Обучение по природни науки и върхови технологии

2019/1, стр. 48 - 93

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева
E-mail: dtasheva@chem.uni-sofia.bg
Department of Organic Chemistry
University of Sofia
1, James Bourchier Blvd.
1164 Sofia, Bulgaria
Пенка Василева
E-mail: pvasileva@chem.uni-sofia.bg
Department of Inorganic Chemistry
University of Sofia
1, James Bourchier Blvd.
1164 Sofia, Bulgaria

Резюме: 45-ата международна олимпиада по химия се проведе в Москва, Русия (от 17 до 24 юли 2013 г.). В олимпиадата участва и отборът на България. Тук са дадени задачите от теоретичния и практическия кръг и решенията на теоретичните задачи. Направен е и коментар за представянето на отбора на България на 45-ата МОХ.

Ключови думи: International Chemistry Olympiad (IChO); practical exam; theoretical problems and solutions

От 17 до 24 юли 2013 г. в Mосква, Русия, се проведе 45-ата Международна олимпиада по химия (МОХ). В олимпиадата участваха 291 ученици от 73 страни. Със статут на наблюдатели присъстваха представители на Черна гора, Оман, Грузия и Лихтенщайн. Домакин на състезателната програма беше Московският държавен университет „М. В. Ломоносов“, където се проведоха практическият и теоретичният кръг. Организацията на олимпиадата беше на високо ниво. Условията за работа на учениците по време на състезанието бяха много добри. Социалната програма за свободното им време беше богата и разнообразна. На практическия кръг участниците работиха върху три експериментални задачи, а на теоретичния решаваха 8 задачи от различни съвременни области на химията. На олимпиадата бяха присъдени 192 медала (34 златни, 64 сребърни и 94 бронзови) и 10 почетни грамоти. Първенец стана Yuyang Dong (Китай) с подгласници Weiwei Sun (Китай) и Chun-Yi Chen (Тайван). На официалната страница на 45. МОХ са публикувани окончателните резултати.1,2) България участва за 44-ти път в МОХ. В отбора ни са включени учениците: Васил Василев от Софийската математическа гимназия „Паисий Хилендарски“, Цветелин Илиев, Боян Пейчев и Пенчо Бейков от Националната природо-математическа гимназия „Акад. Л. Чакалов“. От нашите участници Васил Василев и Цветелин Илиев завоюваха бронзови медали, а Боян Пейчев спечели почетна грамота.

Независимо от благородния девиз на олимпийското движение „Важно е участието, а не победата“, показаните резултати не ни удовлетворяват. Трудностите при подготовката на нашия отбор са свързани с неголемия брой часове по химия и математика в средното училище, както и с намаляващия интерес на нашите ученици към точните науки, в частност към химията, и стесняващия се кръг за избор на участници в МОХ. Трябва да се отбележи, че през последните години учениците, класирани за националния кръг, са само от няколко училища в страната. Както неведнъж е отбелязвано, МОХ е на високо академично ниво, което е много над това, залегнало в програмите по химия на нашето средно училище. При това положение, за да са конкурентоспособни нашите участници на международната олимпиада, са необходими сериозна системна и продължителна предварителна теоретична подготовка и изграждане на умения за експериментална работа у учениците с изявен интерес към химията.

Въпросите, отнасящи се до голямата и все по-увеличаваща се разлика между националната олимпиада по химия и МОХ, както и произтичащите от това изисквания към подготовката на отбора са обсъждани многократно в Националната комисия за организиране и провеждане на олимпиадата по химия. Самостоятелна теоретична подготовка, от една страна, е възможна, макар и да е недостатъчно ефективна. От друга страна, за създаване и усъвършенстване на експерименталната техника и за придобиване на основни лабораторни умения са необходими както материална база, която не е по силите дори на елитните ни училища, така и квалифицирани преподаватели с богат опит за работа в химическа лаборатория. Това в наши условия би било постижимо чрез създаването на школи, в които да се работи с учителите от различните области на страната, както и с ученици от различни възрастови групи с изявени интереси към химията, както това е организирано в други малки страни като Австрия, Естония и Литва.

ПРАКТИЧЕСКИ ЗАДАЧИ

Задача 1 (13 точки)

Синтез на 2,4-динитрофенилхидразони

Хидразоните принадлежат към клас съединения, които съдържат проста връзка азот-азот в съседство с двойна връзка въглерод-азот. Хидразоните се получават при взаимодействие на хидразин, съдържащ NH2-група, с алдехиди или кетони. Тъй като хидразоните са стабилни, кристални и интензивно оцветени твърди вещества, те се използват, за да се потвърди идентичността на алдехидите и кетоните, от които се получават.

В тази задача трябва да се идентифицират два заместени бензалдехида чрез изследване на продуктите на взаимодействието им с 2,4-динитрофенилхидразин.

OCH3

OOHH3OOC

Получаване на 2,4-динитрофенилхидразони

В чаша от 50 mL се поставя котвичка за магнитна бъркалка и чашата се закрепва върху електромагнитна бъркалка. Поставят се 200 mg 2,4-динитрофенилхидразон и се разбърква. Върху твърдата маса се излива 1 mL концентрирана сярна киселина и с помощта на пипета се добавят 1,6 mL вода и 4 mL етанол, на капки се добавя разтворът на един от двата алдехида (1,00 mmol). Веднага започва да се образува светла утайка. Разбъркването продължава 10 min, след което се прибавят още 10 mL вода и реакционната смес се разбърква в продължение на още 3 min. Отделените кристали се филтруват при понижено налягане и се промиват с вода до неутрално рН. Утайката се промива двукратно с етанол, като се използват не повече от 3 mL за всяко промиване, тъй като хидразонът е слабо разтворим в етанол. Утайката се изсушава върху филтъра. След около 20 – 30 min прахообразният продукт се прехвърля в тавичка от филтърна хартия за окончателно изсушаване на въздуха. Претегля се и се поставя в пластмасова епруветка, надписана със студентския код. Експериментът се провежда и с втория алдехид. Данните се попълват в таблица.

Напишете структурите на 2,4-динитрофенилхидрозина и на всеки от двата продукта.

Какъв вид стереоизомерия (R/S; E/Z; трео/eритро; мано/глюко; D/L) е възможна за тези хидразони?

2.1. Каква е ролята на сярната киселина (стехиометричен реагент; катализатор; редуциращ агент; окисляващ агент) при получаване на 2,4-динитрофенилхидразон?

2.2. Как би се променила скоростта на реакцията (силно ще се повиши; слабо ще се повиши; няма да се промени; реакцията ще протича много бавно), ако синтезата се провежда в неутрална среда?

2.3. Как би се променила скоростта на реакцията (силно ще се повиши; слабо ще се повиши; няма да се промени; реакцията не протича), ако се провежда в алкална среда?

Характеризиране

Малко количество от всеки от продуктите се поставя в отделни чаши от 25 mL и във всяка се добавят по 10 mL ацетон. Най-добър резултат ще бъде получен, ако разтворите в чашите са с подобен жълт цвят и подобна интензивност на оцветяването. Във всяка чаша се наливат по 5 mLразтвор на NaHCO3 и се разбъркват.

3.1. Отбележете наблюденията за промяната в цвета на разтворите: цветът не се променя в нито една от чашите; промените на цвета са значителни и в двете чаши; промените на цвета са значителни само в една от чашите.

Към всяка от получените смеси във въпрос 3.1 се добавят по 2 mL от разтвора на NaOH и се разбъркват.

3.2. Отбележете наблюденията за промените в цвета на разтворите: цветът не се променя в нито една от чашите; промените на цвета са значителни и в двете чаши; промените на цвета са значителни само в една от чашите.

4.1. Кои структурни фрагменти в продуктите обясняват промените в цвета при реакцията с NaHCO3: наличие на МеО група в положение 4 на бензеновото ядро; наличие на МеО група в положение 3 на бензеновото ядро; наличие на ОН група в положение 4 на бензеновото ядро; наличие едновременно на MeO и OH групи?

4.2. Кой от посочените процеси е причина за промените на цвета при реакцията на 2,4-динитрофенилхидразон с воден разтвор на NaOH: алкална хидролиза; дехидратация; хидратация; депротониране; дехидрогениране?

4.3. Напишете структурите на главните органични частици, които присъстват във всяка от тестовите реакционни среди.

5. Изчислете процентните добиви за всеки от получените хидразони.

Оценка на задачата

В таблицата се попълват данните с масите на двата хидразона. H N H H N N H2N

O2 NO2 MeO 2 NO2

N
ONN

HO O2NNON 2

OMe

1.2. E/Z

2.1. Катализатор;

2.2. Реакцията ще протича много бавно.

2.3. Реакцията не протича.

3.1. Промените на цвета са значителни само в една от чашите.

3.2. Промените в цвета са значителни и в двете чаши.

4.1. Наличие на ОН група в положение 4 на бензеновото ядро.

4.2. Депротониране

4.3. Изходен алдехид:

OCH3 O OH O OCH3

Структури на главните органични частици, които присъстват в разтвор на NaHCO3:

H N

O2NNONMeO-OHNMeO222OMeONNON

Структури на главните органични частици, които присъстват в разтвор на NaOH:

MeO-O ONN2 N- NO2 ONNMeO2 N NO2

5.

OCH3

O

теор. добив – 0,0332 g; O теор. добив – 0,316 g OH O CH3

Максимален брой точки се получават при практически добив в границите 80 – 100%.

Задача 2 (12 точки)

Определяне на индекс на насищане на Langelier за вода от плувен басейн Индексът на насищане на Langelier (LI) е мярка за корозионното действие на водата в плувните басейни, както и за нейната способност да разтваря или да утаява калциев карбонат. Ако LI е приблизително 0, водата се смята за „балансирана“. Ако LI е положително число, водата има склонност да утаява калциев карбонат и да образува котлен камък. Ако LI е отрицателно число, водата е корозионно действаща и разтваря калциев карбонат. LI е комбинация от фактори на физични величини, дадени в таблица 1, и се изчислява по формулата:

LI=pH+FT+FD+FAFTDSLI=pH+FT+FD+FAFTDS

--00,,88--00,,44--00,,110000,,1100,,4400,,88Агресивнавода,Агресивнавода,

причиняващапричиняваща ООппаассннооссттооттППррииееммллиивв ООттллииччееннППррииееммллииввООппаассннооссттоотт ООббррааззууввааннееннаа корозиякорозия ннккооррооззиияяаа ббааллааннссббааллааннсс ббааллааннссккооттллееннккааммъъкк ииккооттллееннккааммъъкк ии отлаганияотлаганияооттллааггаанниияяммееттааллннииттееччаассттии

ит.н.ит.н.

ppHH:: ppHHссттооййнноосстт

FT:FT: ТТееммппееррааттууррееннффааккттоорр FD:ФФааккттооррFD: ннааккааллццииееввааттввъъррддооссттCCaallcciiuummhhaarrddnneessss((CCHH)) FA:ФакторFA:Фактор наобщаалкалностTotalalkalinity(TA)наобщаалкалностTotalalkalinity(TA) ФакторFFTTDDSSФактор наобщиразтворенинаобщиразтворени ттввърдивеществаTotalърдивеществаTotal ddissolvedissolved ssolidsolids Задачата е да се определи стойността на LI на предоставена водна проба. Твърдостта се изразява чрез концентрацията на CaCO3 (в mg L-1). Общата алкалност е киселинен еквивалент на общото количество карбонат и хидрогенкарбонат, изразено в mg L-1 CaCO3, докато TDS се преизчислява като концентрация на NaCl (в mg L-1).

Таблица 1. Стойности и съответстващи фактори

Темпе-ратура,оСFTКалциеватвърдост (CH),mg L-1CaCO3FDОбща алкалност(TA),mg L-1CaCO3FAОбщи разтворенитвърди вещества(TDS), mg L-1NaClFTDS00.050.350.7012.030.1251.0251.4--80.2501.3501.7100012.1120.3751.5751.9--160.41001.61002.0200012.2190.51501.81252.1--240.62001.91502.2300012.25290.72502.02002.3--340.83002.13002.5400012.3410.94002.24002.6--531.06002.358002.9500012.35--8002.510003.0----10002.6--600012.4

Процедури

Калциевата твърдост се определя чрез комплексометрично титруване с EDTA (Na 2H2Y). То се извършва в силно алкална среда, за да се маскира магнезият (големи количества Mg 2+ пречат на определянето поради съутаяване на калций с Mg(OH) 2; нещо повече, индикаторът за комплексометричното титруване се адсорбира върху Mg(OH) 2, което пречи да се наблюдава промяната в цвета му). След прибавяне на основата, титруването трябва да се проведе веднага, за да се избегне утаяване на CaCO3 .

1.1 Изразете с химично уравнение реакцията, която протича при титруване с Na2H2Y.

Процедура за определяне на калций

a) Налейте в бюретата стандартния разтвор на EDTA (с точна концентрация 0,0443 M).

b) Отпипетирайте в Ерленмайерова колба аликвота с обем 20 mL от водната проба.

c) Добавете 3 mL от разтвора на NaOH с концентрация 2 mol L-1.

d) Прибавете на върха на шпатула индикатор murexide, така че да получите розов разтвор.

e) Титрувайте получената смес с EDTA до промяна на цвета на индикатора от розов в лилав.

1.2 Напишете резултатите в таблица.

2.Изчислете твърдостта на водната проба в mg L-1 CaCO3.

Измерване на pH

Поставете около 70 – 90 mL от водната проба в чиста Ерленмайерова колба. a) Отстранете предпазната капачка на pH-метъра.

b) Измийте електрода с дестилирана вода.

c) Включете pH-метъра посредством превключвателя ON/OFF.

d) Потопете прибора в тествания разтвор и внимателно разбъркайте.

e) Оставете колбата на лабораторната маса и изчакайте да се стабилизира показанието на прибора (не повече от 1минута).

f) Отчетете и запишете стойността на pH.

g) Изключете pH-метъра посредством превключвателя ON/OFF, измийте електрода с дестилирана вода и поставете обратно предпазната капачка.

3.1. Запишете стойността на pH.

3.2. Коя форма на въглеродната киселина (карбонат, хидрогенкарбонат, въглеродна киселина) преобладава във водната проба? Обосновете отговора с изчисления.

Дисоциационните константи на въглеродната киселина са: K1 = 4,5×10–7; K2 = 4,8×10–11.

3.3. Напишете йонното уравнение на доминиращата реакция, която протича при титруване на водната проба със HCl.

Определяне на обща алкалност

За да се определи общата алкалност, водната проба трябва да бъде титрувана до H2CO3. Използва се киселинно-основен индикатор methyl orange, който започва да променя цвета си от жълт към оранжев при pH около 4,5.

a) Проплакнете бюретата с дестилирана вода и я запълнете със стандартен разтвор на HCl (с точна концентрация 0,0535 mol L-1).

b) Отпипетирайте от водната проба аликвота с обем 50,0 mL, поставете я в Ерленмайерова колба и прибавете 3 капки от разтвора на methyl orange. c) Ако пробата е оранжева преди прибавяне на киселината, нейната обща алкалност е нула. Ако разтворът е жълт, титрувайте го със стандартния разтвор на киселината до първата забележима промяна на цвета на разтвора в оранжево.

4.1. Отчетете обема на използвания за титруването разтвор.

4.2. Изчислете общата алкалност (в mg L-1 CaCO3).

5. Измерване на температурата. Отчетете температурата на термометъра, разположен на масата за общо ползване, и запишете стойността ú.

6. Определяне на TDS във водната проба с помощта на тестова лента.

a) Напълнете чаша с водната проба, така че да се получи стълб течност с височина около 3 cm. Потопете тестовата лента във водата, така че течносттта да не докосва жълтата ивица на върха на лентата.

b) Изчакайте 3 – 4 минути, докато жълтата ивица стане изцяло кафява. Отчетете показанието, както е посочено на фигура 1, с точност един знак след десетичната запетая.

c) Запишете отчетената стойност.

d) Намерете TDS концентрацията като концентрация на NaCl в mg L-1, като ползва

те таблицата, разположена в долната част на фиг. 1.
ПоказаниеКонц. на NaCl, mg/L1,43601,63701,84202,04302,24702,45302,65902,86603,07303,28003,48803,69603,810504,011404,212404,413404,614504,815705,01700

Фигура 1. Начин на работа при определяне на фактора на общи разтворени твърди вещества (TDS)

е)Напишете концентрацията на NaCl.

7. Изчислете LI, като използвате намерените стойности на всички фактори с точност два знака след десетичната запетая.

Теоретични въпроси. Корекция на водния баланс

Ако стойността на LI се отклонява значително от нула, е необходимо тя да бъде коригирана.

Разполагате с водна проба от плувен басейн, анализирана по описания по-горе начин. Резултатите от анализа са: CH = 550 mg L-1, FD = 2,31, TA = 180 mg L-1, FA=2,26, t˚ = 24˚C, FT = 0,6; TDS = 1000 mg L-1, FTDS = 12,1, pH = 7,9, LI = 0,97.

