Обучение по природни науки и върхови технологии

2015/2, стр. 226 - 246

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Резюме: Vapor pressure (VLE) of 1-butanol was studied at temperatures T=(274.15 K to 468.15) K using the two different static method installations. A glass cell was used below T = 323.15 K. Experimental uncertainties for the glass cell are ΔT = ±0.01 K and ΔP = ±(10 to 30) Pa (MKS Baratron pressure sensor). A metal cell was used in the range T = (323.15 to 468.15) K. Experimental uncertainty of temperature measurements for the metal cell is ΔT = ±0.01 K. Pressure was measured with two different 35 X HTC Omega-Keller pressure transmitters. Reproducibility of the vapor pressure measurements was ΔP = ±1.5 kPa for the pressures below P = 300 kPa and ΔP = ±5 kPa in the range P = (300 to 1000) kPa is. A fundamental literature analysis of 1-butanol has been done and experimental values were compared with the literature data. Observed deviation have been discussed. Measured values were fi tted with the Antoine and Clausius-Clapeyron type equations. The best fi t is that by Clausius-Clapeyron equation with four parameters.

Ключови думи: 1-butanol, vapor pressure, wide range of temperatures, Clausius-Clapeyron type equation

Introduction

The price of traditional fuel is increasing every day. Alternative and renewable energy sources such as solar, wind energy, bio-diesel and biogas are becoming very important in many countries. 1-butanol has been proposed as an alternative to conventional gasoline and diesel fuels. Use of 1-butanol as an alternative to conventional gasoline and diesel fuels dramatically increased last years. It can be successful used as a fuel in an internal combustion engine. Butanol has been demonstrated to work in vehicles with gasoline engines without modification. 1-butanol can be produced from biomass (Bernardes, 2011).

A challenge is caused by the use of 1-butanol as a fuel at very high pressures. Current fuel injection systems of compression-diesel engines reach pressures up to 200 MPa for transport systems. In a near future, injection systems can be designed for higher pressures up to 400 MPa. Number of injections at such high pressures per cycle can be expanding and the time of one injection process can be reduced. That is why it is so important to have reliable knowledge of thermophysical properties of the fuel under high pressures. Upon injection of the fuel in a cylinder, large depressurization of the fuel results in a significant change of the viscosity and other properties of the fluid (Duncan et al., 2010). Study of basic thermophy sical properties (density, vapor pressure, viscosity, speed of sound, heat capacity etc.) of 1-butanol would allow modeling, understanding, and optimizing the processes in an internal combustion engine.

A new method for the analysis of thermophysical properties of substances at high pressures and over wide range of temperature was developed by our research group (Safarov et al., 2013). This work is an application of that method to 1-butanol. The entire research consists of the following parts: (i) (p,ρ,T) properties of 1-butanol at T = (253.15 to 468.15) K and at pressures up to p = 200 MPa; (ii) vapor pressure measurements P/Pa of 1-butanol at T = (274.15 to 468.15) K; (iii) heat capacity measurements cp0/(J·kg- 1·K-1) of 1-butanol at T = (253.15 to 468.15) K and at ambient pressure.

1-butanol has the normal boiling temperature around Ts=390.65 K. Vapor pressure in a wide temperature range must be consistent with the heat capacities of the condensed and gas phases. Measurement of density at elevated pressures allow construction of an EOS and propagation of the knowledge of all thermophysical properties to high pressures.

Publications on vapor pressure of 1-butanol have been reviewed and the summary of these works are presented in the Table 1. The first investigation of the vapor pressure of 1-butanol was by Butler et al. (1935). He used a modification of the isotensiscope method for determination of vapor pressure of 1-butanol at T=(293.13 to 383.35) K. It was found possible to keep the temperature of the bulb constant to ΔT = ±10 mK, below T=373.15 K and ΔT = ±20 mK, above T=373.15 K in one experiment by manual handling. The precision of the vapor pressure results was better than ΔP =±6.67 Pa.

