, N. J. Rakhimzhanova, Z. B. Sagindykova

Книжка 2
TEACHING CHEMISTRY AT TECHNICAL UNIVERSITY

Lilyana Nacheva-Skopalik, Milena Koleva

ФОРМИРАЩО ОЦЕНЯВАНЕ PEER INSTRUCTION С ПОМОЩТА НА PLICКERS ТЕХНОЛОГИЯТА

Ивелина Коцева, Мая Гайдарова, Галина Ненчева

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Javid Safarov, Bahruz Ahmadov, Saleh Mirzayev, Astan Shahverdiyev, Egon Hassel

Книжка 1
РУМЕН ЛЮБОМИРОВ ДОЙЧЕВ (1938 – 1999)

Огнян Димитров, Здравка Костова

NAMING OF CHEMICAL ELEMENTS

Maria Atanassova

НАЙДЕН НАЙДЕНОВ, 1929 – 2014 СПОМЕН ЗА ПРИЯТЕЛЯ

ИНЖ. НАЙДЕН ХРИСТОВ НАЙДЕНОВ, СЕКРЕТАР, НА СЪЮЗА НА ХИМИЦИТЕ В БЪЛГАРИЯ (2.10.1929 – 25.10.2014)

2014 година
Книжка 6
145 ГОДИНИ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

145 ANNIVERSARY OF THE BULGARIAN ACADEMY OF SCIENCES

ПАРНО НАЛЯГАНЕ НА РАЗТВОРИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

LUBRICATION PROPERTIES OF DIFFERENT PENTAERYTHRITOL-OLEIC ACID REACTION PRODUCTS

Abolfazl Semnani, Hamid Shakoori Langeroodi, Mahboube Shirani

THE ORIGINS OF SECONDARY AND TERTIARY GENERAL EDUCATION IN RUSSIA: HISTORICAL VIEWS FROM THE 21ST CENTURY

V. Romanenko, G. Nikitina Academy of Information Technologies in Education, Russia

ALLELOPATHIC AND CYTOTOXIC ACTIVITY OF ORIGANUM VULGARE SSP. VULGARE GROWING WILD IN BULGARIA

Asya Pencheva Dragoeva, Vanya Petrova Koleva, Zheni Dimitrova Nanova, Mariya Zhivkova Kaschieva, Irina Rumenova Yotova

Книжка 5
GENDER ISSUES OF UKRAINIAN HIGHER EDUCATION

Н.H.Petruchenia, M.I.Vorovka

МНОГОВАРИАЦИОННА СТАТИСТИЧЕСКА ОЦЕНКА НА DREEM – БЪЛГАРИЯ: ВЪЗПРИЕМАНЕ НА ОБРАЗОВАТЕЛНАТА СРЕДА ОТ СТУДЕНТИТЕ В МЕДИЦИНСКИЯ УНИВЕРСИТЕТ – СОФИЯ

Радка Томова, Павлина Гатева, Радка Хаджиолова, Зафер Сабит, Миглена Славова, Гергана Чергарова, Васил Симеонов

MUSSEL BIOADHESIVES: A TOP LESSON FROM NATURE

Saâd Moulay Université Saâd Dahlab de Blida, Algeria

Книжка 4
ЕЛЕКТРОННО ПОМАГАЛO „ОТ АТОМА ДО КОСМОСА“ ЗА УЧЕНИЦИ ОТ Х КЛАС

Силвия Боянова Професионална гимназия „Акад. Сергей П. Корольов“ – Дупница

ЕСЕТО КАТО ИНТЕГРАТИВЕН КОНСТРУКТ – НОРМАТИВЕН, ПРОЦЕСУАЛЕН И ОЦЕНЪЧНО-РЕЗУЛТАТИВЕН АСПЕКТ

Надежда Райчева, Иван Капурдов, Наташа Цанова, Иса Хаджиали, Снежана Томова

44

Донка Ташева, Пенка Василева

ДОЦ. Д.П.Н. АЛЕКСАНДЪР АТАНАСОВ ПАНАЙОТОВ

Наташа Цанова, Иса Хаджиали, Надежда Райчева

COMPUTER ASSISTED LEARNING SYSTEM FOR STUDYING ANALYTICAL CHEMISTRY

N. Y. Stozhko, A. V. Tchernysheva, L.I. Mironova

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА: БОРБА С ЕДНА ЛЕДЕНА ЕПОХА В ГОДИНАТА 3000 СЛЕД ХРИСТА. 3.