Към различни водни проби от плувния басейн, всяка от които е с обем 200 mL, са прибавени 10 mL 0,0100 M разтвори на реагентите (NaHCO3, NaOH, NaHSO4, CaCl2, EDTA (динатриева сол дихидрат) и HCl) (по един реагент за една проба).

8. Ще се утаи ли CaSO4 при прибавянето на NaHSO4?

Произведението на разтворимост на CaSO4 е 5×10–5. Приемете, че при прибавянето на който и да е от дадените по-горе реагенти не се образува утайка от CaCO3.

9. Попълнете таблица 2, така че да покажете тенденциите на промените, които настъпват в резултат на прибавяне на всеки от реагентите към отделна водна проба (използвайте „+“, ако факторът нараства; „–“, ако намалява; „0“, ако не се променя).

Оценка на задачата:

1.1. H2Y2- + Ca2+ CaY2- + 2H+

1.2. Максимален брой точки се присъждат, ако полученият обем сe отклонява от точния с не повече от ± 0,15 mL.

3.1. Максимален брой точки се присъждат, ако измерената стойност за pH сe отклонява от точната с не повече от ± 0,2.

3.2. Измерената стойност е pH ~ 8 това е буферен разтвор (H2CO3HCO3-). Тогава:

[HCO3-]/[H2CO3] = K1/[H+] = 45; т.е.~ 98% HCO3

3.3. HCO3- + H+ H2CO3 (или H2O2 + CO2)

4.1. Максимален брой точки се присъждат, ако полученият обем сe отклонява от точния с не повече от ± 0,15 mL.

6.с. Максимален брой точки се присъждат, ако получената стойност сe отклонява от точната с не повече от ± 0,1.

8. 2+] = VEDTAcEDTA/20200/(200+10) = 2,20,05/20200/210 = 0,00524 mol/L mol/L

При добавяне на NaHSO4, [SO42-] = 0,01´10/(200+10) = 0,000476 mol/L

Тогава [Ca2+][SO42-] = 0,00524´0,000476 = 2,5´10-6 < Ks утайка от CaSO4 не се образува.

Таблица 2. Tенденции на промените във водна проба при корекция на водния баланс

РеагентpHFAFDFTDSLINaHCO3++0++NaOH++0++NaHSO4--0+-CaCl200+++Na2H2Y---+-HCl--00-

Задача 3. (15 точки)

Определяне на молекулна маса чрез вискозиметрия

Вискозитетният коефициент е мярка за съпротивлението на течностите при тяхното изтичане. Той може да бъде определен чрез измерване на скоростта, с която течност изтича през тънка капиляра. Вискозитетът на разтвор на полимер нараства с увеличаване на концентрацията му. При постоянна концентрация по-силните взаимодействия разтворител – полимер са причина за по-висок вискозитет. При условие че плътността на разреден разтвор на полимер е равна на плътността на разтворителя, редуцираният вискозитет на разтвора на полимера ηred с концентрация c (g mL-1) се дефинира по следния начин:

η=[redtt0tc0 mL/ g],

където t и t0 са съответно времената за изтичане на разтвор и чист разтворител. Зависимостта на редуцирания вискозитет на разредени разтвори на полимер от концентрацията е следната:

red (c) kc,

където k е параметър (mL2 g-2), а [η] е действителната стойност на вискозитета (mL g-1). Действителната стойност на вискозитета [η] се определя чрез екстраполиране на редуцирания вискозитет към нулева концентрация на по-лимера. Действителната стойност на вискозитета е свързана с молекулната маса M на полимера по уравнението на Mark-Kuhn-Houwink:

KM,

където K и α са константи за конкретна двойка разтворител – полимер при дадена температура. Следователно M може да бъде определена от уравнението на Mark-KuhnHouwink чрез използване на експериментални данни за [η] и справочни данни за K и α.

Начин на работа на вискозиметъра (фиг. 2)1, 5 – събирателни съдове;2, 3 – допълнителни тръби;4 – мерителен съд;6 – марки; 7 – капиляраНачин на работаФигурa 2.на вискозиметъра

a) Закрепете вискозиметъра така, че тръбата (3) да е разположена вертикално и събирателният съд (1) да стои върху плочата на лабораторния статив. Нагласете фиксиращата щипка възможно най-ниско.

b) С помощта на пипета налейте 10 mL от анализираната течност в събирателния съд (1) през тръбата (2).

c) Свържете Пи-помпата или гумената круша за пълнене на пипети с горния край на тръбата (3) и засмучете течността в мерителния съд (4), така че течността да навлезе в събирателния съд (5). Когато засмуквате течността, избягвайте образуването на въздушни мехурчета в капилярата (7) и съдчетата (4, 5), тъй като това може да доведе до значителни експериментални грешки. Менискът на течността трябва да бъде около 10 mm над горната марка (6). d) Нулирайте секундомера и отстранете Пи-помпата или крушата от тръбата (3). Течността започва да изтича надолу към събирателния съд (1).

e) Измерете времето на изтичане: стартирайте секундомера, когато менискът на течността съвпадне с горната марка (6), и спрете секундомера, когато менискът на течността съвпадне с долната марка (6).

Промийте вискозиметъра три пъти с вода от чешмата и след това веднъж с дестилирана вода, преди да пропуснете нова проба полимерен разтвор. Не е необходимо да промивате вискозиметъра с разтвор на полимер.

Процедура

Предоставена е серия водни разтвори на полимери (0,01 g mL-1, изходни разтвори). Три от разтворите Р1-Р4 са разтвори на поливинилов алкохол, а четвъртият е на частично хидролизиран поливинилацетат, съдържащ около 10% нехидролизиран поливинилацетат. Не е известно кой от разтворите P1-P4 е частично хидролизиран поливинилацетат. Молекулните маси на по-лимерите P1-P4 са дадени в таблица 3.

Проба X е поливинилов алкохол с непозната молекулна маса

Трябва да идентифицирате коя от пробите P1-P4 е разтворът на частично хидролизиран поливинилацетат, и да определите молекулната маса на полимера X.

1. Напишете реакционна схема за получаване на поливинилов алкохол чрез хидролиза на поливинилацетат.

2. Изберете кой от полимерите (поливинилов алкохол или частично хидролизиран поливинилацетат) показва по-силно взаимодействие с водата, и сравнете вискозитетите на водните разтвори на пълно и частично хидролизирания поливинилацетат. Приемете, че концентрацията на разтворите и молекулните маси на полимерите са еднакви.

3. Измерете и запишете скоростта на изтичане на чистия разтворител (дестилирана вода).

4. Измерете времената за изтичане на изходните разтвори P1-P4 и на X. Изчислете редуцираните вискозитети. Проведете толкова измервания, колкото са необходими за правилно усредняване.

5. Кой от дадените разтвори P1-P2-P3-P4 е пробата от частично хидролизиран поливинилацетат? Вземете под внимание дадените молекулни маси на полимерите P1-P4 (не използвайте този полимер в следващата част от експеримента).

6. За да се определят параметрите на уравнението на Mark-Kuhn-Houwink и да се изчисли неизвестната молекулна маса на полимера X, изберете двата най-подходящи разтвора на поливинилов алкохол (от разтворите P1; P2; P3; P4) с различни молекулни маси. Приемете, че абсолютната грешка в определянето на действителната стойност на вискозитета не зависи от молекулната маса на пробата.

7. Като използвате подходящи мерителни стъклени прибори за приготвяне на разтворите, измерете времето на изтичане на определен брой разредени разтвори на три проби поливинилов алкохол (пробата с непознатата молекулна маса (X) и двойката проби поливинилов алкохол, избрани в т. 6) и изчислете съответстващите им редуцирани вискозитети. Когато изчислявате концентрациите на разредените разтвори, приемете, че плътността на полимерните разтвори е равна на тази на чистата вода. Определете действителните стойности на вискозитета на всяка от изследваните проби.

Таблица 3. Молекулните маси на полимерите P1-P4

Приблизителна молекулна масаКод на пробата26650P250850P165300P491900P3Таблица 4.Обобщение на експерименталните резултатиПробаP__P__XКонцентрация (c), g mL-10.010.010.01Редуциран вискозитет (ηred), mLg-1c (1-во разреждане), g mL-1ηred, mLg-1c (2-ро разреждане), g mL-1ηred, mLg-1c (3-то разреждане), g mL-1ηred, mL-1g
c (4-то разреждане), g/mL:ηred, mL/gc (5-о разреждане), g mL-1ηred, mLg-1

Обобщение на експерименталните резултати (попълнете само измерените стойности) направете в таблица 4.

8. Напишете уравнението, което ще използвате, за да определите K и α. Определете стойностите на K и α за водния разтвор на поливинилов алкохол.

9. Като използвате получените стойности за K и a, както и действителната стойност на вискозитета на разтвора на непознатия полимер X, изчислете молекулната маса на полимера X. Ако не сте успели да определите K и α, използвайте стойностите: K = 0,1 mL g-1 и α = 0,5.

Оценка на задачата 1.

OOn
H2O,H+OHn
HOO

2. Поливинилов алкохол;η >η поливинилов алкохол частично хидролизиран поливинилацетат

4. Максимален брой точки се присъждат, ако получените стойности за редуцирания вискозитет на разтворите P1; P2; P3; P4, Х са съответно в интервалите: 89 – 95; 36 – 42; 115 – 131; 51 – 59; 65 – 73.

7. Максимален брой точки се присъждат, ако получените действителни стойности на вискозитета на разтворите P1; P2; P3; P4, Х са съответно в интервалите: 37 – 57; 20 – 28; 40 – 66; 26 – 38; 33 – 45.

8. lg[η] = lg K + α lg M

9. 23,7 = 0,1´M 0,5 Þ 237 = M 0,5; M = 2372 = 56169 ~ 56200

Максимален брой точки се присъждат, ако получените стойности заК, a и М са съответно в интервалите: 0,02 – 0,04; 0,6 – 1,0; 45000 – 65000.

ТЕОРЕТИЧНИ ЗАДАЧИ

Задача 1. Клатратно оръжие (8 точки)

На дъното на морета и океани има огромни запаси метан под формата на клатратни съединения, наречени хидрати на метана. Те могат да се извличат и да се използват като източник на енергия или суровина за органичния синтез. Въпреки това учените са сериозно обезпокоени от възможността за спонтанно разпадане на хидратите, предизвикано от повишаване температурата на океана. Смята се, че ако значително количество метан се отдели в атмосферата, океаните ще се затоплят по-бързо поради парниковия ефект, което ще ускори разлагането на клатратите. В резултат на експлозия на получената смес от метан и въздух и/или на изменения в състава на атмосферата всички живи същества могат да изчезнат. Този апокалиптичен сценарий се нарича „клатратно оръжие“ (фиг. 3).

Фигура 3. Експлозия на смес от метан и въздух

При пълното разлагане на 1,00 g хидрат на метана при 25°C и атмосферно налягане (101,3 kPa) се отделят 205 mL метан.

1. Определете n (не е задължително да бъде цяло число) във формулата на хидрата на метана CH4nH2O.

Реално съществуващият хидрат на метана има нестехиометричен състав, близък до CH4х6H2O. При атмосферно налягане хидратът на метана се разлага при –81°C. При високи налягания (напр. на дъното на океана) той е стабилен при значително по-високи температури. При разпадането на хидрата на метана се получават газообразен метан и вода в твърдо или течно състояние (в зависимост от температурата).

2. Напишете уравнението на разлагане на 1 mol CH4х6H2O, при което се получава вода в твърдо състояние (лед), H2O(s).

Енталпията на този процес е 17,47 kJ·mol-1. Приемете, че: енталпията не зависи от температурата и налягането; изменението на обема при разлагане на хидрата е равно на обема на отделения метан; метанът е идеален газ.

3. Определете външното налягане, при което разлагането на хидрата на метана до метан и лед (описано в т. 2) се извършва при температура –5 °C.

4. Определете минималната възможна дълбочина на чиста вода в течно състояние, на която хидратът на метан все още е стабилен.

За да отговорите на този въпрос, първо трябва да оцените каква е минималната температура, при която хидратът на метана може да съществува в равновесие заедно с вода в течно състояние. Отбележете вашия отговор: 272,9 К, 273,15 К, 273,4 К.

През 2009 г. големи запаси метан са открити на дъното на езерото Байкал. При издигане на проби хидрат на метана от дълбочина 1400 m е установено, че те започват да се разлагат на дълбочина 372 m.

5. Определете температурата на водата в езерото Байкал на дълбочина 372 m. Енталпията на стапяне на лед е 6,01 kJ·mol-1.

На нашата планета масата на метана, влизаща в състава на хидратите, е не по-малко от 5·1011 тона. Представете си, че този метан е изгорял при взаимодействие с атмосферен кислород.

6. Изчислете с колко градуса би се повишила температурата на земната атмосфера в резултат на този процес.

Енталпията на изгаряне на метан е –889 kJ·mol-1; общият топлинен капацитет на земната атмосфера е 4´1021 J·К-1.

Задача 2. Прекъсната фотосинтеза, или реакция на Hill (7 точки)

В изследванията, свързани с фотосинтезата, има няколко революционни експеримента, които съществено обогатяват познанията ни за този много сложен процес. Един от тези експерименти е извършен през 1930 г. от английския биохимик Robert Hill. Ще разгледаме някои данни, получените от него, както и такива от следващи експерименти.

1. В растенията под действие на светлина въглеродният диоксид се редуцира до въглехидрати (означени като {CH2O}) и се отделя кислород. Напишете сумарното уравнение на реакцията на фотосинтеза в растенията.

Основна част от процеса фотосинтеза се извършва в хлоропластите – съдържащи хлорофил органели на растителните клетки, които поглъщат светлина. Hill изолира хлоропласти от клетките чрез смилане на листа в разтвор на захароза. Извънклетъчните хлоропласти не произвеждат кислород в присъствие на светлина, дори и в присъствието на СО 2. Обаче при добавяне на разтвор на калиев триоксалатоферат(III) K 3[Fe(C 2O4)3] (в излишък от калиев оксалат) към суспензия от хлоропласти Hill наблюдава отделяне на кислород под действие на светлина дори и в отсъствие на CO2.

2. Експериментът на Hill позволява да се определи източникът на кислород в процеса на фотосинтеза. Напишете формулите на окислителя и на редуктора при фотосинтеза в растителни клетки и за реакцията в извънклетъчните хлоропласти (реакция на Hill).

Hill измерва количеството на отделения кислород, като използва хемоглобин (Hill го нарича мускулен и го обозначава с Hb), който свързва цялото количество молекулен кислород в съотношение 1:1, при което се образува HbO2. Началната концентрация на Hb е 0,6´10–4 M. Кинетични криви, съответстващи на различни концентрации на K3[Fe(C2O4)3], са показани на фигура 4 (горната крива съответства на концентрация, равна на 2,0´10–4 M).

3a. От фиг. 4 определете молното отношение Fe/O2 в края на реакцията. Не отчитайте желязото от хемоглобина.

3b. Напишете уравнението на реакцията на Hill, като приемете, че тя протича с висок добив.

3c. Като използвате данните от таблица 5, определете реакционната енергия на Gibbs за реакцията на Hill при T = 298 K, парциално налягане налягане на кислорода 1 mm Hg, pH = 8 и стандартни концентрации на останалите вещества. Спонтанна ли е реакцията при тези условия?

Фигура 4. Част на свързания хемоглобин HbO2 (спрямо началното количество на Hb) като функция от времето. Кръстчетата показват края на реакцията (фиг. 2a от оригиналната статия на Hill (1939))

Таблица 5. Стандартни електродни потенциали

ПолуреакцияE°, VO2+ 4H++ 4e→ 2H2O+1.23CO2+ 4H++ 8e→ {CH2O} + H2O–0.01Fe3++e→ Fe2++0.77Fe3+ + 3e→ Fe0–0.04[Fe(C2O4)3]3–+e→ [Fe(C2O4)3]4–+0.05[Fe(C2O4)3]4–+ 2e→ Fe + 3C2O42––0.59

Днес терминът „реакция на Hill“ означава фотохимично окисление на вода в растителни клетки или изолирани хлоропласти от който и да е окислител, различен от въглероден диоксид.

В друг експеримент (1952 г.) като окислител в реакцията на Hill, протичаща под действие на светлина в зелени водорасли Chlorella, е използван подкислен разтвор на хинон. Експерименталните данни са показани на фиг. 5. Дадени са графики на зависимостта на обема кислород (в mm3, при температура 10°С и налягане 740 mm Hg) за един грам хлорофил и за еднократно осветяване от интензитета на светлината за обикновена фотосинтеза и за реакция на Hill. Показано е, че максималният добив на кислород е един и същ за обикновената фотосинтеза и за реакцията на Hill.