Shemilt et al. (1959) measured vapor pressure of 1-butanol at T=(273.15 to 560.15) K. The 1-butanol (c.p. grade) was distilled at high reflux in a glass-helices packed column. The calculated vapor pressure values in a wide range of temperature was also presented. The uncertainty of stabilised temperature was around ΔT = ±30 mK. The pressure was measured using a dead-weight test gauge with an uncertainty of ΔP = ±0.1 %.

Brown & Smith (1959) studied liquid-vapor equilibrium for the systems n-propanol+benzene and n-butanol+benzene at T=318.15 K. The data were used to calculate the excess free energy of mixing for these systems.

Ambrose & Townsend (1963) investigated vapor pressures of 1-butanol using a vertical glass tube apparatus, which was held in a metal fitting and communicated via a mercury-fi lled tube and another glass tube with an oil-operated, dead-weight piston-gauge. The pressure exerted by the vapor was the sum of the barometric pressure, that determined from the gauge, and the hydrostatic heads of oil, mercury, and alcohol. The standard instrument for the temperature measurements was a platinum resistance thermometer used with a Mueller bridge.

Biddiscombe et al. (1963) measured vapor pressure of 1-butanol at T=(362.36 to 398.84) K using the comparative ebulliometry. The compounds used in this work were dried by treatment with calcium hydride and were >99.9% pure. The precision of the vapor-pressure results was better than ΔP =±13.3 Pa.

Efremov (1966) studied vapor pressure of 1-butanol at T=(353.15 to 553.15) K using the capillary ampoule method. The temperature were measured with the uncertainties in ΔT = ±100 mK.

Kemme & Kreps (1969) used a differential thermal analysis method for the experimentally determination of vapor pressure of 1-butanol over a wide range of temperature at T=(295.75 to 390.95) K. The Chromel-Alumel thermocouples used during the measurements of temperature. The temperature values are averages of several replications at the stated pressures; at most they varied ΔT = ±100 mK between replications. The experimental data obtained for each compound were fi tted by the Antoine equation.

Ambrose & Sprake (1970) investigated vapor pressures of 1-butanol using the vertical glass tube apparatus, which was held in a metal fitting and communicated via a mercury-filled tube and another glass tube with an oil-operated, dead-weight piston-gauge. The pressure exerted by the vapor was the sum of the barometric pressure, that determined from the gauge, and the hydrostatic heads of oil, mercury, and alcohol. The standard instrument for the temperature measurements was a platinum resistance thermometer used with a Mueller bridge.

Koba & Polishchuk (1971) and Polishchuk & Koba (1972) used the Clausius-Clapeyron type equations for fitting of literature vapor pressure values of 1-butanol. The first equation was developed for the describing of vapor pressure results up to P=101.325 kPa. The second equation is able to describe the vapor pressure values of 1-butanol from P=(101.325 to 5066.250) kPa. The authors suggested the uncertainty of developed equations ΔP = ±(1 to 3)%.

Munday et al. (1980) measured vapor pressure of 1-butanol over the T=(273.15 to 323.31) K temperature range with the static method. The maximum estimated error in the pressure reading is the less than 20 Pa. Temperatures (IPTS 68) are measured by using a platinum resistance thermometer calibrated by the National Bureau of Standards.

Krestov et al. (1983) studied vapor pressure of 1-butanol at T=(298.15 to 368.15) K using the static method. The Antoine equation was used for fitting of the experimental results.

Gregorowicz et al. (1987) measured vapor pressure of 1-butanol in T=(360.766 to 390.542) K temperature interval using a modified Swietoslawski ebulliometer. The equilibrium temperature was measured within 0.001 K. Temperature fluctuation during runs lasting several hours was within ΔT = ±10 mK. Pressure was determined using a Texas Instrument 144-01 precision pressure gauge with a quartz Bourdon tube. The estimated pressure measurement error was not greater than ΔP = ±6.67 Pa. The Antoine equation was used for fitting of the experimental results.

Tsymarniy & Palaguta (1990) studied vapor pressure of 1-butanol at T=(283.10 to 323.2) K using a constant volume piezometer. The vapor pressures of 1-butanol were measured using VTI type manometers with uncertainties 0.5%. The temperature of measurements was controlled within 0.1 K. The Mayer-Bogolyubov equation was used for fitting of the obtained results.