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА:, БОРБА С ЕДНА ЛЕДЕНА ЕПОХА, В ГОДИНАТА 000 СЛЕД ХРИСТА. .

Книжка 3
KNOWLEDGE OF AND ATTITUDES TOWARDS WATER IN 5

Antoaneta Angelacheva, Kalina Kamarska

ВИСША МАТЕМАТИКА ЗА УЧИТЕЛИ, УЧЕНИЦИ И СТУДЕНТИ: ДИФЕРЕНЦИАЛНО СМЯТАНЕ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ВАСИЛ ХРИСТОВ БОЗАРОВ

Пенка Бозарова, Здравка Костова

БИБЛИОГРАФИЯ НА СТАТИИ ЗА МИСКОНЦЕПЦИИТЕ В ОБУЧЕНИЕТО ПО ПРИРОДНИ НАУКИ ВЪВ ВСИЧКИ ОБРАЗОВАТЕЛНИ НИВА

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 2
SCIENTIX – OБЩНОСТ ЗА НАУЧНО ОБРАЗОВАНИЕ В ЕВРОПА

Свежина Димитрова Народна астрономическа обсерватория и планетариум „Николай Коперник“ – Варна

BOTYU ATANASSOV BOTEV

Zdravka Kostova, Margarita Topashka-Ancheva

CHRONOLOGY OF CHEMICAL ELEMENTS DISCOVERIES

Maria Atanassova, Radoslav Angelov

Книжка 1
ОБРАЗОВАНИЕ ЗА ПРИРОДОНАУЧНА ГРАМОТНОСТ

Адриана Тафрова-Григорова

A COMMENTARY ON THE GENERATION OF AUDIENCE-ORIENTED EDUCATIONAL PARADIGMS IN NUCLEAR PHYSICS

Baldomero Herrera-González Universidad Autónoma del Estado de México, Mexico

2013 година
Книжка 6
DIFFERENTIAL TEACHING IN SCHOOL SCIENCE EDUCATION: CONCEPTUAL PRINCIPLES

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ШЕСТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО „ЧОВЕКЪТ И ПРИРОДАТА“

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

HISTORY AND PHILOSOPHY OF SCIENCE: SOME RECENT PERIODICALS (2013)

Chemistry: Bulgarian Journal of Science Education

45. НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

„Образователни стандарти и природонаучна грамотност“ – това е темата на състоялата се от 25 до 27 октомври 2013 г. в Габрово 45. Национална конфе- ренция на учителите по химия с международно участие, която по традиция се проведе комбинирано с Годишната конференция на Българското дружество за химическо образование и история и философия на химията. Изборът на темата е предизвикан от факта, че развиването на природонаучна грамотност е обща тенденция на реформите на учебните програми и главна

Книжка 5

ЗА ХИМИЯТА НА БИРАТА

Ивелин Кулев

МЕТЕОРИТЪТ ОТ БЕЛОГРАДЧИК

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
RECASTING THE DERIVATION OF THE CLAPEYRON EQUATION INTO A CONCEPTUALLY SIMPLER FORM

Srihari Murthy Meenakshi Sundararajan Engineering College, India

CHEMICAL REACTIONS DO NOT ALWAYS MODERATE CHANGES IN CONCENTRATION OF AN ACTIVE COMPONENT

Joan J. Solaz-Portolés, Vicent Sanjosé Universitat de Valènciа, Spain

POLYMETALLIC COMPEXES: CV. SYNTHESIS, SPECTRAL, THERMOGRAVIMETRIC, XRD, MOLECULAR MODELLING AND POTENTIAL ANTIBACTERIAL PROPERTIES OF TETRAMERIC COMPLEXES OF Co(II), Ni(II), Cu(II), Zn(II), Cd(II) AND Hg(II) WITH OCTADENTATE AZODYE LIGANDS

Bipin B. Mahapatra, S. N. Dehury, A. K. Sarangi, S. N. Chaulia G. M. Autonomous College, India Covt. College of Engineering Kalahandi, India DAV Junior College, India