Фигура 5. Обем на кислород (в mm 3 при температура 10°С и налягане 740 mm Hg) за един грам хлорофил и за еднократно осветяване като функция на интензитета на светлината за природна фотосинтеза и за изолирани хлоропласти (фиг. 1 от оригиналната статия на Ehrmantraut & Rabinovitch, 1952)

4a. Определете реакционния порядък на фотохимичната реакция на Hill по отношение на интензитета на светлината при нисък и при висок интензитет.

4b. Колко молекули хлорофил участват в образуването на една молекула кислород при максимален интензитет на светлината? (Относителната молекулната маса на хлорофила е около 900.)

В реакцията на Hill изолирани хлоропласти са облъчвани в продължение на 2 часа с монохроматична светлина с дължина на вълната 672 nm и мощност 0.503 mJ/s, при което се отделят 47.6 mm3 кислород (при същите условия като във в. 4).

5. Изчислете средния брой фотони (не е задължително да бъде цяло число), необходим за преноса на един електрон от редуктора към окислителя в реакцията на Hill.

6. Направeте изводи въз основа на експериментите, описани във въпроси 2 – 5. За всяко от твърденията (дадени в решенията) (изберете „Да“ или „Не“).

Задача 3. Реакция на Meerwein-Schmidt-Ponndorf-Verley (8 точки)

Реакцията на Meerwein-Schmidt-Ponndorf-Verley (MSPV) се използва за получаване на алкохоли от карбонилни съединения. В тази реакция става редукция на карбонилни съединения с алкохоли с ниска молекулна маса в присъствието на алкоксиди на алуминий или други метали:

R1 R2 3Al(OiPr) R1 R2

O OH OH O

Механизмът на реакцията включва координиране на карбонилно съединение с алуминиев алкоксид, пренос на хидриден йон във вътрешната сфера на комплекса и следващо преалкоксилиране. Тя е представена схематично по-долу (за краткост преалкоксилирането е показано като едностепенен процес):

R

AlOOOOR2O12AlOOOHO12AlOOHOiPrOHAlOOOOHR1R2OR1(2)RRR

Реакцията MSPV е обратима и получаване на висок добив от желания продукт изисква излишък на редуктор. В някои случаи (напр. при редукция на ароматни алдехиди и кетони) равновесната константа е толкова голяма, че обратната реакция може да се пренебрегне.

Таблица 6 съдържа стандартни ентропии и стандартни енталпии на образуване на течни вещества при 298 K. Дадени са също и температурите на кипене на веществата при налягане 1 бар.

1a.Изчислете минималното масово отношение изопропанол:циклохексанон, което е необходимо, за да се достигне 99% добив на циклохексанол при 298 K. Приемете, че: a) в реакционната смес се установява равновесие; и b) в началната реакционна смес не присъстват продукти на реакцията.

Таблица 6. Стандартни ентропии и енталпии на образуване на течни вещества при 298 K; температури на кипене при налягане 1 бар

ВеществоΔfHo298, kJ/molSo298, J/(mol∙K)tvap,оСАцетон–248.4200.456Изопропанол–318.1180.682Циклохексанон–271.2229.0156Циклохексанол–348.2203.4161

1b. Отбележете приемливия(те) начин(и) (предложени в решенията) за увеличаване на добива на циклохексанол.

2. Често скоростоопределящ етап в реакцията MSPV е преносът на хидриден йон или алкохолизата на алкоксида след хидридния пренос. За тези два случая, като използвате дадения по-горе механизъм (2), изведете израз за скоростта на реакцията като функция от текущите концентрации на карбонилното съединение, изопропанола и катализатора. И в двата случая определете порядъците на реакцията по отношение на реагентите и на катализатора. Приемете, че всички етапи на реакцията преди скоростоопределящия етап са бързи и обратими. Използвайте квазиравновесното приближение, ако е необходимо. За краткост използвайте следните означения: А – карбонилно съединение, B – изопропанол, C – катализатор. Интермедиатите може да означите с подбрани от вас съкращения.

Реакцията MSPV може да се използва за получаване на хирални алкохоли в присъствие на хирален катализатор. Например Campbell и сътрудници използват катализатор на основата на хиралния 2,2’-dihydroxy-1,1’binaphtyl (BINOL), който се синтезира в хода на реакцията от binaphtol и trimethylaluminium:

OHOH
Al(CH3)3OOAl(3)OOAlOiPrOH

(BINOL)Al(OiPr)

Таблица 7. Съединения, които могат да се използват за синтез на хирални катализатори

ВеществоМожеда бъдеизползваноВеществоМожеда бъдеизползваноOHOHOCH3OCH3VOHOHOHOHOCH3OCH3VOCH3OHHOCH3OVOHOHOHOH

Хиралността на BINOL се дължи на стерично затруднено въртене около връзката C-C. Въпреки стабилността си при стайна температура BINOL може да рацемизира при нагряване.

3. Отбележете кои феноли от таблица 7 (дадена в решението) могат да образуват стабилни (при стайна температура) енантиомери, които да бъдат използвани за получаване на хирален катализатор за горната реакция.

4. За да се характеризира енантиомерната чистота на веществото, се използва величината енантиомерен излишък – ee. Тя е равна на отношението на разликата от молните концентрации на енантиомерите R и S към тяхната сума:

ee=[R][S][R]+[S]

Енантиомерният излишък на чист (R)-изомер е единица (или 100 %), докато ee на рацемична смес е нула.

Когато се използва енантиомерно чист (BINOL)Al(OiPr) като катализатор на редукцията на α-bromoacetophenone, стойността на ee на продукта е 81%. Изчислете стойността на ee на продукта на тази реакция, ако стойността на ee на катализатора е 50%. Изведете формулата, необходима за това изчисление.

Задача 4. Прост неорганичен експеримент (6 точки)

Съединението A, което съдържа метала X, е безцветно кристално твърдо вещество, добре разтворимо във вода. То се използва като реагент в аналитичната химия. В алкална среда A се превръща в бинерното съединение B, което съдържа 6,9 мас.% кислород. При накаляване веществото A се разлага, като губи 36,5% от масата си.

1. Определете метала X и веществата A и B.

2. При добавяне на натриев тиосулфат към воден разтвор на веществото A реакционната смес мигновено се оцветява в червено, а след това цветът се променя в червеникавокафяв и след няколко минути пада тъмнокафява утайка C (реакция 1). Разтворът над утайката (матерен разтвор) е безцветен. При накаляване на 1,10 g от веществото С при 600°С във въздушна среда се получава сив прах X с маса 0,90 g (реакция 2). При нагряване на същото вещество С във вакуум (реакция 3) се отделя газ, който може да бъде абсорбиран от суспензия на калциев хидроксид (реакция 4). При продължително съхраняване на утайката под наситен разтвор на бариев перхлорат в 0,1 М НСlO4 цветът на утайката избледнява, докато използването на магнезиев перхлорат не дава такъв ефект. Определете веществото C. Напишете уравненията на реакциите 1 – 4.

3. При съхранение на веществото С под матерен разтвор (съдържащ излишък от веществото A) се образува вещество D с жълт цвят. Ако към суспензия на веществото C в матерния разтвор се прибавят бариеви йони, се образува смес от веществото D и бяла утайка. Предложете формула на веществото D, като имате предвид, че D съдържа 77,5 мас.% X. Напишете уравнението на реакцията на получаване на веществото D.

Задача 5. Свойства на графена (14 точки)

Графенът е двумерен материал на въглерода с дебелина един атом (фиг. 6a). За да се образува графит, много слоеве от графен се подреждат заедно (фиг. 6b).

Фигура 6. (а) Структура на графен. Сферите са въглеродни атоми и са подредени в шестоъгълници. Площта на един шестоъгълник от въглеродни атоми е 5,16∙10-20 m2. (b) Кристална решетка на графит. Показани са три графенови слоя

Дълго време учените са смятали, че такъв вид структура е нестабилна. През 2004 година Andrey Geim и Konstantin Novoselov публикуват получаването на първите проби от този необикновен материал – откритие, за което получават Нобелова награда през 2010 г.

Експерименталните изследвания върху графените все още са ограничени. Много от свойствата на графена са оценени приблизително. Обикновено няма достатъчно информация за точни изчисления, поради което ще направим приближения и ще пренебрегнем маловажните фактори. В тази задача ще оценявате адсорбционните свойства на графена.

1a. Оценете специфичната повърхност на графена, върху която се извършва адсорбция в m2 /g. Приемете, че графеновата повърхност е отделена от всяква друга твърда повърхност или течност.

Монослой от азотни молекули е адсорбиран върху външната повърхност на графит (фиг. 7). Приемете, че същото подреждане на азотните молекули е направено върху графенова повърхност.

Фигура 7. Азотни молекули N2 (сиви кръгчета) върху външната повърхност

на графита

1b. Колко грама азот могат да бъдат адсорбирани върху 1 g графен, като приемете, че графеновият слой е разположен върху повърхността на твърда подложка? Оценете обема, зает от тези азотни молекули, след пълната им десорбция от 1 g графен (налягане 1 bar, температура 298 K).

Нека разгледаме адсорбцията като химично равновесие

Agas →A←ads ,

(Agas са молекулите A в газообразно състояние, Aads са същите молекули върху повърхността) с равновесна константа K:

К n(mol/m)2Aadsp(bar)Agas

(такова предположение е основателно, ако върху повърхността е адсорбиран малък брой молекули).

Адсорбционните свойства на графена могат да бъдат оценени от данните за адсорбция върху правилен тримерен графит. Енталпията на адсорбция (ΔHo за реакция (1)) на всяка молекула А върху графена е средно с 10% по-малко отрицателна в сравнение с тази върху графита. Върху графит адсорбираната молекула е свързана по-здраво, което се дължи на взаимодействието с по-долните графенови слоеве в решетката (фиг. 1b) и следователно енталпията на адсорбция е по-отрицателна. Приемете, че стандартните ентропии на адсорбция върху графен и графит са еднакви.

(b)-7 -8

-8 -12 ln K-11 -9 -1 -16 -10 kJ mol -20 -24 -12-28-32-13 -36

-14

-40

-15

(a)2.62.83.03.23.43.63.84.04.24.4
2.62.83.03.23.43.63.84.04.24.4ln M

Фигура 8. Термодинамични свойства за адсорбция на алкани върху повърхност графит. (a) ln K {mol/m2/bar} като функция от ln M (M – молна маса на алкана в g/mol); (b) ΔHo на адсорбция като функция от ln M. И в двата случая се приемат линейни звисимости

2. Колко мола CCl4, n, са адсорбирани върху 1 g графен при p(CCl4) = 10–4 bar, ако 2,0х10–7 mol CCl4 са адсорбирани върху 1 m2 графит при p(CCl4) = 6,6х10–5 bar? Приемете, че графенът е поставен върху повърхността на твърда подложка и взаимодействието на CCl4 с подложката не променя енталпията на адсорбция на CCl4 върху графена. Температурата и в двата случая е 293 K. ΔHo на адсорбция на CCl4 върху графит е –35,1 kJ/mol.

Очаква се графеновите филми да бъдат чувствителни газови детектори. Ако 109 частици газ са адсорбирани върху 1 cm2 графенова повърхност, това е достатъчно, за да се измери промяна на електрическото съпротивление на графеновия слой и да се регистрира присъствието на газ в обкръжението.

3. Определете минималното съдържание на етан във въздуха (в молни %) при атмосферно налягане (T = 293 K), при което графенов сензор ще регистрира този газ. Известните данни за адсорбцията на алкана върху графит са показани на фиг. 8. Приемете, че въздухът не влияе върху адсорбционните свойства на етана.

Таблица 8. Информация за съединенията

Отношение на броя на групите, съдържащи водородЕмпиричнаформулаНеароматниАроматниCHCHCH2CH3OHA1111+1+102+2(C14H16O5)nF111+1+102+2(C14H16O5)nG1+1+102+102+2(C14H16O5)nH111+1+102+2(C14H16O5)n
I1+1+11+12+1+1+1+102+2+1+1+1(C14H16O5)nJ001+111+1+1+1+1(C13H12O4)nK1+112+1+1+101(C16H20O7)nL1+1+1+1+112+2+1+1+1+102+2+1(C5H6O2)n

Задача 6. Циклопропани – толкова прости, толкова фантастични (7 точки)

Циклопропаните, носещи донорни и акцепторни заместители при съседни въглеродни атоми, например A, показват висока реактивоспособност, подобна на тази на 1,3-цвитерйона B.

XCOMe2eM2CO COMe2eM2

A B

A1 (X = 4-OMe) претърпява отваряне на тричленния пръстен в катализирана от Люисова киселина реакция с 1,3-диметоксибензен като нуклеофил, при което се получава продуктът C.

1. Напишете структурната формула на C.

A1 участва в реакции на циклоприсъединяване, анелиране, олигомеризация и др. Следователно „формално [3+2]-циклоприсъединяване между A1 и 4-метоксибензалдехид води до образуване на петчленен цикъл в D. Декарбоксилирането на всички карбоксилни групи в D води до получаване на E (C18H20O3), който има равнина на симетрия.

A1 +MeO O D E

2. Напишете структурните формули на D и E, като означите тяхната стереохимия.

A може да претърпи различни трансформации в присъствие на катализатор без други реакционни партньори. На схемата по-долу са представени някои трансформации, типични за A1:

GaCl

250oCHFJGI320oCSn(OTf)240oCGaCl30oCAlCl3-25oCSnCl420oCA1

OTf = OSO2CF3

За да се определят структурите на F-J, са получени поредица от физикохимични данни (таблица 14). Намерено е, че:

a) F и G имат същата молекулна формула като A1;

b) G се образува като най-стабилен стереоизомер;

c) H и I са структурни изомери;

d) H се образува като индивидуален диастереомер с ос на симетрия C2 (молекулата изглежда по същия начин след въртене на 180°);

e) I се образува като смес от два диастереомера;

f) J е производно на нафталена.

В процеса на получаване на I една молекула A1 показва описаната по-горе обичайна реактивоспособност (аналогична на тази на B). Друга молекула A1 се отнася по различен начин. Това поведение се демонстрира с циклопропана A2 ((диметил-2-(3,4,5-триметоксифенил)циклопропан-1,1-дикарбоксилат; X в A = 3,4,5-(MeO)3), при третирането на който с SnCl4 се получава K като смес от два диастереомера. Главният изомер има център на симетрия. Подобна реактивоспособност е показана от A2 в катализираната от Sn(OTf)2 реакция с G, при която се получава L.

K

SnCl4

A2

G

L Sn(OTf)2

3. Напишете структурните формули на F-J, L и на главния изомер на K.

Задача 7. Перманганометрия (8 точки)

Количеството на много редуциращи агенти може да бъде определено чрез перманганометрично титруване в алкална среда, което позволява редукция на перманганатните йони до манганатни.

1. Напишете йонното уравнение на реакцията на титруване на формиат с перманганат във воден разтвор, съдържащ ~0.5 M NaOH.

Титруването с перманганат в алкална среда често се извършва с прибавяне на бариева сол, което води до утаяване на манганатните йони като BaMnO4.

2. Какъв страничен редокс процес, включващ манганат, се потиска от бариевата сол? Напишете един пример на уравнение на съответната реакция.

Проба с обем 10,00 mL (VMn) от разтвор на 0,0400 М (сMn) KMnO4 се поставя във всяка от колбите А, В и С и във всяка колба протича различна реакция.

3. В колба A, в която е поставена проба от разтвор, съдържащ непознато количество кротонова киселина (CA) СН3–СН=СН–СООН (mCA), се добавят основа и бариев нитрат (и двете в излишък) и реакционната смес се инкубира в продължение на 45 min. Известно е, че всяка молекула кротонова киселина губи 10 електрона в условията на експеримента. Молната маса на CA е 86,09 g/mol.

a) Напишете йонното уравнение на реакцията.

Проба с обем 8,00 mL (VCN) от 0,0100 М (cCN) разтвор на калиев цианид се добавят допълнително към инкубираната смес. Това води до пълно протичане на следната реакция:

2Ba2+ + 2MnO4– + CN + 2OH = 2BaMnO4 + CNO + H2O

Получената утайка от BaMnO4 се филтрува и излишъкът от цианидни йони във филтрата се титрува с 0,0050 M (cAg) разтвор на AgNO3, докато се образува утайка, която може да бъде забелязана. Обърнете внимание, че и CNи CNOса аналози на халогенидните йони, но CNO дават разтворима сребърна сол. b) Напишете формулата на комплекса, който се образува при първоначното добавяне на Ag+ към разтвора на цианид (преди да се образува утайката).

c) Напишете формулата на образуваната утайка.

d) Изчислете масата на кротоновата киселина (в mg), ако 5,40 mL (VAg) от разтвора на сребърната сол се изразходват за титруване до достигане на еквивалентния пункт.

4. Друга проба с различна концентрация на кротонова киселина и основа (в излишък) се поставят в колба В; в тази смес липсва бариева сол. Като редуциращ агент се добавя излишък от KI (вместо цианид). След това сместа се подкислява и отделеният йод се титрува с 0,1000 М (cS) разтвор на тиосулфат. За достигане на еквивалентния пункт се изразходват 4,90 mL (VS1) от титранта.