Shahverdiyev et al. (1992) measured (p,ρ,T) values of 1-butanol up to T=548.15 K. The constant volume piezometer method was used during the measurements the. The vapor pressure of 1-butanol was defined for the each density measured temperature. The uncertainties of experimental data measurements were as follows: for pressure ±0.05%, for temperature ±30 mK.

Gracia et al. (1992) measured vapor pressure of 1-butanol at temperatures T=(283.10 to 323.12) K using the static method. 1-butanol (better than 99.5 moles per cent) was Fluka products. The mass fraction purities checked by g.c. was w=0.9933. The cell containing 1-butanol was immersed in a water bath whose temperature was maintained constant to better than ΔT = ±0.01 K using a Haake F3 thermostat. Manometer readings were made with a Wild KM-305 cathetometer to ±0.01 mm. Reproducibility of the pressure measurements is estimated to be better than ΔP = ±15 Pa. Vapor pressure of 1-butanol were fitted by Antoine equation.

Deák et al. (1995) studied vapor pressure (bubble point pressures) of 1-butanol at temperatures T=(412.76 to 502.25) K in a high-pressure capillary glass tube apparatus, using the Cailletet apparatus synthetic method. During the experiments the temperature was maintained constant within ΔT = ±0.03 K and was measured with a Ptl00 resistance thermometer, which was calibrated against a standard thermometer, with an accuracy of ΔT = ±0.01 K. The pressure was measured with a dead-weight gauge (Budenberg) with an accuracy within ΔP = ±1 kPa.

Gimeno et al. (2011) investigated vapor pressures of 1-butanol at temperatures T=(278.15 to 323.15) K by a static method. Manometric levels were read with a cathetometer to within ±0.01 mm, and pressure reproducibility was ΔP = ±10 Pa. Experimental vapor pressure data of 1-butanol were fitted by the Antoine equation. The temperature of the liquid was measured by means of a digital thermometer AΣΛ with a Pt sensor with an uncertainty of ΔT = ±0.01 K.

After the analysis of the available literature values we concluded that despite many measurements have been done and high accuracy was claimed, their results differ in the whole range (Figs. 4-5) in absolute and per cent deviations, so additional reliable measurements are necessary for arbitration.

Experimental

Materials

Ultra-pure 1-Butanol EMPLURA® (w=99.995%) was purchased from Merck Schuchardt OHG, Germany (CAS No. 71-36-3, Art. Nr. 8.22262.2500). 1-Butanol was thoroughly degassed in glass flasks with special vacuum leak-proof valves before measurements.

Experimental procedure

Vapor pressure of 1-butanol measured using the two high-accuracy static experimental installations (Figs. 1 and 2). Glass cells (3, 4, 27) are applied for vapor pressures lower than ambient pressure and at T=(274.15 to 323.15) K (Fig. 1). A metal cell was applied at the temperatures T = (323.15 to 473.15) K (Fig. 2). The glass-cell installation included the absolute and differential parts. They have internal and external volumes. Distilled water pumped from Lauda Gold R-415, Germany (21) was flowing between them. Figure 1shows the water connections of the stabilization of measuring cells and pressure head sensors in blue, electric heaters in red, and temperature measurement circuit in green. The internal volume of every measuring cell was approximately 80 cm3 for both glass and steel cells.

The glass-cell apparatus consists of a bolted-top cell (27) in a water bath kept at constant temperature (ΔT = ±0.01 K) using a thermostat (21). The measuring cell is equipped with an injection port. The vapor pressure is measured using a calibrated high-accuracy sensor head (23) [Type 615A connected (15) to the signal conditioner Type 670A (14), MKS Baratron, USA] attached to the top of the cell. The experimental uncertainty of the pressure in the absolute vapor pressure measurement part with glass cell is ΔP = ±(10 to 30) Pa (MKS Baratron pressure sensor). The temperature inside the cell was measured by a platinum resistance thermometer PT-100 (35), connected to the signal conditioner Omega PT-104A (19), with an accuracy of ΔT = ±0.001 K.