ПРОФЕСОР ЕЛЕНА КИРКОВА НАВЪРШИ 90 ГОДИНИ

CELEBRATING 90TH ANNIVERSARY OF PROFESSOR ELENA KIRKOVA

Книжка 3
SIMULATION OF THE FATTY ACID SYNTHASE COMPLEX MECHANISM OF ACTION

M.E.A. Mohammed, Ali Abeer, Fatima Elsamani, O.M. Elsheikh, Abdulrizak Hodow, O. Khamis Haji

FORMING OF CONTENT OF DIFFERENTIAL TEACHING OF CHEMISTRY IN SCHOOL EDUCATION OF UKRAINE

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

ИЗСЛЕДВАНЕ НА РАДИКАЛ-УЛАВЯЩА СПОСОБНОСТ

Станислав Станимиров, Живко Велков

Книжка 2
Книжка 1
COLORFUL EXPERIMENTS FOR STUDENTS: SYNTHESIS OF INDIGO AND DERIVATIVES

Vanessa BIANDA, Jos-Antonio CONSTENLA, Rolf HAUBRICHS, Pierre-Lonard ZAFFALON

OBSERVING CHANGE IN POTASSIUM ABUNDANCE IN A SOIL EROSION EXPERIMENT WITH FIELD INFRARED SPECTROSCOPY

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

ЦАРСКАТА ПЕЩЕРА

Рафаил ПОПОВ

УЧИЛИЩНИ ЛАБОРАТОРИИ И ОБОРУДВАНЕ SCHOOL LABORATORIES AND EQUIPMENT

Учебни лаборатории Илюстрации от каталог на Franz Hugershoff, Лайциг, притежаван от бъдещия

2012 година
Книжка 6
ADDRESING STUDENTS’ MISCONCEPTIONS CONCERNING CHEMICAL REACTIONS AND SYMBOLIC REPRESENTATIONS

Marina I. Stojanovska, Vladimir M. Petruševski, Bojan T. Šoptrajanov

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ПЕТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО ЧОВЕКЪТ И ПРИРОДАТА

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

ЕКОТОКСИКОЛОГИЯ

Васил Симеонов

ПРОФ. МЕДОДИЙ ПОПОВ ЗА НАУКАТА И НАУЧНАТА ДЕЙНОСТ (1920 Г.)

Проф. Методий Попов (1881-1954) Госпожици и Господа студенти,

Книжка 5
КОНЦЕПТУАЛНА СХЕМА НА УЧИЛИЩНИЯ КУРС П О ХИМИЯ – МАКР О СКОПСКИ ПОДХОД

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ROLE OF ULTRASONIC WAVES TO STUDY MOLECULAR INTERACTIONS IN AQUEOUS SOLUTION OF DICLOFENAC SODIUM

Sunanda S. Aswale, Shashikant R. Aswale, Aparna B. Dhote Lokmanya Tilak Mahavidyalaya, INDIA Nilkanthrao Shinde College, INDIA

SIMULTANEOUS ESTIMATION OF IBUPROFEN AND RANITIDINE HYDROCHLORIDE USING UV SPECTROPHOT O METRIC METHOD

Jadupati Malakar, Amit Kumar Nayak Bengal College of Pharmaceutical Sciences and Research, INDIA

GAPS AND OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION ASSESSMENT

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

РАДИОХИМИЯ И АРХЕОМЕТРИЯ: ПРО Ф. ДХН ИВЕЛИН КУЛЕВ RADIOCHEMISTRY AND ARCHEOMETRY: PROF. IVELIN KULEFF, DSc

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
TEACHING THE CONSTITUTION OF MATTER

Małgorzata Nodzyńska, Jan Rajmund Paśko

СЪСИРВАЩА СИСТЕМА НА КРЪВТА

Маша Радославова, Ася Драгоева

CATALITIC VOLCANO

CATALITIC VOLCANO

43-ТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка ТАШЕВА, Пенка ЦАНОВА

ЮБИЛЕЙ: ПРОФ. ДХН БОРИС ГЪЛЪБОВ JUBILEE: PROF. DR. BORIS GALABOV

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ПЪРВИЯТ ПРАВИЛНИК ЗА УЧЕБНИЦИТЕ (1897 Г.)