Изчислете масата на кротоновата киселина (в mg).

5. Проба, съдържаща Sn(II), се добавя към колба С и средата слабо се алкализира. Калай(II) количествено се окислява до Sn(OH)62–, докато се образува утайка като резултат от редукцията на перманганат. Утайката е изолирана, промита, изсушена при 250°С, претеглена (утайката, която не съдържа вода, представлява бинарно съединение MnxOy, с маса (mprec) 28,6 mg) и разтворена в H2SO4 в присъствие на излишък от калиев йодид. Отделеният йод се титрува с 0,1000 М разтвор на тиосулфат. Обем 2,50 mL (VS2) от този разтвор е изразходен за достигане на еквивалентния пункт.

а) Определете x и y. Напишете уравнението на реакцията на утаяване.

b) Изчислете масата на калай в пробата (в mg).

Задача 8. Уникалният живот на Archaea (8 точки)

Archaea (archaebacteria) са едноклетъчни микроорганизми, които значително се различават от бактерии и еукариоти на молекулно ниво.

Ензимната реакция на метиламин с вода е главен източник на енергия за някои видове Аrchaea. При експеримент вид клетъчна култура Аrchaea е култивирана при pH 7 в анаеробни условия (без кислород) в хранителна среда, съдържаща 13СH3NH2 като единствен енергиен източник. След определен инкубационен период е взета и анализирана проба от газа над клетъчната култура Аrchaea. Установено е, че газът съдържа две вещества – А и B в молно отношение съответно 1,00:3,00. Относителната плътност на пробата спрямо H2 е 12,0.

1. Изчислете обемния състав (в %) на А и B в сместа.

2. Определете кои са А и B, ако знаете, че в анализирания газ няма азот. Обосновете отговора с изчисления.

3. Напишете уравнението на ензимната реакция на метиламин с вода, описано в горния експеримент, като използвате преобладаващата форма за всяка от частиците.

Ензими, съдържащи остатък от α-аминокиселина X, са намерени в много видове Аrchaea. Известно е, че X: е изградена от атоми на 4 елемента; съдържа 18,8 масови % кислород; притежава единична индивидуална tRNA и се включва в протеините по време на транслация. Аминокиселината L-лизин е идентифицирана като предшественик на X в Аrchaea. Всички C и N атоми, открити в X, произхождат от две изходни молекули лизин. За да се изяснят биохимичните механизми на образуване на X, в моделна система са въведени различни изотопнобелязани форми на L-лизин. Резултатите са обобщени в таблица 9.

4. Определете молекулната формула на X, като напишете изчисленията.

Биосинтезът на X в Аrchaea се осъщестява по следната схема (E1 E3 – ензими):

E2

C-H2OHOOCNH2E1NH2HOOCNH2L-lysine-H2OSpontaneouslyXEE3?DNH2

L-lysine

На първата стъпка лизин се трансформира в негов структурен изомер (α–аминокиселина, C). От друга страна, D съдържа пептидна връзка и E съдържа алдехидна група. Всички реакционни коефициенти в горната схема са равни на 1.

Таблица 9. Резултати за молната маса на остатъка на X, получени с различни изотопнобелязани форми на L-лизин

Изотопен състав наL-лизин (L-lysine)Молна маса (закръглена до цяло число)на остатъка наX[RCH(NH2)CO], свързанс tRNA, g/molНормален238Всички въглеродни атоми са13С,всички азотни атоми са15N253ε-Амино група с15N239

5. Напишете молекулните формули на C, D и E. От типовете реакции (окислително деаминиране; декарбоксилиране; вътрешномолекулно деаминиране; хидроксилиране; хидролиза на пептидна връзка) изберете и отбележете само една, която съответства на реакцията, катализирана от Е3. Напишете вашите изчисления.

Съединението Х съдържа фаргмента:

(R,Me,H

(R,Me,H)

345) (H,Me,R)

N

R е обемист заместител (M>100 g/mol). Третият С атом (С-3) не е асиметричен, въглеродните атоми С-4 и С-5 са стереогенни центрове. Всички въглеродни атоми в цикъла са свързани с поне един Н атом. Всеки заместител (H, Me и R) се среща само веднъж.

6. Определете позициите на заместителите на H, Me, и R, като напишете вашите разсъждения.

7. Напишете структурните формули на C и X, като отчетете стереохимията. По пътя от C дo X стереоцентровете не се засягат. Означете всеки стереоцентър в X с (R) или (S).

За включване на остатъците на X в протеините на Аrchaea е отговорен само един кодон. Азотните бази, изграждащи този кодон, съдържат общо две екзоциклични аминогрупи и три екзоциклични кислородни атома.

NH2 O NH2 O

N NN NNN N NH

N H H2N N H NH O NH O ade nine guan ine cytosine ur acyl

8. Определете нуклеотидния състав на кодона, кодиращ X. Напишете броя на базите в кодона (1, 2, 3, 0 или 1, 1 или 2).

По-долу е даден фрагмен от кодираща последователност на mRNA, който съдържа кодоните, кодиращи остатъка X, влизащ в състава на ензима на Аrchaea:

5’…AAUAGAAUUAGCGGAACAGAGGGUGAC…3’

9а. Като използвате таблица 10 с генетичните кодове, определете колко аминокиселинни остатъка влизат в състава на ензимната верига като резултат от транслацията на този фрагмент.

Таблица 10. Генетичните кодове

a) RNA кодони на двадесет аминокиселини Втора база

Трибуквени съкращения на аминокиселините

UCAGUPheSerTyrCysUPheSerTyrCysCLeuSerSTOPSTOPALeuSerSTOPTrpGCLeuProHisArgULeuProHisArgCLeuProGlnArgALeuProGlnArgGAIleThrAsnSerUIleThrAsnSerCIleThrLysArgAMet(start)ThrLysArgGGValAlaAspGlyUValAlaAspGlyCValAlaGluGlyAValAlaGluGlyGAla= AlanineArg= ArginineAsn= AsparagineAsp =Aspartic acidCys = CysteineGlu = Glutamic acidGln = GlutamineТрета базаGly = GlycineHis = HistidineIle = IsoleucineLeu = LeucineLys = LysineMet = MethioninePhe = PhenylalaninePro = ProlineSer = SerineThr = Threonine

Trp = Tryptophan
Tyr = Tyrosine
Val = Valine

9b. Напишете аминокиселинната последователност, която се получава при транслацията от този фрагмент (започнете от N-края и използвайте трибуквените съкращения за аминокиселините). Имайте предвид, че фрагментът съдържа повече от един аминокиселинен остатък X. Ако има повече от една възможност, напишете всички, като ги разделите с /. Ако транслацията е спряла в определена позиция, напишете “STOP”.

Таблица 11. Предположения за някои характеристики на двата газа А и В

Обемна фракция на по-лекия газ, %Молна маса на по-тежкия газ, g/mol2531.37590.02527.77549.02526.37545.0

Таблица 12. Нуклеотиден състав на кодона, кодиращ X

Азотна базаБрой на азотните бази в кодона1230 или 11 или 2ACGUAсъдържа 1 аминогрупа и 0 кислородни атома.C съдържа 1 аминогрупа и 1 кислороден атом.G съдържа 1 аминогрупа и 1 кислороден атом.U съдържа 0 аминогрупи и 2 кислородни атома.2 аминогрупи за 3 бази предполага една U.Има 2 аминогрупи и 1 кислороден атом за останалите две бази.А е една от тях. G или C е последната база.

РЕШЕНИЯ И ОЦЕНКА НА ТЕОРЕТИЧНИТЕ ЗАДАЧИ

Задача 1 (19 точки, 8 % oт общия брой точки)

1. 2 точки

От закона за идеалния газ количеството метан е: pV1013002053ν===8.38106RT10831429815.. mol.

Тогава количеството вода в хидрата е .32ν==4.81101838101618 mol.

Отношението на количеството вода към количеството метан е 4.81102 / 8.38103 5.75 , т.е. съставът на хидрата на метана е CH4×5,75H2O или xCH4×5,75xH2O, където x е естествено число.

2. 1 точка

CH4·6H2O = CH 4 + 6H2O

3. 3 точки

Разлагането на хидрата на метана може да се разглежда като фазов преход, който се подчинява на уравнението на Clausius-Clapeyron: dpH=dTTV . 6M(HO)RTM(CH6HO)2(s)42V=+pρ(HO)2()ρ(CH6HO)42s

Разликата между последните два члена е пренебрежимо малка в сравнение с първия член. Следователно може да се запише следното уравнение: dp=21pHRT dT .

Тогава зависимостта между налягането и температурата се дава с израза: p = p0 exp RTT0H11 . Замествайки T0 = 192,15 К, T = 268,15 К, p0 = 1 atm, намираме, че: p = 22 atm или 2,2 MPa.

4. 5 точки

При минималната възможна дълбочина сумата от атмосферното налягане и това на водната колона е равна на налягането на дисоциация на хидрата на метана. Температурата трябва да е възможно най-ниска, но не може да бъде по-ниска от температурата на топене на водата при съответното налягане. По този начин температурата и налягането трябва да съответстват на точката на съвместното съществуване на вода, лед, хидрат на метана и газообразен метан. Тъй като температурата на топене на водата намалява с увеличаване на налягането, отговорът е 272,9 К. Замествайки T = 272,9 К в уравнението от предишния въпрос, получаваме: p = 2,58 MPa. Височината на водната колона може да бъде изчислена с помощта на формулата ppatmh=gρ(HO)2 , където g = 9,8 m·s–2. От тук може да се изчисли: h = 250 m

5. 5 точки

От закона на Хес следва, че енталпията на процеса CH4·6H2O = CH4 + 6H2 O(l) е 17,47 + 6·6,01 = 53,53 kJ·mol–1. От предишния въпрос знаем, че при T0 = 272,9 К и p0 = 2,58 MPa се установява равновесие между метана, водата и хидрата на метана. Следователно температурата на разлагане T при налягане p = 9,8×1000×372 + 101000 = 3746600 Pa може да се изчисли от уравнението: 11R=+TT0H ln p0p . Получаваме T = 277,3 К, или приблизително 4°C (което е в съответствие с измерената температура на водата на подобна дълбочина в езерото Байкал).

6. 2 точки

При изгаряне на метан се отделя следната топлина: 9332288910=2.781050010100016. J. Земната атмосфера ще се загрее с 2.781022 / 41021 7 К. Следователно: ΔT = 7 K.

Задача 2 (19 точки, 7 % oт общия брой точки)

1. 1 точка

H2O + CO2 = {CH 2O} + O2

2. 2 точки

Обикновена фотосинтеза Реакция на Hill

Окислител Редуктор Окислител Редуктор H CO2 2O K3[Fe(C2O4)3] H2O

3. 7,5 точки

3a. От горната крива на фиг. 4 следва, че насищане има при ~ 75% of HbO2.

n(Fe) / n(O2) = c(Fe) / c(HbO2) = 2,0×10–4 / (0,75××0,6×10–4) = 4,4 : 1

3b. Отношение ~ 4:1 показва, че Fe(III) е редуцирано до Fe(II), което в излишък на оксалатни йони съществува като комплекс:

2H2O + 4[Fe(C2O4 )3]3– O2 + 4[Fe(C2 O4)3]4– + 4H+

3c. [[Fe(C2O4)3]3– + e [Fe(C2O4)3]4– E1° = 0.05 V

O2 + 4H+ + 4e 2H2O E1° = 1,23 V emf: E° = E1° – E2° = –1,18 V

G = G + RT ln( pO2 [H+ ]4 ) = 496500 (1.18) + 8.314 298 ln 14810=()750

= 2.57 105 J/mol = 257 kJ/mol

Реакцията е силно ендергонична и следователно не е спонтанна. Необходима е светлина.

4. 3 точки

4a. Реакционен порядък:

Нисък интензитет Висок интензитет

0 1 2 0 1 2

4b. n(Chl) / n(O2) = 1/900 / [(12×10–6×(740/760) ×101,3)/(8,314×283)] = 2200

5. 3 точки

Общата абсорбирана енергия: E = 0,503×10–3×3600×2 = 3,62 J

Енергията на един mol фотони:

Em = hcNA / l = 6,63×10–34×3,00×108×6,02×1023 / (672×10–9) = 1,78×105 J/mol
n(фотони) = E / Em = 2,03×10–5 mol
n(O2) = PV / RT = (740/760)×101,3×47,6×10–6 / (8,314×283) = 2,.00×10–6 mol.

Образуването на една молекула O2 изисква пренос на 4 електрона:

n(e) = 8,00×10–6 mol
Квантово изискване: n(phot) / n(e) = 2,5
6. 2,5 точки

Да Не

В обикновената фотосинтеза окислението на водата и редукцията на CO2 са пространствено разделени.

В хлоропластите O2 се получава от CO2.

Окислението на вода в хлоропластите изисква облъчване

със светлина.

По-гучаства непосредствено оляма част от молеку във фотлите на охимично хлорофилтоа образув в хлоропластитеане на O.2

В изолираните хлоропласти всеки погълнат фотон

предизвиква пренос на един електрон.Задача 3 (32,5 точки, 8 % oт общия брой точки)

1a. 7 точки

Изменението на реакционната енталпия е:

ΔrHo298 = ΔfHo298(C3H6O) + Δ fHo298(C6H12O) – ΔfHo298(C3H8O) –ΔfHo298(C6H10O) = (–248,4) + (–348,2) – (–318,1) – (–271,2) = – 7,3 kJ/mol,

Изменението на реакционната ентропия е:

ΔrSo298 = So298(C3H6O) + So298(C6H12O) – So298(C3H8O) – So298(C6H10O) =

= 200,4 + 203,4 – 180,6 – 229,0 = –5,8 J/(mol×K)

Изменението на реакционната енергия на Гибс е:

ΔrG=ΔHoo298r298 T ΔrSo 298 = –5,6 kJ/mol

Равновесната константа е:

K = exp(–ΔrGo298/RT) = 9,6

Изразът за равновесната константа е:

xCHOxCHOCHOCHO()()()()νν3661236612K==xCHOxCHO()()38610CHOCHO()()νν38610 , където x е молната част на вещество в равновесната смес, ν е количество вещество в сместа. Означаваме началното количество циклохексан с y. 99% циклохексанон трябва да реагира. Следователно равновесните количества С6Н10О и С6Н12О са съответно 0,01y и 0,99y. Обозначаваме началното количество изопропанол със z. Поради стехиометрията на реакцията равновесните количества С3Н6О и С3Н8О са съответно 0,99y и (z - 0,9y). След заместване на тези количества в израза за равновесна константа се получава:

,K===0,99y0,99y0,01y(z0,99y)98010,99z y 9,6

Решението е: =11.2zy

Следователно молното отношение ν(C3H8O) : ν(C6H10O) е 11,2. Масовото отношение може да се изчисли както е показано по-долу:

m(C3H8O) : m(C6H10O) = ν(C3H8O) ´ M(C3H8O) / (ν(C6H10O) ´ M(C 6H10O)) = = 11,2 ´ 60 / 98 = 6,9

1b. 3 точки

Увеличаване на температурата на сместа до 50оC при кипене на обратен хладник

Увеличаване на температурата до 60оС с отдестилиране на ацетона

Прибавяне на етанол към реакционната смес Прибавяне на етанал към реакционната смес

2. 8,5 точки
Скоростоопределящ етап е преносът на хидрид.

Кинетична схема:

A + С ←→ A·C бърз, K
A·C → A’·C’

скоростоопределящ, k

Израз за равновесната константа: AC[]K=[A][C]

Скоростта на скоростоопределящия етап е: r = k [A C] = kK [A][C] Порядък по отношение на карбонилното съединение: 1

Порядък по отношение на изопропанола: 0

Порядък по отношение на катализатора: 1

Скоростоопределящ етап е скоростта на преалкирането на алкохола с изопропанол.

Кинетична схема:

A + С ←→ A·C бърз, K1

A·C ←→ A’·C’ бърз, K2

A’·C’ + B → P скоростоопределящ, k

Израз за равновесните константи: [][]ACA'C'K=K=1[A][C][AC]2 Скоростта на реакцията е:

r = k [A' C'][B] = kK1K 2 [A][B][C]

Порядък по отношение на карбонилното съединение: 1. Порядък по отношение на изопропанола: 1. Порядък по отношение на катализатора: 1.

3. 6 точки

Веществата A, B и E могат да се използват за синтеза на хирални катализатори.