If the vapor pressure of substance is the smaller than ±(10 to 30) Pa (uncertainty of measurements), the measurements can be carried out using other cells in the differential part of the system. In this part two cells contained in one external reservoir. The both glass cells of differential method (3, 4) kept at constant temperature (ΔT = ±0.01 K) using a Lauda Gold R-415 thermostat, Germany (21). The temperature inside the cells was measured by a platinum resistance thermometer PT-100 (6), connected to a signal conditioner Omega PT-104A (19), with an accuracy of T ±0.001 K. The measuring cells are equipped with injection ports. The vapor pressure was measured using a calibrated high-accuracy sensor head (10) [Type 616A connected (12) to a signal conditioner Type 670A (13), MKS Baratron, USA] attached to the top of the cell. The experimental uncertainty of the vapor pressure in the differential part with glass cell is ΔP = ±(1 to 3) Pa (MKS Baratron pressure sensor).

Both sensor heads of static and differential parts (10, 23) were placed inside of air reservoirs (11, 22) with temperature T=333.15±0.01 K having internal and external walls, between which hot water was pumped from the thermostat (16) produced by Haaki (Germany).

The received pressure signal from signal conditioners (13, 14) and temperature signals from Omega PT-104A (19) were sent to PC (34), and all system was controlled using LabVIEW programme.

Because the vapor pressure of 1-butanol is higher than the uncertainties of measurements in all temperatures, the differential part of this installation was not used during this investigation.

Before the experiments, the measuring cell was washed with the water and acetone. All fluid parts removed from cells using the vacuum system (31, 32) with TRIVAC® (Germany) rotary vane vacuum pump (33). These procedure continue appr. 3-5 hours up to reach the pressure less than 1 Pa. All measuring cells were dried and became ready for the experiments.

Prior to injection into the measuring cell, 1-butanol is degassed in the special designed cell using magnetic stirrer (29, 30). A known quantity of 1-butanol were injected into the equilibrium cells (4, 27) from connections (7, 20) (appr. 50 % of the volume) and valves (7, 26) were closed. Some part of pure 1-butanol separated from the measured sample, moved to the vapor phase under vacuum conditions inside of the cell, and vapor-liquid phase equilibrium between the vapor and liquid phases of 1-butanol was reached by stirring of the two phases using magnetic stirrers (1,28) and a Teflon coated magnets (2, 36) inside the cells.

The measuring glass cell and metal tube connection of signal conditioner MKS Baratron (measuring cell - signal conditioner connection) was impossible to connect directly. In this case a special “glass-metal” adapter was connected to the measuring glass cell. The flange connections DN 10 short (VAT Deutschland GmbH, Germany) were set to the end of metal side of the “glass-metal” adapter and to the metal tube connection site of signal conditioner MKS Baratron. The clamping ring and centering ring were used for the connection of both side of flange connection. The cells and signal conditioners

27362328352216171820111024758624311938269253739333231293021403412131415

Figure 1. The experimental installation for the vapor pressures at T=(274.15 to 323.15) K: (1), (28), (30) magnetic stirrer; (2), (36) magnet, (3) cell for water of the difference method; (4) cell for measuring sample of the difference method; (5), (37) valves for closing of cell for measuring sample of the difference method and (26) of the static cell; (6), (35), (39), (40) platinum resistance thermometers with temperature signal conditioner Omega PT-104A (19); (7), (20), (38) injection ports of measuring sample; (8), (25) electric heating; (9), (24) water heat exchange system; (10) pressure sensor head of the difference method and (23) of static cell; (11) pressure sensor reservoir of the difference method and (22) of the static method cell; (12) pressure signal connection of the difference method cell and (15) of the static method cell; (13) pressure signal conditioner of the difference method and (14) of the static method cell; (16) Thermostat HAAKE F5; (17), (18) electric heater control systems; (21) Thermostat Lauda Gold RE-630 G; (27) static cell; (29) injection cell; (31) vacuum indicator; (32) liquid nitrogen trap with cold finger; (33) vacuum pump; (34) PC.