Чл. 1. Съставянето и издаване на учебници се предоставя на частната инициа- тива. Забележка: На учителите – съставители на учебници се запрещава сами да разпродават своите учебници. Чл. 2. Министерството на народното просвещение може да определя премии по конкурс за съставяне на учебници за горните класове на гимназиите и специ- алните училища. Чл. 3. Никой учебник не може да бъде въведен в училищата, ако предварително не е прегледан и одобрен от Министерството на народното просвещение. Чл.

JOHN DEWEY: HOW WE THINK (1910)

John Dewey (1859 – 1952)

ИНФОРМАЦИЯ ЗА СПЕЦИАЛНОСТИТЕ В ОБЛАСТТА НА ПРИРОДНИТЕ НАУКИ В СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ

1. Биология Студентите от специалност Биология придобиват знания и практически умения в областта на биологическите науки, като акцентът е поставен на организмово равнище. Те се подготвят да изследват биологията на организмите на клетъчно- организмово, популационно и екосистемно ниво в научно-функционален и прило- жен аспект, с оглед на провеждане на научно-изследователска, научно-приложна, производствена и педагогическа дейност. Чрез широк набор избираеми и факул- тативни курсове студентите

Книжка 3
УЧИТЕЛИТЕ ПО ПРИРОДНИ НАУКИ – ЗА КОНСТРУКТИВИСТКАТА УЧЕБНА СРЕДА В БЪЛГАРСКОТО УЧИЛИЩЕ

Адриана Тафрова-Григорова, Милена Кирова, Елена Бояджиева

ПОВИШАВАНЕ ИНТЕРЕСА КЪМ ИСТОРИЯТА НА ХИМИЧНИТЕ ЗНАНИЯ И ПРАКТИКИ ПО БЪЛГАРСКИТЕ ЗЕМИ

Людмила Генкова, Свобода Бенева Българско дружество за химическо образование и история и философия на химията

НАЧАЛО НА ПРЕПОДАВАНЕТО НА УЧЕБЕН ПРЕДМЕТ ХИМИЯ В АПРИЛОВОТО УЧИЛИЩЕ В ГАБРОВО

Мария Николова Национална Априловска гимназия – Габрово

ПРИРОДОНАУЧНОТО ОБРАЗОВАНИЕ В БЪЛГАРИЯ – ФОТОАРХИВ

В един дълъг период от време гимназиалните учители по математика, физика, химия и естествена

Книжка 2
„МАГИЯТА НА ХИМИЯТА“ – ВЕЧЕР НА ХИМИЯТА В ЕЗИКОВА ГИМНАЗИЯ „АКАД. Л. СТОЯНОВ“ БЛАГОЕВГРАД

Стефка Михайлова Езикова гимназия „Акад. Людмил Стоянов“ – Благоевград

МЕЖДУНАРОДНАТА ГОДИНА НА ХИМИЯТА 2011 В ПОЩЕНСКИ МАРКИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ЗА ПРИРОДНИТЕ НАУКИ И ЗА ПРАКТИКУМА ПО ФИЗИКА (Иванов, 1926)

Бурният развой на естествознанието във всичките му клонове през XIX –ия век предизвика дълбоки промени в мирогледа на културния свят, в техниката и в индустрията, в социалните отношения и в държавните интереси. Можем ли днес да си представим един философ, един държавен мъж, един обществен деец, един индустриалец, просто един културен човек, който би могъл да игнорира придобив- ките на природните науки през последния век. Какви ужасни катастрофи, какви социални сътресения би сполетяло съвре

Книжка 1
MURPHY’S LAW IN CHEMISTRY

Milan D. Stojković

42-рa МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Цанова

СЕМЕЙНИ УЧЕНИЧЕСКИ ВЕЧЕРИНКИ

Семейството трябва да познава училишето и училишето трябва да познава семейството. Взаимното познанство се налага от обстоятелството, че те, макар и да са два различни по природата си фактори на възпитанието, преследват една и съща проста цел – младото поколение да бъде по-умно, по-нравствено, физически по-здраво и по-щастливо от старото – децата да бъдат по-щастливи от родителите