Таблица 7

4. 8 точки
Решение 1
Общата кинетична схема е следната:

k'kk'(S)катализатор(S)продукт(R)катализатор(R)продуктk

В съответствие със схемата отношението R:S е:

[(R ) product ] k [(R ) catalyst ]+ k '[(S ) catalyst ] =

[(S ) product ] k[(S )catalyst ]+k '[(R )catalyst ]

След въвеждане на този израз в израза за ee се получава:

[(R)product] 1

eeproduct ===[(R)product][(S)product][(R)product]+[(S)product][(S)product][(R)product]1+ [(S)product] k[(R)catalyst]+k'[(S)catalyst]k[(S)catalyst]+k'[(R)catalyst]()()==k[(R)catalyst]+k'[(S)catalyst]+k[(S)catalyst]+k'[(R)catalyst]()() =[(R)catalyst][(S)catalyst][(R)catalyst]+[(S)catalyst] ×=eekk'k+k' catalys tkk'k+k'

Това означава, че ee на продукта е пропорционално на ee на катализатора: ee=0.500.81=0.41ee=eekk'k+k'productproductcatalyst

Решение 250% ee50% rac.
50% R
R cat. 90.5% R + 9.5% S
rac. cat. 50% R + 50% S
% of R prod. = 0.5× 0.905+ 0.5× 0.5= 0.7025
% of S prod. = 0.5 × 0.095 + 0.5× 0.5 = 0.2975
ee prod. = 0.7025 0.2975 = 0.405 Отговор: 41%

Задача 4 (24 точки, 6 % oт общия брой точки)

1a. 3 точки

Означаваме формулата на бинерното съединение с XOn. Отношението на молните части на X и O е: 93,1/X : 6,9/16 = 1 : n, където X е молната маса на метала X и n = 0,5; 1; 1,5; 2, ....

n = 0,5 съответства на X = 107,9, което означава, че металът е сребро. X Ag, B Ag2O.

1б. 2 точки

Най-общо при нагряване на сребърните соли металният йон се редуцира. В съответствие със загубата на маса молната маса на A е 170 g/mol, което означава, че солта е сребърен нитрат: A` – AgNO3.

2a. 3 точки

При термично третиране на сребърни съединения във въздушна среда те се разлагат до метално сребро. Веществото C съдържа сребро и вероятно още сяра и кислород, тъй като при нагряване във вакуум то отделя оксид на сярата.

1,10 g C съдържа 0,90 g Ag, следователно в 132 g C има 1 mol Ag. Масата на елементите, различни от Ag, е 132 – 108 = 24 g, което съответства на 1/2S и 1/2O. Следователно емпиричната формула е AgS1/2O1/2 или Ag2SO.

2b. 4 точки

Светлокафявият цвят на утайката, получена след прибавяне на бариева сол, означава образуване на бариев сулфат, който е неразтворим в киселини. Сулфатните групи на повърхността на утайката са заместени от перхлоратни йони от разтвора. Така че въз основа на формулата Ag2SO и при наличие на сулфат може да се предложи формулата Ag8S3SO4.

2c. 5 точки

Уравнение 1:

16AgNO3 + 6Na2S2O3 + 6H2O 2[Ag8S3]SO4¯ + 4Na2SO4 + 4NaNO3 + 12HNO3 Уравнения 2 – 4:

[Ag8S3]SO4 + 2O2 8Ag + 4SO2

[Ag8S3]SO4 2Ag2S + 4Ag + 2SO2

SO2 + Ca(OH)2 = CaSO3 + H2O или

2SO2 + Ca(OH)2 = Ca(HSO3)2

3. 7 точки

Можем да приемем, че сулфатните йони в С са заместени от нитратни йони. За формулна единица, която съдържа n сребърни атоми, молната маса е 108хn / 0,775 = 139,35хn. За n = 3 получаваме M = 418, което съответства на 418 – 108´3 = 94; това е NO3 + S. Следователно D е [Ag3S]NO3.

Уравнение:

[Ag8S3]SO4 + AgNO3 + 2NaNO3 ® 3[Ag3S]NO3 + Na2SO4

Задача 5 (14 точки, 7 % oт общия брой точки)

1а. 2 точки

Площта на хексагона е: S = 5,16×10–20 m2 . Броят на хексагоните за грам въглерод е n:

n = NA 2322=6.022100.5=2.51×1036112112

Площта за грам е: Stotal = S n 2 = 5.16 1020 2.51 1022 2= 2590 2mg

1b. 2.5 точки

Графенът е на твърда подложка и само една страна е активна. Една молекула азот се пада на 6 атома въглерод (три хексагона) – фиг. 2. Масата на азота, абсорбиран за грам графен, е:

m==N2mC1×286×12 0.39; m N2 = 0.39g ;

Обемът на азота е:

(m/M)RTV=Np2 (0.39/28)8.314298==0.34100 dm3

2. 4 точки

Равновесната константа за адсорбция върху повърхността на графита е:

K(graphite 732)===3.010mol/m5n(CClon graphite)4p(CCl)42.0106.610 /bar Равновесната константа за адсорбция върху повърхостта на графена трябва да бъде преизчислена.

Има 10% разлика в енталпиите на абсорбция за графена и графита, докато ентропиите им на абсорбция са еднакви. K(graphene)(H=eK(graphite) graphene−∆Hgraphite)/RT = e3510/(8.314293) = 0.24

K(graphene) = 0.24K(graphite) = 7.2104 mol/m2 /bar

Адсорбция на CCl4 върху повърхността на графена:

2 Stotal = 2590/2 =1295mg n{mol/g} = K(graphene){mol/m2 /bar} p(CCl4 ){bar} S(graphene){m2 /g} =

= (7.2104)1041295 = 9.3105 mol/g 4. 5,5 точки

Долната граница на откриваема концентрация върху повърхността на графена е:

n{mol/m 2411}=/ 10=1.7×10231096.0210

Равновесната константа и енталпията на адсорбция на етан върху графита

са дадени на фиг 3.

M = 30; ln M = 3,4 ; ln K = –11,8; ΔHо = –22,5 kJ×mol–1

KС Н 7.5106 mol/m2 /bar 2 6

Тази равновесна константа трябва да бъде преизчислена за повърхността на графена (както в т.2):

KС2 Н6 (graphene)KС2 Н6 (graphite)e7.5100.4=3.010mol/m2250/(8.314293)662 /bar

Парциалното налягане за етана е: p 116H)5.710266n(CHongraphene)26K(graphene)CH1.7103.01026 bar

Процентното съдържание на етан е:

5.7106 / 1.013100% = 5.6 104 %

Задача 6 (100 точки, 7 % oт общия брой точки)

1. 8 точки

Реакцията на А1 с 1,3-диметоксибензен протича като алкилиране по Фридел-Крафтс, като атаката в позиция 4 протича по-лесно, отколкото при стерично по-запречения атом С2.

MeO

COCOOMeLewisacidMeOMe2Me2OMeMe2OMeC

MeO

COCO

2Me MeO

2Me

CO

CO2Me

A1 B1

2. 22 точки

MeOLewisacidOCO2MeMeO2CCO2MeMe2OMeOMeMeOOδδ+DEMeO

MeO

3. 70 точки

CO2Me

OMeOMeHOCO2Me250oCFGGaCl320oCSn(OTf)240oCGaCl30oCAlCl3-25oCSnCl420oCA1MMeO2CMeCOMeO2CeOMeMe2COHMeOMeO2CMOMeCO2MeMeO2CMeOJ2MeO2CO
eO2CMeO2C

OTf = OSO2CF3CO 2 Me I

OMeMeO2COMeCO2MOMeOMeeOOCO2MeeOMeOM

CO2Me K

MeO MeeMe2M CO2Me

CO2Me OMe SnC4H3NO2l C

CO2Me

OMeMeO2CCOCOSGn(OTf)2CH3NO2eOMeOMA2OMeB2Me2Me2CO2MeeOMOMeL

Задача 7 (34 точки, 8 % oт общия брой точки)

1. 2 точки:

2MnO4– + HCOO + 3OH 2MnO42– + CO32– + 2H2O

2. 2 точки

MnO42–+2HO+2 2e MnO2+ 4OH или 3MnO42– +2H2O MnO2 + 2MnO4– + 4OH

3. 14 точки а. С4H5O2– + 10MnO4– + 14OH + 12Ba2+ ® 10BaMnO4 + CH3COO + 2BaCO3 + 8H2O b. [Ag(CN)2]с. Ag+ + Ag(CN)2 – ® Ag[Ag(CN)2]¯, or Ag+ + CN = AgCN¯ верният отговор е: AgCN или Ag[Ag(CN)2] d. Перманганат, останал след реакцията с кротоновата киселина, е: сMnVMn – 10nCAmmol.

Цианидните йони, изразходвани за остатъчния перманганат: ½(сMnVMn – 10nCA) mmol.

Излишък от цианидни йони: cCNV CN – ½(сMnVMn – 10nCA)

За правилнo стехеометрично отношение Ag-CN (1:2):

2cAgVAg = cCNVCN – ½(сMnVMn – 10nCA).

Следователно nCA = (2cAgVAg cCNVCN + ½сMnVMn)/5 nCA = (2×0,005×5,40 – 0,0100×8,00 + 0,5×0,0400×10,00)/5 = 0,0348 mmol, mCA = 0,0348×86,09 = 3,00 mg (МCA = 86,09 g/mol).

4. 7 точки

Уравнение:10MnO4– + 1Crotonate 10MnO42– + продукти

Перманганатни йони, останали след реакцията им с кротонова киселина: сMnVMn – 10nCA mmol

Получените MnO42–: 10nCA mmol

Реакции, които протичат след прибавяне на йодид:

2MnO4– + 10I + 16H+ 2Mn2+ + 5I2 +8H2O и

MnO42– + 4I + 8H+ Mn2+ + 2I2+4H2O

Количество на отделения йод (mmol I2):

2,5nKMnO4 left + 2nK2MnO4. = 2,5(сMnV Mn – 10nCA) + 2х10nCA

2Na2S2O3 + I2 Na2S4O6 + 2NaI nNa2S2O3 = 2nI2 = 5(с MnVMn – 10nCA) + 40nCA

Следователно: 5(сMnVMn – 10nCA) + 40nCA = cSVS1 и nCA = ½сMnVMn – 0,1cSVS1 nCA = 0,5×0,0400×10,00 – 0,1×0,1000×4,90 = 0,151 mmol mCA = nCAMCA = 13,00 mg

5. 8 точки

5a. Редукцията на Sn (II) с перманганат в слабо алкална среда води до по-лучаване на бинерно манганово съединение. От условията – това са манганови оксиди или тяхна смес.

neq = Vs2 cS = 0,1000×2,5 = 0,25 mmol

Meq = 28,6 mg / 0,25 mmol = 114,4 g/mol. т. нар. молна маса на еквивалента на утайката.

Възможни случаи:

– Ако се образува MnO2: (2MnO4– + 3Sn(II) 2MnO2 + 3Sn(IV);

MnO2 + 4H++2I I2 + Mn2+ +2H2O; I2 + 2S2O32– 2I + S4O62–), молната маса на еквивалента на утайката е: 86,94 / 2 = 43,47 g/mol.

– Ако се образува Mn2O3: (Mn2O3 + 2I +6H+ I2 + 2Mn2+ +3H2O), молната маса на еквивалента на утайката е: 157,88 / 4 = 78,9 g/mol.

– В опита молна маса на еквивалента на утайката е дори по-висок, следователно съединенията на манган, които не окисляват I, могат да бъдат превърнати в утайка (Mn(II)). Единствен възможен вариант: оксиди на (Mn(II,III)); (Mn3O4 + 2I +8H+ I 2 + 3Mn2+ + 4H 2O). Молната маса е: 228,9 / 2 = 114,4 g/ mol.

Реакции:

6MnO4– + 13Sn(OH)42– + 16H2O 2Mn3O4 + 13Sn(OH) 62– + 6OH

5b. Масата на калай в пробата е 13 / 2 от масата на Mn3O4:

nSn = 28,6 / 228,9 ´ 13 / 2 = 0,812 mmol и mSn = 96,4 mg.

Задача 8 (44 точки, 9 % oт общия брой точки)

1. 2 точки

Обемното отношение на газовете А и В е равно на тяхното молно отношение (1:3).

Обемният състав (в %) на А и B в сместа е: 25 % А и 75 % B.

2. 7 точки

Молната маса на сместа от A and B: 12,0´2,0 = 24,0 g/mol.

Вариантът за два газа и двата с маса 24,0 g/mol е невъзможен.

Предположенията са представени в таблица 11.

При неутрално рН, което е типично за живите клетки, амонякът съществува под формата на амониев йон и не преминава в газова фаза. Следователно единственият възможен вариант е: 13 С16О2 (A) и 13C1H4 (B).

Б 4 точки

4 13CH3NH3+ + 2H2O → 3 13CH4 + 132 + 4NH4+

4. 8 точки

Молната маса на Х: 238 + 17 (OH-група) = 255 g/mol.

Брой на кислородните атоми в Х: .325501881600.

Две молекули лизин съдържат 12 въглеродни и 4 азотни атома, общо 16 атома.

От сравняването на линии 1 и 2 в таблицата: в Х са намерени 15 или 16 въглеродни и 4 азотни атома; 1 или 2 ε-азотни атома се губят при биосинтеза на Х. Х съдържа 12 въглеродни и 3 азотни атома. Остатъкът от молната маса: 255 – 12х12 – 3х14 – 3х16 = 21 g/mol е от 21 водородни атома.

Следователно молекулната формула е С12H21N3O3.

5. 6 точки

С е изомер на лизина и 2∙С6H14N2O2 12H28N4O4 влизат в реакцията за синтеза на D. На всяка от стъпките се отделя 1 молекула вода [C + lysine → D 12H28N4O4 – H2O = С12H26N4O3)] и [E X (С12H21N3O3 + H2O = С12H23N3O4)].

Следователно загубата/печалбата на атоми на стъпката D E е: СHNO122443 – С12H21N3O4, минус NH3, плюс O. Следователно реакцията е окислително деаминиране, която е схематично представена: R-CH-NH2 2 + [O] → R-CH=O + NH3

C е С6H14N 2O2; D е С12H26N4O3; E е С12H23N3O4

6. 4 точки

Водороден атом, свързан с С-4 или С-5, би довел до загуба на хиралността в молекулата, от което следва, че водородният атом е свързан с С-3. Необходимо е да се реши каква е позицията на другите два заместителя. Азотният атом се включва в цикъла в резултат на реакцията между амино- и алдехидната група. Следователно заместителите са разположени, както следва: при С-3: Н атом; С-4: СН3 група; при С-5: R.

7. 5 точки

Анализирайки обратния път (X D), се стига до извода, че С е (3R)-3-метил-D-орнитин:

Стереохимията на С се определя от тази на цикличния фрагмент, като се има предвид, че по пътя от С до X не протича изомеризация. Двете аминогрупи на лизина могат да образуват пептидна връзка с карбоксилната група на С. Участието само на ε-аминогрупата в образуването на цикъла ще отговори на условието X да е α-аминокиселина. X е пиролизин, 22-рата аминокиселина на генетичния код:

8. 4 точки

9а. 3 точки

…AA|UAG|AAU|UAG|CGG|AAC|AGA|GGG|UGA|C Брой на аминокиселините = 8

9b. 7 точки

Тъй като само един кодон кодира включването на остатъка X в белтъка на Аrchaea, то това могат да са UGA или UAG. Има повече от един остатък X в полипептидната верига (UAG се среща два пъти, а UGA кодира Sec).

XAsnXArgAsnArgGlySerЗаключение

Представеният превод на теоретичните и експерименталните задачи от 45-ата международна олимпиада по химия и техните решения целят да ориентират както преподавателите, така и българските ученици с повишен интерес към химията за високото научно ниво на задачите, с които трябва да се справят участниците в това престижно международно състезание. Оригиналният текст на проблемите на английски език и информация за класирането на участниците могат да бъдат намерени на официалната страница на 45-а МОХ.3)

Експерименталните и теоретичните задачи от двата кръга на олимпиадата са от различни съвременни области на химията. За престижно класиране се изискват задълбочени теоретични знания, експериментални сръчности, находчивост, умения за изграждане на стратегия по време на теоретичния и практическия кръг и не на последно място – експедитивност и самообладание. Тези качества могат да се изградят при системна и продължителна подготовка на изявените ученици под ръководството на университетски преподаватели, специалисти в различни области на химията.

NOTES / БЕЛЕЖКИ 1. http://www.icho2013.chem.msu.ru/materials/Results_by_points.pdf 2. http://www.icho2013.chem.msu.ru/materials/Results_by_country.pdf 3. http://www.icho2013.chem.msu.ru/en/

REFERENCES / ЛИТЕРАТУРА

Hill, R. (1939). Oxygen produced by isolated chloroplasts. Proc. R. Soc. B, 127, 192 – 210.

Ehrmantraut, H. & Rabinovitch, E. (1952). Kinetics of Hill reaction. Archives Biohem. & Biophys., 38, 67 – 84.