217816151413312109117184

Figure 2. The experimental installation for the vapor pressures at T=(333.15 to 468.15) K: (1) Thermostat Lauda Gold RE-415 G; (2) platinum resistance thermometers PT-100 for the control of the measuring cell temperature by the thermostat; (3) platinum resistance thermometer PT-100 for the control of temperature of the measuring cell; (4) Pressure transmitter 35 X HTC Omega GmbH and Co.; (5) Omega PT-104A Channel RTD Input Data Acquisition Module for the measuring of temperature; (6) PC; (7) Manual pressure signal conditioner; (8) Flask for the sample; (9), (10) valves; (11) insulation of measuring cell; (12) heat transfer reservoir; (13) measuring cell; (14) magnet; (15) magnetic stirrer; (16) vacuum indicator; (17) liquid nitrogen trap with cold finger; (18) vacuum pump.

located appr. 40 cm from each other. The connections between them are “glass-metal” adapter and metal tube with 3.5 mm inside diameter. The metal tube part of the measuring cell - signal conditioner connection were stabilized using a water heat exchanger (9, 24), where water flowed from reservoirs (11, 22) with a constant temperature T=333.15±0.01 K. However, it was impossible to make the same isolation using water flow in the other side of this connection, where ring and centering ring were clamped. In this case, the electric heating (8, 25) with isolation were used. The heating was controlled during all experimental procedures using the electric regulators (17,18). In both cases (absolute and difference methods) vapor pressure of reference substances (water, methanol, acetone, ethanol, toluene, various substances with small vapor pressures) were tested many times for regulation of electric heating power at every measured temperature, and these functional dependence were included to the LabVIEW control programme. In this case, PC added the necessary power to the electric heaters during the measurements.

Equilibration in the cells is a rapid process and the constancy of pressure in the stationary regime is reached within 15 min. Equilibrium pressure readings are performed in triplets with approximate 10-20 min intervals. PC received the vapor pressure signal every minute and tracked the stabilization of pressure in the cell. After these the temperature was changed automatically using the LabVIEW programme. The measurements were carried out from the low temperature (T=274.15 K) to high (T=323.15 K) with required temperature steps. After the reaching of maximal temperature the thermostat was stopped automatically. Then the measurements from high temperature (T=323.15 K) to low (T=274.15 K) were done in the same way. Manually-controlled measurements were also possible.

Vapor pressures of the water, methanol, acetone, toluene etc. as reference substances were measured for testing of both installations. The vapor pressure results of pure water and comparison of them with calculated results from (Wagner & Pruß, 2002) are given in Table 2. The experimental vapor pressure P/Pa results are assessed to be reliable to within ΔP = ± (10 to 30) Pa average uncertainty according to test measurements.

The experiments to determine vapor pressure of 1-butanol at temperatures T=(323.15 to 468.67) K were performed in a metal cell by using the static method (Fi g. 2). In the Fig. 2, the connections for heat transfer fluid between the thermostat (1) and measuring cell (13) are shown in blue. The connections for the temperature measurements are shown in green and for the pressure measurements in black.

The installation consists of a stainless-steel DIN 1.4571 (V4A) measuring cell (13) in a stainless-steel KORASILON oil M50 (Kurt Obermeier GmbH & Co. KG, Germany) reservoir. The internal volume of the measuring cell is appr. 140 cm3 together with the connected tube, hole of the pressure transmitter and ½ volume of the valve (10). The volume of platinum resistance thermometers PT-100 (2, 3) in the inside of measuring cell is calculated as a volume difference.

The temperature of the measuring cell and heat transfer reservoir (12) with KORASILON oil M50 (Kurt Obermeier GmbH & Co. KG, Germany) is stabilized using the thermostat (1) (LAUDA ECO RE 415 G, Germany) with the accuracy ΔT=±0.01 K. This temperature are measured using two different platinum resistance thermometers PT-100 (1/10 DIN Class B, Temperatur Messelemente Hettstedt GmbH, Germany) (2, 3). One from them is connected a directly to the thermostat via PT-100 Libus Modul. This thermometer transfers information directly from the measuring cell. Using this thermometer, the thermostat maintains the temperature directly in the measuring cell, not in the thermostat itself. This is a very important point, because it enables stabilization and measuring the experimental temperature with high accuracy directly in the studied medium.