2025 година
Книжка 4
Книжка 3
ПРАЗНИК НА ХИМИЯТА 2025

Александра Камушева, Златина Златанова

ФАТАЛНИЯТ 13

Гинчо Гичев, Росица Стефанова

ХИМИЯ НА МЕДОВИНАТА

Габриела Иванова, Галя Аралова-Атанасова

Х ИМ ИЯ НА Б АНКНОТИТЕ И МОНЕТИТЕ

Ивайло Борисов, Мая Ганева

АЛУМИНИЙ – „ЩАСТЛИВИЯТ“ 13-И ЕЛЕМЕНТ

Мария Кирилова, Ралица Ранчова

МЕТАЛЪТ НА ВРЕМЕТО

Християна Христова, Мария Стойнова

СЛАДКА ЛИ Е ФРЕНСКАТА ЛУЧЕНА СУПА?

Женя Петрова, Мими Димова

ПАРИТЕ – ИСТОРИЯ И НЕОБХОДИМОСТ

Мария Александрова, Румяна Стойнева

АЛУМИНИЯТ – ОТ ОТПАДЪК ДО РЕСУРС

Стилян Атанасов, Никола Иванов, Галина Кирова

ТАЙНАТА ХИМИЯ НА ШВЕЙЦАРСКИТЕ БАНКНОТИ

Ивайла Николова, Марияна Георгиева

ХИМИЯТА – ДЕТЕКТИВ ИЛИ ПРЕСТЪПНИК?

Алвина Илин, Валентина Ткачова, Петя Петрова

БЕБЕШКИ ШАМПОАН ОТ ЯДЛИВИ СЪСТАВКИ: ФОРМУЛИРАНЕ НА НОВ КОЗМЕТИЧЕН ПРОДУКТ

Хана Крипендорф, 5, Даниел Кунев, 5, Цветелина Стоянова

БЪЛГАРСКОТО ИМЕ НА ДЪЛГОЛЕТИЕТО

Сияна Краишникова, Анелия Иванова

ХИМИЯ НА МОНЕТИТЕ

Кристина Анкова, Сияна Христова, Ростислава Цанева

ХИМИЯ НА ШОКОЛАДА

Камелия Вунчева, Мария-Сара Мандил, Марияна Георгиева

ХИМИЯТА НА ПАРИТЕ

Биляна Куртева, Ралица Ранчова

АЛУМИНИЯТ В КРИОГЕНИКАТА

Даниел Анков, Ива Петкова, Марияна Георгиева

ПРИЛОЖЕНИЕ НА АЛУМИНИЯ ВЪВ ВАКСИНИТЕ

Станислав Милчев, Петя Вълкова

АЛУМИНИЙ: „КРИЛА НА ЧОВЕЧЕСТВОТО – ЛЮБИМЕЦ 13“

Ростислав Стойков, Пепа Георгиева

ХИМИЯТА В ПЧЕЛНИЯ МЕД

Сиана Каракашева, Симона Тричкова, Майя Найденова-Георгиева

ХИМИЯ НА МЛЕЧНИТЕ ПРОДУКТИ

Пламена Боиклиева, 10 клас, Дафинка Юрчиева

ХИМИЯ В МАСЛИНИТЕ

Симона Гочева, Майя Найденова

ХИМИЯ НА ЛЮТОТО

Марта Пенчева, Васка Сотирова

ХИНАП – ИЗСЛЕДВАНЕ НА СЪДЪРЖАНИЕТО НА ВИТАМИН С

Елица Нейкова, Елисавета Григорова, Майя Найденова

ХИМИЯ НA ПAРИТE

Игликa Кoлeвa, Eмилия Ивaнoвa

ВЛИЯНИЕ НА МАРИНАТИТЕ ВЪРХУ МЕСОТО

Емил Мирчев, Галя Петрова

АНАЛИЗ НА ПРИРОДНИ ВОДИ В ОБЩИНА СЛИВЕН

Никола Урумов, Анелия Иванова

ТРИНАДЕСЕТИЯТ ЕЛЕМЕНТ – СПАСИТЕЛ ИЛИ ТИХ РАЗРУШИТЕЛ?

Виктория Дечкова, Никола Велчев, Нели Иванова

Книжка 2
Книжка 1
MATHEMATICAL MODELLING OF THE TRANSMISSION DYNAMICS OF PNEUMONIA AND MENINGITIS COINFECTION WITH VACCINATION

Deborah O. Daniel, Sefiu A. Onitilo, Omolade B. Benjamin, Ayoola A. Olasunkanmi

2024 година
Книжка 5-6
Книжка 3-4
Книжка 1-2
2023 година
Книжка 5-6
ПОДКАСТ – КОГА, АКО НЕ СЕГА?

Христо Чукурлиев

Книжка 3-4
Книжка 2
Книжка 1
2022 година
Книжка 6
METEOROLOGICAL DETERMINANTS OF COVID-19 DISEASE: A LITERATURE REVIEW

Z. Mateeva, E. Batchvarova, Z. Spasova, I. Ivanov, B. Kazakov, S. Matev, A. Simidchiev, A. Kitev

Книжка 5
MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A, Usman M. A., Daniel D. O. Odetunde O. S., Ogunwobi Z. O., Hammed F. A., Olubanwo O. O., Ajani A. S., Sanusi A. S., Haruna A. H.

ПОСТАНОВКА ЗА ИЗМЕРВАНЕ СКОРОСТТА НА ЗВУКА ВЪВ ВЪЗДУХ

Станислав Сланев, Хафизе Шабан, Шебнем Шабан, Анета Маринова

Книжка 4
MAGNETIC PROPERTIES

Sofija Blagojević, Lana Vujanović, Andreana Kovačević Ćurić

„TAP, TAP WATER“ QUANTUM TUNNELING DEMONSTRATION

Katarina Borković, Andreana Kovačević Ćurić

Книжка 3
Книжка 2
КОМЕТИТЕ – I ЧАСТ

Пенчо Маркишки

Книжка 1
DISTANCE LEARNING: HOMEMADE COLLOIDAL SILVER

Ana Sofía Covarrubias-Montero, Jorge G. Ibanez

2021 година
Книжка 6
STUDY OF COMPOSITIONS FOR SELECTIVE WATER ISOLATION IN GAS WELLS

Al-Obaidi S.H., Hofmann M., Smirnov V.I., Khalaf F.H., Alwan H.H.

Книжка 5
POTENTIAL APPLICATIONS OF ANTIBACTERIAL COMPOUNDS IN EDIBLE COATING AS FISH PRESERVATIVE

Maulidan Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, Nisrina Rahma Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto

Книжка 4
Книжка 3
Книжка 2
INVESTIGATION OF 238U, 234U AND 210PO CONTENT IN SELECTED BULGARIAN DRINKING WATER

Bozhidar Slavchev, Elena Geleva, Blagorodka Veleva, Hristo Protohristov, Lyuben Dobrev, Desislava Dimitrova, Vladimir Bashev, Dimitar Tonev

Книжка 1
DEMONSTRATION OF DAMPED ELECTRICAL OSCILLATIONS

Elena Grebenakova, Stojan Manolev

2020 година
Книжка 6
ДОЦ. Д-Р МАРЧЕЛ КОСТОВ КОСТОВ ЖИВОТ И ТВОРЧЕСТВО

Здравка Костова, Елена Георгиева

Книжка 5
Книжка 4
JACOB’S LADDER FOR THE PHYSICS CLASSROOM

Kristijan Shishkoski, Vera Zoroska

КАЛЦИЙ, ФОСФОР И ДРУГИ ФАКТОРИ ЗА КОСТНО ЗДРАВЕ

Радка Томова, Светла Асенова, Павлина Косева

Книжка 3
MATHEMATICAL MODELING OF 2019 NOVEL CORONAVIRUS (2019 – NCOV) PANDEMIC IN NIGERIA

Sefiu A. Onitilo, Mustapha A. Usman, Olutunde S. Odetunde, Fatai A. Hammed, Zacheous O. Ogunwobi, Hammed A. Haruna, Deborah O. Daniel

Книжка 2

Книжка 1
WATER PURIFICATION WITH LASER RADIATION

Lyubomir Lazov, Hristina Deneva, Galina Gencheva

2019 година
Книжка 6
LASER MICRO-PERFORATION AND FIELDS OF APPLICATION

Hristina Deneva, Lyubomir Lazov, Edmunds Teirumnieks

ПРОЦЕСЪТ ДИФУЗИЯ – ОСНОВА НА ДИАЛИЗАТА

Берна Сабит, Джемиле Дервиш, Мая Никова, Йорданка Енева

IN VITRO EVALUATION OF THE ANTIOXIDANT PROPERTIES OF OLIVE LEAF EXTRACTS – CAPSULES VERSUS POWDER

Hugo Saint-James, Gergana Bekova, Zhanina Guberkova, Nadya Hristova-Avakumova, Liliya Atanasova, Svobodan Alexandrov, Trayko Traykov, Vera Hadjimitova

Бележки върху нормативното осигуряване на оценяването в процеса

БЕЛЕЖКИ ВЪРХУ НОРМАТИВНОТО ОСИГУРЯВАНЕ, НА ОЦЕНЯВАНЕТО В ПРОЦЕСА НА ОБУЧЕНИЕТО

ТЕХНОЛОГИЯ

Б. В. Тошев

Книжка 5
ON THE GENETIC TIES BETWEEN EUROPEAN NATIONS

Jordan Tabov, Nevena Sabeva-Koleva, Georgi Gachev

Иван Странски – майсторът на кристалния растеж [Ivan Stranski

ИВАН СТРАНСКИ – МАЙСТОРЪТ, НА КРИСТАЛНИЯ РАСТЕЖ

Книжка 4

CHEMOMETRIC ANALYSIS OF SCHOOL LIFE IN VARNA

Radka Tomova, Petinka Galcheva, Ivajlo Trajkov, Antoaneta Hineva, Stela Grigorova, Rumyana Slavova, Miglena Slavova

ЦИКЛИТЕ НА КРЕБС

Ивелин Кулев

Книжка 3
ПРИНЦИПИТЕ НА КАРИЕРНОТО РАЗВИТИЕ НА МЛАДИЯ УЧЕН

И. Панчева, М. Недялкова, С. Кирилова, П. Петков, В. Симеонов

UTILISATION OF THE STATIC EVANS METHOD TO MEASURE MAGNETIC SUSCEPTIBILITIES OF TRANSITION METAL ACETYLACETONATE COMPLEXES AS PART OF AN UNDERGRADUATE INORGANIC LABORATORY CLASS

Anton Dobzhenetskiy, Callum A. Gater, Alexander T. M. Wilcock, Stuart K. Langley, Rachel M. Brignall, David C. Williamson, Ryan E. Mewis

THE 100

Maria Atanassova, Radoslav Angelov

A TALE OF SEVEN SCIENTISTS

Scerri, E.R. (2016). A Tale of Seven Scientists and a New Philosophy of Science.

Книжка 2
DEVELOPMENT OF A LESSON PLAN ON THE TEACHING OF MODULE “WATER CONDUCTIVITY”

A. Thysiadou, S. Christoforidis, P. Giannakoudakis

AMPEROMETRIC NITRIC OXIDE SENSOR BASED ON MWCNT CHROMIUM(III) OXIDE NANOCOMPOSITE

Arsim Maloku, Epir Qeriqi, Liridon S. Berisha, Ilir Mazreku, Tahir Arbneshi, Kurt Kalcher

THE EFFECT OF AGING TIME ON Mg/Al HYDROTALCITES STRUCTURES

Eddy Heraldy, Triyono, Sri Juari Santosa, Karna Wijaya, Shogo Shimazu

Книжка 1
A CONTENT ANALYSIS OF THE RESULTS FROM THE STATE MATRICULATION EXAMINATION IN MATHEMATICS

Elena Karashtranova, Nikolay Karashtranov, Vladimir Vladimirov

SOME CONCEPTS FROM PROBABILITY AND STATISTICS AND OPPORTUNITIES TO INTEGRATE THEM IN TEACHING NATURAL SCIENCES

Elena Karashtranova, Nikolay Karashtranov, Nadezhda Borisova, Dafina Kostadinova

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Василева

2018 година
Книжка 6

ЗДРАВЕ И ОКОЛНА СРЕДА

Кадрие Шукри, Светлана Великова, Едис Мехмед

РОБОТИКА ЗА НАЧИНАЕЩИ ЕНТУСИАСТИ

Даниела Узунова, Борис Велковски, Илко Симеонов, Владислав Шабански, Димитър Колев

DESIGN AND DOCKING STUDIES OF HIS-LEU ANALOGUES AS POTENTIOAL ACE INHIBITORS

Rumen Georgiev, , Tatyana Dzimbova, Atanas Chapkanov

X-RAY DIFFRACTION STUDY OF M 2 Zn(TeО3)2 (M - Na, K) ТELLURIDE

Kenzhebek T. Rustembekov, Mitko Stoev, Aitolkyn A. Toibek

CALIBRATION OF GC/MS METHOD FOR DETERMINATION OF PHTHALATES

N. Dineva, I. Givechev, D. Tanev, D. Danalev

ELECTROSYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES WITH SIMULTANEOUS EXTRACTION INTO P-XYLENE

S. S. Fomanyuk, V. O. Smilyk, G. Y. Kolbasov, I. A. Rusetskyi, T. A. Mirnaya

БИОЛОГИЧЕН АСПЕКТ НА РЕКАНАЛИЗАЦИЯ С ВЕНОЗНА ТРОМБОЛИЗА

Мариела Филипова, Даниела Попова, Стоян Везенков

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО VOLUME 27 / ГОДИНА XXVII, 2018 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА 3 / NUMBER 3: 313 – 472 КНИЖКА 4 / NUMBER 4: 473 – 632 КНИЖКА 5 / NUMBER 5: 633 – 792 КНИЖКА 6 / NUMBER 6: 793 – 952 КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА

(South Africa), A. Ali, M. Bashir (Pakistan) 266 – 278: j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)fx and nd1 Configurations and Correlation with L-S Terms / P. L. Meena (India) 760 – 770: Methyl, тhe Smallest Alkyl Group with Stunning Effects / S. Moulay 771 – 776: The Fourth State of Matter / R. Tsekov

Книжка 5
ИМОБИЛИЗИРАНЕНАФРУКТОЗИЛТРАНСФЕРАЗА ВЪРХУКОМПОЗИТНИФИЛМИОТПОЛИМЛЕЧНА КИСЕЛИНА, КСАНТАН И ХИТОЗАН

Илия Илиев, Тонка Василева, Веселин Биволарски, Ася Виранева, Иван Бодуров, Мария Марудова, Теменужка Йовчева

ELECTRICAL IMPEDANCE SPECTROSCOPY OF GRAPHENE-E7 LIQUID-CRYSTAL NANOCOMPOSITE

Todor Vlakhov, Yordan Marinov, Georgi. Hadjichristov, Alexander Petrov

ON THE POSSIBILITY TO ANALYZE AMBIENT NOISERECORDED BYAMOBILEDEVICETHROUGH THE H/V SPECTRAL RATIO TECHNIQUE

Dragomir Gospodinov, Delko Zlatanski, Boyko Ranguelov, Alexander Kandilarov

RHEOLOGICAL PROPERTIES OF BATTER FOR GLUTEN FREE BREAD

G. Zsivanovits, D. Iserliyska, M. Momchilova, M. Marudova

ПОЛУЧАВАНЕ НА ПОЛИЕЛЕКТРОЛИТНИ КОМПЛЕКСИ ОТ ХИТОЗАН И КАЗЕИН

Антоанета Маринова, Теменужка Йовчева, Ася Виранева, Иван Бодуров, Мария Марудова

CHEMILUMINESCENT AND PHOTOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF COCOON EXTRACTS

Y. Evtimova, V. Mihailova, L. A. Atanasova, N. G. Hristova-Avakumova, M. V. Panayotov, V. A. Hadjimitova

ИЗСЛЕДОВАТЕЛСКИ ПРАКТИКУМ

Ивелина Димитрова, Гошо Гоев, Савина Георгиева, Цвета Цанова, Любомира Иванова, Борислав Георгиев

Книжка 4
PARAMETRIC INTERACTION OF OPTICAL PULSES IN NONLINEAR ISOTROPIC MEDIUM

A. Dakova, V. Slavchev, D. Dakova, L. Kovachev

ДЕЙСТВИЕ НА ГАМА-ЛЪЧИТЕ ВЪРХУ ДЕЗОКСИРИБОНУКЛЕИНОВАТА КИСЕЛИНА

Мирела Вачева, Хари Стефанов, Йоана Гвоздейкова, Йорданка Енева

RADIATION PROTECTION

Natasha Ivanova, Bistra Manusheva

СТАБИЛНОСТ НА ЕМУЛСИИ ОТ ТИПА МАСЛО/ ВОДА С КОНЮГИРАНА ЛИНОЛОВА КИСЕЛИНА

И. Милкова-Томова, Д. Бухалова, К. Николова, Й. Алексиева, И. Минчев, Г. Рунтолев

THE EFFECT OF EXTRA VIRGIN OLIVE OIL ON THE HUMAN BODY AND QUALITY CONTROL BY USING OPTICAL METHODS

Carsten Tottmann, Valentin Hedderich, Poli Radusheva, Krastena Nikolova

ИНФРАЧЕРВЕНА ТЕРМОГРАФИЯ ЗА ДИАГНОСТИКА НА ФОКАЛНА ИНФЕКЦИЯ

Рая Грозданова-Узунова, Тодор Узунов, Пепа Узунова

ЕЛЕКТРИЧНИ СВОЙСТВА НА КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА

Ася Виранева, Иван Бодуров, Теменужка Йовчева

Книжка 3
ТРИ ИДЕИ ЗА ЕФЕКТИВНО ОБУЧЕНИЕ

Гергана Карафезиева

МАГИЯТА НА ТВОРЧЕСТВОТО КАТО ПЪТ НА ЕСТЕСТВЕНО УЧЕНЕ В УЧЕБНИЯ ПРОЦЕС

Гергана Добрева, Жаклин Жекова, Михаела Чонос

ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ ЧРЕЗ МИСЛОВНИ КАРТИ

Виолета Стоянова, Павлина Георгиева

ИГРА НА ДОМИНО В ЧАС ПО ФИЗИКА

Росица Кичукова, Ценка Маринова

ПРОБЛЕМИ ПРИ ОБУЧЕНИЕТО ПО ФИЗИКА ВЪВ ВВМУ „Н. Й. ВАПЦАРОВ“

А. Христова, Г. Вангелов, И. Ташев, М. Димидов

ИЗГРАЖДАНЕ НА СИСТЕМА ОТ УЧЕБНИ ИНТЕРНЕТ РЕСУРСИ ПО ФИЗИКА И ОЦЕНКА НА ДИДАКТИЧЕСКАТА ИМ СТОЙНОСТ

Желязка Райкова, Георги Вулджев, Наталия Монева, Нели Комсалова, Айше Наби

ИНОВАЦИИ В БОРБАТА С ТУМОРНИ ОБРАЗУВАНИЯ – ЛЕЧЕНИЕ ЧРЕЗ БРАХИТЕРАПИЯ

Георги Върбанов, Радостин Михайлов, Деница Симеонова, Йорданка Енева

NATURAL RADIONUCLIDES IN DRINKING WATER

Natasha Ivanova, Bistra Manusheva

Книжка 2

АДАПТИРАНЕ НА ОБРАЗОВАНИЕТО ДНЕС ЗА УТРЕШНИЯ ДЕН

И. Панчева, М. Недялкова, П. Петков, Х. Александров, В. Симеонов

STRUCTURAL ELUCIDATION OF UNKNOWNS: A SPECTROSCOPIC INVESTIGATION WITH AN EMPHASIS ON 1D AND 2D 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Vittorio Caprio, Andrew S. McLachlan, Oliver B. Sutcliffe, David C. Williamson, Ryan E. Mewis

j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)f

j-jCOUPLEDATOMICTERMSFORNONEQUIVALENT, ELECTRONS OF (n-f X nd CONFIGURATIONS AND, CORRELATION WITH L-S TERMS

INTEGRATED ENGINEERING EDUCATION: THE ROLE OF ANALYSIS OF STUDENTS’ NEEDS

Veselina Kolarski, Dancho Danalev, Senia Terzieva

Книжка 1
ZAGREB CONNECTION INDICES OF TiO2 NANOTUBES

Sohaib Khalid, Johan Kok, Akbar Ali, Mohsin Bashir

SYNTHESIS OF NEW 3-[(CHROMEN-3-YL)ETHYLIDENEAMINO]-PHENYL]-THIAZOLIDIN-4ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Malesore Pllana, Musaj Pacarizi, Veprim Thaçi, Gjyle Mulliqi-Osmani

2017 година
Книжка 6
GEOECOLOGICAL ANALYSIS OF INDUSTRIAL CITIES: ON THE EXAMPLE OF AKTOBE AGGLOMERATION

Zharas Berdenov, Erbolat Mendibaev, Talgat Salihov, Kazhmurat Akhmedenov, Gulshat Ataeva

TECHNOGENESIS OF GEOECOLOGICAL SYSTEMS OF NORTHEN KAZAKHSTAN: PROGRESS, DEVELOPMENT AND EVOLUTION

Kulchichan Dzhanaleyeva, Gulnur Mazhitova, Altyn Zhanguzhina, Zharas Berdenov, Tursynkul Bazarbayeva, Emin Atasoy

СПИСАНИЕ ПРОСВѢТА

Списание „Просвета“ е орган на Просветния съюз в България. Списанието е излизало всеки месец без юли и август. Годишният том съдържа 1280 стра- ници. Списанието се издава от комитет, а главен редактор от 1935 до 1943 г. е проф. Петър Мутафчиев, историк византолог и специалист по средновеков-

Книжка 5
47-А НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

В последните години тези традиционни за българското учителство конфе- ренции се организират от Българското дружество по химическо образование и история и философия на химията. То е асоцииран член на Съюза на химици- те в България, който пък е член на Европейската асоциация на химическите и

JOURNALS OF INTEREST: A REVIEW (2016)

BULGARIAN JOURNAL OF SCIENCE AND EDUCATION POLICY ISSN 1313-1958 (print) ISSN 1313-9118 (online) http://bjsep.org

INVESTIGATING THE ABILITY OF 8

Marina Stojanovska, Vladimir M. Petruševski

SYNTHESIS OF TiO -M (Cd, Co, Mn)

Candra Purnawan, Sayekti Wahyuningsih, Dwita Nur Aisyah

EFFECT OF DIFFERENT CADMIUM CONCENTRATION ON SOME BIOCHEMICAL PARAMETERS IN ‘ISA BROWN’ HYBRID CHICKEN

Imer Haziri, Adem Rama, Fatgzim Latifi, Dorjana Beqiraj-Kalamishi, Ibrahim Mehmeti, Arben Haziri

PHYTOCHEMICAL AND IN VITRO ANTIOXIDANT STUDIES OF PRIMULA VERIS (L.) GROWING WILD IN KOSOVO

Ibrahim Rudhani, Florentina Raci, Hamide Ibrahimi, Arben Mehmeti, Ariana Kameri, Fatmir Faiku, Majlinda Daci, Sevdije Govori, Arben Haziri

ПЕДАГОГИЧЕСКА ПОЕМА

Преди година-две заедно с директора на Националното издателство „Аз- буки“ д-р Надя Кантарева-Барух посетихме няколко училища в Родопите. В едно от тях ни посрещнаха в голямата учителска стая. По стените ѝ имаше големи портрети на видни педагози, а под тях – художествено написани умни мисли, които те по някакъв повод са казали. На централно място бе портретът на Антон Семьонович Макаренко (1888 – 1939). Попитах учителките кой е Макаренко – те посрещнаха въпроса ми с мълчание. А някога, в г

Книжка 4
„СИМВОЛНИЯТ КАПИТАЛ“ НА БЪЛГАРСКОТО УЧИЛИЩЕ

Николай Цанков, Веска Гювийска

KINETICS OF PHOTO-ELECTRO-ASSISTED DEGRADATION OF REMAZOL RED 5B

Fitria Rahmawati, Tri Martini, Nina Iswati

ALLELOPATHIC AND IN VITRO ANTICANCER ACTIVITY OF STEVIA AND CHIA

Asya Dragoeva, Vanya Koleva, Zheni Stoyanova, Eli Zayova, Selime Ali

NOVEL HETEROARYLAMINO-CHROMEN-2-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Gjyle Mulliqi-Osmani, Veprim Thaçi

Книжка 3
Quantum Connement of Mobile Na+ Ions in Sodium Silicate Glassy

QUANTUM CONFINEMENT OF MOBILE Na + IONS, IN SODIUM SILICATE GLASSY NANOPARTICLES

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon, Abolfazl Semnani, Ramin Jaberzadeh Ansari, Hamid Shakoori Langeroodi, Mahboube Shirani, Shima Ghanavati Nasab

EVALUATION OF ANTIBACTERIAL ACTIVITY OF DIFFERENT SOLVENT EXTRACTS OF TEUCRIUM CHAMAEDRYS (L.) GROWING WILD IN KOSOVO

Arben Haziri, Fatmir Faiku, Roze Berisha, Ibrahim Mehmeti, Sevdije Govori, Imer Haziri

Книжка 2
COMPUTER SIMULATORS: APPLICATION FOR GRADUATES’ADAPTATION AT OIL AND GAS REFINERIES

Irena O. Dolganova, Igor M. Dolganov, Kseniya A. Vasyuchka

SYNTHESIS OF NEW [(3-NITRO-2-OXO-2H-CHROMEN4-YLAMINO)-PHENYL]-PHENYL-TRIAZOLIDIN-4-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Hamit Ismaili, Idriz Vehapi, Naser Troni, Gjyle Mulliqi-Osmani, Veprim Thaçi

STABILITY OF RJ-5 FUEL

Lemi Türker, Serhat Variş

A STUDY OF BEGLIKTASH MEGALITHIC COMPLEX

Diana Kjurkchieva, Evgeni Stoykov, Sabin Ivanov, Borislav Borisov, Hristo Hristov, Pencho Kyurkchiev, Dimitar Vladev, Irina Ivanova

Книжка 1
2016 година
Книжка 6
THE EFFECT OF KOH AND KCL ADDITION TO THE DESTILATION OF ETHANOL-WATER MIXTURE

Khoirina Dwi Nugrahaningtyas, Fitria Rahmawati, Avrina Kumalasari

Книжка 5

ОЦЕНЯВАНЕ ЛИЧНОСТТА НА УЧЕНИКА

Министерството на народното просвещение е направило допълне- ния към Правилника за гимназиите (ДВ, бр. 242 от 30 октомври 1941 г.), според които в бъдеще ще се оценяват следните прояви на учениците: (1) трудолюбие; (2) ред, точност и изпълнителност; (3) благовъзпитаност; (4) народностни прояви. Трудолюбието ще се оценява с бележките „образцово“, „добро“, „незадо- волително“. С „образцово“ ще се оценяват учениците, които с любов и по- стоянство извършват всяка възложена им ил

Книжка 4
VOLTAMMERIC SENSOR FOR NITROPHENOLS BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH REDUCED GRAPHENE OXIDE

Arsim Maloku, Liridon S. Berisha, Granit Jashari, Eduard Andoni, Tahir Arbneshi

Книжка 3
ИЗСЛЕДВАНЕ НА ПРОФЕСИОНАЛНО-ПЕДАГОГИЧЕСКАТА РЕФЛЕКСИЯ НА УЧИТЕЛЯ ПО БИОЛОГИЯ (ЧАСТ ВТОРА)

Надежда Райчева, Иса Хаджиали, Наташа Цанова, Виктория Нечева

EXISTING NATURE OF SCIENCE TEACHING OF A THAI IN-SERVICE BIOLOGY TEACHER

Wimol Sumranwanich, Sitthipon Art-in, Panee Maneechom, Chokchai Yuenyong

NUTRIENT COMPOSITION OF CUCURBITA MELO GROWING IN KOSOVO

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

НАГРАДИТЕ „ЗЛАТНА ДЕТЕЛИНА“ ЗА 2016 Г.

На 8 март 2016 г. в голямата зала на Националния политехнически музей в София фондация „Вигория“ връчи годишните си награди – почетен плакет „Златна детелина“. Тази награда се дава за цялостна професионална и творче- ска изява на личности с особени заслуги към обществото в трите направления на фондация „Вигория“ – образование, екология, култура. Наградата цели да се даде израз на признателност за високи постижения на личности, които на професионално равнище и на доброволни начала са рабо

Книжка 2
СТО ГОДИНИ ОТ РОЖДЕНИЕТО НА ПРОФЕСОР ХРИСТО ИВАНОВ (1916 – 2004)

СТО ГОДИНИ ОТ РОЖДЕНИЕТО, НА ПРОФЕСОР ХРИСТО ИВАНОВ, (96 – 00

CONTEXT-BASED CHEMISTRY LAB WORK WITH THE USE OF COMPUTER-ASSISTED LEARNING SYSTEM

N. Y. Stozhko, A. V. Tchernysheva, E.M. Podshivalova, B.I. Bortnik

Книжка 1
ПО ПЪТЯ

Б. В. Тошев

INTERDISCIPLINARY PROJECT FOR ENHANCING STUDENTS’ INTEREST IN CHEMISTRY

Stela Georgieva, Petar Todorov , Zlatina Genova, Petia Peneva

2015 година
Книжка 6
COMPLEX SYSTEMS FOR DRUG TRANSPORT ACROSS CELL MEMBRANES

Nikoleta Ivanova, Yana Tsoneva, Nina Ilkova, Anela Ivanova

SURFACE FUNCTIONALIZATION OF SILICA SOL-GEL MICROPARTICLES WITH EUROPIUM COMPLEXES

Nina Danchova , Gulay Ahmed , Michael Bredol , Stoyan Gutzov

INTERFACIAL REORGANIZATION OF MOLECULAR ASSEMBLIES USED AS DRUG DELIVERY SYSTEMS

I. Panaiotov, Tz. Ivanova, K. Balashev, N. Grozev, I. Minkov, K. Mircheva

KINETICS OF THE OSMOTIC PROCESS AND THE POLARIZATION EFFECT

Boryan P. Radoev, Ivan L. Minkov, Emil D. Manev

WETTING BEHAVIOR OF A NATURAL AND A SYNTHETIC THERAPEUTIC PULMONARY SURFACTANTS

Lidia Alexandrova, Michail Nedyalkov, Dimo Platikanov

Книжка 5
TEACHER’S ACCEPTANCE OF STUDENTS WITH DISABILITY

Daniela Dimitrova-Radojchikj, Natasha Chichevska-Jovanova

IRANIAN UNIVERSITY STUDENTS’ PERCEPTION OF CHEMISTRY LABORATORY ENVIRONMENTS

Zahra Eskandari, Nabi.A Ebrahimi Young Researchers & Elite Club, Arsanjan Branch,

APPLICATION OF LASER INDUCED BREAKDOWN SPECTROSCOPY AS NONDESDUCTRIVE AND SAFE ANALYSIS METHOD FOR COMPOSITE SOLID PROPELLANTS

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, Seyyed Mohamad Reza Darbany, Mehran Karimi, Amir Hossein Rezayi Optics & Laser Science and Technology Research Center,

THE EFFECT OF DIOCTYLPHTHALATE ON INITIAL PROPERTIES AND FIELD PERFORMANCE OF SOME SEMISYNTHETIC ENGINE OILS

Azadeh Ghasemizadeh, Abolfazl Semnani, Hamid Shakoori Langeroodi, Alireza Nezamzade Ejhieh

QUALITY ASSESSMENT OF RIVER’S WATER OF LUMBARDHI PEJA (KOSOVO)

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

Книжка 4
БЛАГОДАРЯ ВИ!