The second platinum resistance thermometers PT-100 transfers the measured temperature in the computer via Omega PT-104A Channel RTD Input Data Acquisition Module (Omega Engineering, inc., USA) for the measuring of temperature (5), with an accuracy of ΔT=±0.001 K.

The vapor pressure was measured using the two various Omega-Keller pressure transmitters (4) with max. 3 and 10 bar measured pressures (Model: SERIE 35 X HTC, Omega GmbH & Co., Germany) with the uncertainty 1.5 kPa for pressures up to P=300 kPa and ΔP = ±5 kPa and at P = (300 to 1000) kPa. These high-temperature transmitters are suitable for media temperatures up to T=573.15 K. The pressure, acting onto the flush diaphragm, is transferred over an oil-filled capillary to the silicon measuring cell. The capillary has the function of a cooling spiral, allowing media temperatures of up to T=573.15 K. The temperature of the electronics, which can be read out with the PROG30 software, may not exceed T=393.15 K. For this purpose two air fans were installed in the pressure transmitter area.

Before the experiments the measuring cell was washed. All fluid parts were removed from the measuring cells using the TRIVAC® rotary vane vacuum pump (18) and the vacuum system (16, 17). The measuring cell was dried up to a pressure P=(10 to 30) Pa and became ready for the experiments. The valve (9) was closed. A known quantity of 1-butanol (appr. ½ part of volume of the measuring cell) was injected in the measuring cell using a flask of sample (8) and after that the valve (10) was closed. Phase equilibrium is reached by stirring of the two phases using a magnetic stirrer (15) and a Teflon coated magnet (14) inside the measuring cell. Equilibration in the measuring cell is a rapid process, and the constancy of pressure is reached within appr. 50-70 min. Equilibrium pressure readings are performed with 1 min intervals and transferred to the computer system controlled using the LabView program. Experiments were carried out starting from small temperature (T=333.15 K) to high temperature T=468.67 K with ΔT=10 K intervals. After stabilization of the pressure within the system and measuring of vapor pressure at the given temperature the PC (6) with LabView programme increases the temperature using the pre-defined step. The new vapor pressure of sample is measured. This procedure continues up to the last measured temperature T=468.67 K, after which the PC (6) stops the thermostat (1) and the measurements at T=(333.15 to 468. 67) K is finished. The total measurements at T=(333.15 to 468.67) K take approximately 10 hours. After scanning the temperature range, the measurements were continued from the high T=468.67 K to the low T=333.15 K using the cooling process in the thermostat for verification.

Table 1. Summary of the vapor pressure measurements for 1-butanol over wide range of temperatures

First authorYearMethodProper-tiesTemperature,T/KUncertainty,±P/PaFittedequationPurityCompanyof PurchaseButler1935IMP,T293.13 to 383.356.67Antoine typeKay1955P,T463.15 to 562.89appr. 138h.p.Shemilt1959P,ρ,T273.15 to 560.15Clapeyronc.p.gradeBrown1959P,T318.15Ambrose1963GAP,ρ,T419.34 to 562.98Frost andKalkwarfBiddiscombe1963CEP,ρ,T362.36 to 398.8413.3Antoinew>99.9%Efremov1969CAP,ρ,T353.15 to 553.15c.p.CSFCRKemme1969DTAP,T295.75 to 390.95AntoineAmbrose1970CEP,T351.708 to398.836Antoine,CragoeMunday1980SMP,T273.15 to 323.31CCTKrestov1983SMP,T298.15 to 368.15Antoine typeGregorowicz1987SEP,T360.766 to390.5426.67Antoinew>99.95%CHEMIPANTsymarniy1990CVPP,T298.2 to 323.20.6 %Mayer-Bo-golyubovc.p.CSFCRShahverdieyev1992CVPP,ρ,T398.15 to 548.150.5 %c.p.CSFCRGracia1992SMP,T283.10 to 323.1210Antoinew>99.33%FlukaDeák1995CAP,T412.76 to 502.251000w>99.9%BakerGimeno2011SMP,ρ,T278.15 to 323.1510Antoinew>99.99%AldrichSafarov2014SMp,T274.15 to 323.1510 to 30CCTw>99.995%MerckAGSafarov2014SMp,T333.15 to 468.671000 to 8000CCTw>99.995%MerckAG