Александър Панайотов

ТЕМАТА ВЪГЛЕХИДРАТИ В ПРОГРАМИТЕ ПО ХИМИЯ И БИОЛОГИЯ

Радка Томова, Елена Бояджиева, Миглена Славова , Мариан Николов

BILINGUAL COURSE IN BIOTECHNOLOGY: INTERDISCIPLINARY MODEL

V. Kolarski, D. Marinkova, R. Raykova, D. Danalev, S. Terzieva

ХИМИЧНИЯТ ОПИТ – НАУКА И ЗАБАВА

Елица Чорбаджийска, Величка Димитрова, Магдалена Шекерлийска, Галина Бальова, Методийка Ангелова

ЕКОЛОГИЯТА В БЪЛГАРИЯ

Здравка Костова

Книжка 3
SYNTHESIS OF FLUORINATED HYDROXYCINNAMOYL DERIVATIVES OF ANTI-INFLUENZA DRUGS AND THEIR BIOLOGICAL ACTIVITY

Boyka Stoykova, Maya Chochkova, Galya Ivanova, Luchia Mukova, Nadya Nikolova, Lubomira Nikolaeva-Glomb, Pavel Vojtíšek, Tsenka Milkova, Martin Štícha, David Havlíček

SYNTHESIS AND ANTIVIRAL ACTIVITY OF SOME AMINO ACIDS DERIVATIVES OF INFLUENZA VIRUS DRUGS

Radoslav Chayrov, Vesela Veselinova, Vasilka Markova, Luchia Mukova, Angel Galabov, Ivanka Stankova

NEW DERIVATIVES OF OSELTAMIVIR WITH BILE ACIDS

Kiril Chuchkov, Silvia Nakova, Lucia Mukova, Angel Galabov, Ivanka Stankova

MONOHYDROXY FLAVONES. PART III: THE MULLIKEN ANALYSIS

Maria Vakarelska-Popovska, Zhivko Velkov

LEU-ARG ANALOGUES: SYNTHESIS, IR CHARACTERIZATION AND DOCKING STUDIES

Tatyana Dzimbova, Atanas Chapkanov, Tamara Pajpanova

MODIFIED QUECHERS METHOD FOR DETERMINATION OF METHOMYL, ALDICARB, CARBOFURAN AND PROPOXUR IN LIVER

I. Stoykova, T. Yankovska-Stefenova, L.Yotova, D. Danalev Bulgarian Food Safety Agency, Sofi a, Bulgaria

LACTOBACILLUS PLANTARUM AC 11S AS A BIOCATALYST IN MICROBIAL ELECYTOLYSIS CELL

Elitsa Chorbadzhiyska, Yolina Hubenova, Sophia Yankova, Dragomir Yankov, Mario Mitov

STUDYING THE PROCESS OF DEPOSITION OF ANTIMONY WITH CALCIUM CARBONATE

K. B. Omarov, Z. B. Absat, S. K. Aldabergenova, A. B. Siyazova, N. J. Rakhimzhanova, Z. B. Sagindykova

Книжка 2
TEACHING CHEMISTRY AT TECHNICAL UNIVERSITY

Lilyana Nacheva-Skopalik, Milena Koleva

ФОРМИРАЩО ОЦЕНЯВАНЕ PEER INSTRUCTION С ПОМОЩТА НА PLICКERS ТЕХНОЛОГИЯТА

Ивелина Коцева, Мая Гайдарова, Галина Ненчева

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Javid Safarov, Bahruz Ahmadov, Saleh Mirzayev, Astan Shahverdiyev, Egon Hassel

Книжка 1
РУМЕН ЛЮБОМИРОВ ДОЙЧЕВ (1938 – 1999)

Огнян Димитров, Здравка Костова

NAMING OF CHEMICAL ELEMENTS

Maria Atanassova

НАЙДЕН НАЙДЕНОВ, 1929 – 2014 СПОМЕН ЗА ПРИЯТЕЛЯ

ИНЖ. НАЙДЕН ХРИСТОВ НАЙДЕНОВ, СЕКРЕТАР, НА СЪЮЗА НА ХИМИЦИТЕ В БЪЛГАРИЯ (2.10.1929 – 25.10.2014)

2014 година
Книжка 6
145 ГОДИНИ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

145 ANNIVERSARY OF THE BULGARIAN ACADEMY OF SCIENCES

ПАРНО НАЛЯГАНЕ НА РАЗТВОРИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

LUBRICATION PROPERTIES OF DIFFERENT PENTAERYTHRITOL-OLEIC ACID REACTION PRODUCTS

Abolfazl Semnani, Hamid Shakoori Langeroodi, Mahboube Shirani

THE ORIGINS OF SECONDARY AND TERTIARY GENERAL EDUCATION IN RUSSIA: HISTORICAL VIEWS FROM THE 21ST CENTURY

V. Romanenko, G. Nikitina Academy of Information Technologies in Education, Russia

ALLELOPATHIC AND CYTOTOXIC ACTIVITY OF ORIGANUM VULGARE SSP. VULGARE GROWING WILD IN BULGARIA

Asya Pencheva Dragoeva, Vanya Petrova Koleva, Zheni Dimitrova Nanova, Mariya Zhivkova Kaschieva, Irina Rumenova Yotova

Книжка 5
GENDER ISSUES OF UKRAINIAN HIGHER EDUCATION

Н.H.Petruchenia, M.I.Vorovka

МНОГОВАРИАЦИОННА СТАТИСТИЧЕСКА ОЦЕНКА НА DREEM – БЪЛГАРИЯ: ВЪЗПРИЕМАНЕ НА ОБРАЗОВАТЕЛНАТА СРЕДА ОТ СТУДЕНТИТЕ В МЕДИЦИНСКИЯ УНИВЕРСИТЕТ – СОФИЯ

Радка Томова, Павлина Гатева, Радка Хаджиолова, Зафер Сабит, Миглена Славова, Гергана Чергарова, Васил Симеонов

MUSSEL BIOADHESIVES: A TOP LESSON FROM NATURE

Saâd Moulay Université Saâd Dahlab de Blida, Algeria

Книжка 4
ЕЛЕКТРОННО ПОМАГАЛO „ОТ АТОМА ДО КОСМОСА“ ЗА УЧЕНИЦИ ОТ Х КЛАС

Силвия Боянова Професионална гимназия „Акад. Сергей П. Корольов“ – Дупница

ЕСЕТО КАТО ИНТЕГРАТИВЕН КОНСТРУКТ – НОРМАТИВЕН, ПРОЦЕСУАЛЕН И ОЦЕНЪЧНО-РЕЗУЛТАТИВЕН АСПЕКТ

Надежда Райчева, Иван Капурдов, Наташа Цанова, Иса Хаджиали, Снежана Томова

44

Донка Ташева, Пенка Василева

ДОЦ. Д.П.Н. АЛЕКСАНДЪР АТАНАСОВ ПАНАЙОТОВ

Наташа Цанова, Иса Хаджиали, Надежда Райчева

COMPUTER ASSISTED LEARNING SYSTEM FOR STUDYING ANALYTICAL CHEMISTRY

N. Y. Stozhko, A. V. Tchernysheva, L.I. Mironova

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА: БОРБА С ЕДНА ЛЕДЕНА ЕПОХА В ГОДИНАТА 3000 СЛЕД ХРИСТА. 3.

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА:, БОРБА С ЕДНА ЛЕДЕНА ЕПОХА, В ГОДИНАТА 000 СЛЕД ХРИСТА. .

Книжка 3
KNOWLEDGE OF AND ATTITUDES TOWARDS WATER IN 5

Antoaneta Angelacheva, Kalina Kamarska

ВИСША МАТЕМАТИКА ЗА УЧИТЕЛИ, УЧЕНИЦИ И СТУДЕНТИ: ДИФЕРЕНЦИАЛНО СМЯТАНЕ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ВАСИЛ ХРИСТОВ БОЗАРОВ

Пенка Бозарова, Здравка Костова

БИБЛИОГРАФИЯ НА СТАТИИ ЗА МИСКОНЦЕПЦИИТЕ В ОБУЧЕНИЕТО ПО ПРИРОДНИ НАУКИ ВЪВ ВСИЧКИ ОБРАЗОВАТЕЛНИ НИВА

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 2
SCIENTIX – OБЩНОСТ ЗА НАУЧНО ОБРАЗОВАНИЕ В ЕВРОПА

Свежина Димитрова Народна астрономическа обсерватория и планетариум „Николай Коперник“ – Варна

BOTYU ATANASSOV BOTEV

Zdravka Kostova, Margarita Topashka-Ancheva

CHRONOLOGY OF CHEMICAL ELEMENTS DISCOVERIES

Maria Atanassova, Radoslav Angelov

Книжка 1
ОБРАЗОВАНИЕ ЗА ПРИРОДОНАУЧНА ГРАМОТНОСТ

Адриана Тафрова-Григорова

A COMMENTARY ON THE GENERATION OF AUDIENCE-ORIENTED EDUCATIONAL PARADIGMS IN NUCLEAR PHYSICS

Baldomero Herrera-González Universidad Autónoma del Estado de México, Mexico

2013 година
Книжка 6
DIFFERENTIAL TEACHING IN SCHOOL SCIENCE EDUCATION: CONCEPTUAL PRINCIPLES

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ШЕСТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО „ЧОВЕКЪТ И ПРИРОДАТА“

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

HISTORY AND PHILOSOPHY OF SCIENCE: SOME RECENT PERIODICALS (2013)

Chemistry: Bulgarian Journal of Science Education

45. НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

„Образователни стандарти и природонаучна грамотност“ – това е темата на състоялата се от 25 до 27 октомври 2013 г. в Габрово 45. Национална конфе- ренция на учителите по химия с международно участие, която по традиция се проведе комбинирано с Годишната конференция на Българското дружество за химическо образование и история и философия на химията. Изборът на темата е предизвикан от факта, че развиването на природонаучна грамотност е обща тенденция на реформите на учебните програми и главна

Книжка 5

ЗА ХИМИЯТА НА БИРАТА

Ивелин Кулев

МЕТЕОРИТЪТ ОТ БЕЛОГРАДЧИК

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
RECASTING THE DERIVATION OF THE CLAPEYRON EQUATION INTO A CONCEPTUALLY SIMPLER FORM

Srihari Murthy Meenakshi Sundararajan Engineering College, India

CHEMICAL REACTIONS DO NOT ALWAYS MODERATE CHANGES IN CONCENTRATION OF AN ACTIVE COMPONENT

Joan J. Solaz-Portolés, Vicent Sanjosé Universitat de Valènciа, Spain

POLYMETALLIC COMPEXES: CV. SYNTHESIS, SPECTRAL, THERMOGRAVIMETRIC, XRD, MOLECULAR MODELLING AND POTENTIAL ANTIBACTERIAL PROPERTIES OF TETRAMERIC COMPLEXES OF Co(II), Ni(II), Cu(II), Zn(II), Cd(II) AND Hg(II) WITH OCTADENTATE AZODYE LIGANDS

Bipin B. Mahapatra, S. N. Dehury, A. K. Sarangi, S. N. Chaulia G. M. Autonomous College, India Covt. College of Engineering Kalahandi, India DAV Junior College, India

ПРОФЕСОР ЕЛЕНА КИРКОВА НАВЪРШИ 90 ГОДИНИ

CELEBRATING 90TH ANNIVERSARY OF PROFESSOR ELENA KIRKOVA

Книжка 3
SIMULATION OF THE FATTY ACID SYNTHASE COMPLEX MECHANISM OF ACTION

M.E.A. Mohammed, Ali Abeer, Fatima Elsamani, O.M. Elsheikh, Abdulrizak Hodow, O. Khamis Haji

FORMING OF CONTENT OF DIFFERENTIAL TEACHING OF CHEMISTRY IN SCHOOL EDUCATION OF UKRAINE

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

ИЗСЛЕДВАНЕ НА РАДИКАЛ-УЛАВЯЩА СПОСОБНОСТ

Станислав Станимиров, Живко Велков

Книжка 2
Книжка 1
COLORFUL EXPERIMENTS FOR STUDENTS: SYNTHESIS OF INDIGO AND DERIVATIVES

Vanessa BIANDA, Jos-Antonio CONSTENLA, Rolf HAUBRICHS, Pierre-Lonard ZAFFALON

OBSERVING CHANGE IN POTASSIUM ABUNDANCE IN A SOIL EROSION EXPERIMENT WITH FIELD INFRARED SPECTROSCOPY

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

ЦАРСКАТА ПЕЩЕРА

Рафаил ПОПОВ

УЧИЛИЩНИ ЛАБОРАТОРИИ И ОБОРУДВАНЕ SCHOOL LABORATORIES AND EQUIPMENT

Учебни лаборатории Илюстрации от каталог на Franz Hugershoff, Лайциг, притежаван от бъдещия

2012 година
Книжка 6
ADDRESING STUDENTS’ MISCONCEPTIONS CONCERNING CHEMICAL REACTIONS AND SYMBOLIC REPRESENTATIONS

Marina I. Stojanovska, Vladimir M. Petruševski, Bojan T. Šoptrajanov

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ПЕТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО ЧОВЕКЪТ И ПРИРОДАТА

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

ЕКОТОКСИКОЛОГИЯ

Васил Симеонов

ПРОФ. МЕДОДИЙ ПОПОВ ЗА НАУКАТА И НАУЧНАТА ДЕЙНОСТ (1920 Г.)

Проф. Методий Попов (1881-1954) Госпожици и Господа студенти,

Книжка 5
КОНЦЕПТУАЛНА СХЕМА НА УЧИЛИЩНИЯ КУРС П О ХИМИЯ – МАКР О СКОПСКИ ПОДХОД

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ROLE OF ULTRASONIC WAVES TO STUDY MOLECULAR INTERACTIONS IN AQUEOUS SOLUTION OF DICLOFENAC SODIUM

Sunanda S. Aswale, Shashikant R. Aswale, Aparna B. Dhote Lokmanya Tilak Mahavidyalaya, INDIA Nilkanthrao Shinde College, INDIA

SIMULTANEOUS ESTIMATION OF IBUPROFEN AND RANITIDINE HYDROCHLORIDE USING UV SPECTROPHOT O METRIC METHOD

Jadupati Malakar, Amit Kumar Nayak Bengal College of Pharmaceutical Sciences and Research, INDIA

GAPS AND OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION ASSESSMENT

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

РАДИОХИМИЯ И АРХЕОМЕТРИЯ: ПРО Ф. ДХН ИВЕЛИН КУЛЕВ RADIOCHEMISTRY AND ARCHEOMETRY: PROF. IVELIN KULEFF, DSc

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
TEACHING THE CONSTITUTION OF MATTER

Małgorzata Nodzyńska, Jan Rajmund Paśko

СЪСИРВАЩА СИСТЕМА НА КРЪВТА

Маша Радославова, Ася Драгоева

CATALITIC VOLCANO

CATALITIC VOLCANO

43-ТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка ТАШЕВА, Пенка ЦАНОВА

ЮБИЛЕЙ: ПРОФ. ДХН БОРИС ГЪЛЪБОВ JUBILEE: PROF. DR. BORIS GALABOV

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ПЪРВИЯТ ПРАВИЛНИК ЗА УЧЕБНИЦИТЕ (1897 Г.)

Чл. 1. Съставянето и издаване на учебници се предоставя на частната инициа- тива. Забележка: На учителите – съставители на учебници се запрещава сами да разпродават своите учебници. Чл. 2. Министерството на народното просвещение може да определя премии по конкурс за съставяне на учебници за горните класове на гимназиите и специ- алните училища. Чл. 3. Никой учебник не може да бъде въведен в училищата, ако предварително не е прегледан и одобрен от Министерството на народното просвещение. Чл.

JOHN DEWEY: HOW WE THINK (1910)

John Dewey (1859 – 1952)

ИНФОРМАЦИЯ ЗА СПЕЦИАЛНОСТИТЕ В ОБЛАСТТА НА ПРИРОДНИТЕ НАУКИ В СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ

1. Биология Студентите от специалност Биология придобиват знания и практически умения в областта на биологическите науки, като акцентът е поставен на организмово равнище. Те се подготвят да изследват биологията на организмите на клетъчно- организмово, популационно и екосистемно ниво в научно-функционален и прило- жен аспект, с оглед на провеждане на научно-изследователска, научно-приложна, производствена и педагогическа дейност. Чрез широк набор избираеми и факул- тативни курсове студентите

Книжка 3
УЧИТЕЛИТЕ ПО ПРИРОДНИ НАУКИ – ЗА КОНСТРУКТИВИСТКАТА УЧЕБНА СРЕДА В БЪЛГАРСКОТО УЧИЛИЩЕ

Адриана Тафрова-Григорова, Милена Кирова, Елена Бояджиева

ПОВИШАВАНЕ ИНТЕРЕСА КЪМ ИСТОРИЯТА НА ХИМИЧНИТЕ ЗНАНИЯ И ПРАКТИКИ ПО БЪЛГАРСКИТЕ ЗЕМИ

Людмила Генкова, Свобода Бенева Българско дружество за химическо образование и история и философия на химията

НАЧАЛО НА ПРЕПОДАВАНЕТО НА УЧЕБЕН ПРЕДМЕТ ХИМИЯ В АПРИЛОВОТО УЧИЛИЩЕ В ГАБРОВО

Мария Николова Национална Априловска гимназия – Габрово

ПРИРОДОНАУЧНОТО ОБРАЗОВАНИЕ В БЪЛГАРИЯ – ФОТОАРХИВ

В един дълъг период от време гимназиалните учители по математика, физика, химия и естествена

Книжка 2
„МАГИЯТА НА ХИМИЯТА“ – ВЕЧЕР НА ХИМИЯТА В ЕЗИКОВА ГИМНАЗИЯ „АКАД. Л. СТОЯНОВ“ БЛАГОЕВГРАД

Стефка Михайлова Езикова гимназия „Акад. Людмил Стоянов“ – Благоевград

МЕЖДУНАРОДНАТА ГОДИНА НА ХИМИЯТА 2011 В ПОЩЕНСКИ МАРКИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ЗА ПРИРОДНИТЕ НАУКИ И ЗА ПРАКТИКУМА ПО ФИЗИКА (Иванов, 1926)

Бурният развой на естествознанието във всичките му клонове през XIX –ия век предизвика дълбоки промени в мирогледа на културния свят, в техниката и в индустрията, в социалните отношения и в държавните интереси. Можем ли днес да си представим един философ, един държавен мъж, един обществен деец, един индустриалец, просто един културен човек, който би могъл да игнорира придобив- ките на природните науки през последния век. Какви ужасни катастрофи, какви социални сътресения би сполетяло съвре

Книжка 1
MURPHY’S LAW IN CHEMISTRY

Milan D. Stojković

42-рa МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Цанова

СЕМЕЙНИ УЧЕНИЧЕСКИ ВЕЧЕРИНКИ

Семейството трябва да познава училишето и училишето трябва да познава семейството. Взаимното познанство се налага от обстоятелството, че те, макар и да са два различни по природата си фактори на възпитанието, преследват една и съща проста цел – младото поколение да бъде по-умно, по-нравствено, физически по-здраво и по-щастливо от старото – децата да бъдат по-щастливи от родителите