IM, the isotensiscope method; P, vapor pressure; T, temperature; h.p., high purity; GA, glass apparatus; CE, comparative ebulliometry; CA, capillary ampoule; CASM, Cailletet apparatus; DTA, differential thermal analysis; SM, static method; CCT, Clausius-Clapeyron type; SE, Swietoslawski ebulliometer; CVP, constant volume piezometer; CSFCR , Cherkassiy state factory of chemical reagents; w, weight percent; c.p., chemical pure; t.w., this work.

Table 2. Experimental and calculated literature values (Wagner & Pruß, 2002) of vapor pressure p of pure water

T/KPexp/PaPlit/Pa(Pexp-Plit)/PaT/KPexp/PaPlit/Pa(Pexp-Plit)/Pa274.156616574328.141574815754-6279.48953961-8328.141574615754-8286.16150815026328.881631216321-9291.3920942096-2333.152005619946110293.1423372338-1343.15312793120178296.3228342840-6353.15474504741436296.31283928381363.15702107018228298.8132883297-9373.151014251014187301.3738273832-5383.15143287143379-92303.57436043519393.1519875219867478307.73550755007403.15270216270280-64308.26566656642413.15361642361539103312.8772757276-1423.15476334476165169313.0773457354-9433.15618336618235101314.6279777984-7443.15792154792187-33318.13958595850453.1510027131002811-98318.1395789585-7463.1512552261255236-10322.9912260122546468.151398871139882051323.101232012321-1470.151459748145971929323.171236212364-2471.151490952149093517

Results and discussion

The measured experimental vapor pressures p of 1-butanol at T=(274.15 to 468.67) K are listed in Table 3, also shown in Fig. 3. The temperature steps were T=(5 to 10) K. The obtained experimental works are fitted to two different equations. Firstly, the experimental vapor pressure p results of 1-butanol were fit to the Antoine equation:

The evaluated constants A, B and C are tabulated in Table 4 together with the standard mean deviation as:

During the fitting of experimental values, we have seen, that Antoine equation fit the experimental values with not high accuracy. The uncertainty of fitting is P = ±1297 Pa. But, use of the extended version of Clausius–Clapeyron equation for fitting of the vapor pressure data for 1-butanol reduced the fitting error:

where P is vapor pressure, Pa; T is the absolute temperature in K; A, B, C and D are the coefficients of equation. The uncertainty of fitting is decreased up to P = ±38 Pa. If the last coefficient D will be equal to zero (D=0), the uncertainty of fitting increasing up to P = ±199 Pa. That is why the Clausius–Clapeyron type equation with four coefficients (A, B, C, D) was selected as the final fitting equation for the vapor pressure of 1-butanol. The coefficients of Eq. (3) are tabulated in Table 5. The fitting line also shown in the Fig. 3b.

Table 3. Experimental and calculated by Clausius-Clapeyron equation values of vapor pressure p of 1-butanol

T/KPexp/PaPcal/Pa(Pexp-Pcal)/PaT/KPexp/PaPcal/Pa(Pexp-Pcal)/Pa274.151331330373.15518255178738278.151881880383.15762257621015283.15285286-1393.15109178109219-41293.15624625-1403.15152632152774-142303.1512811284-3413.15208708208994-286313.1524832487-4423.15279656280108-452323.1545714573-2433.15367818368407-589333.15803080273443.15475581476185-604343.15135171350413453.15605332605682-350353.15218902186426463.15759418759025393363.15342243418737468.678557268546101116
JCT199224463GraciaZPX199271631ShahverdiyevJCED2011562443Gimenohttp://www.ddbst.comJSChem 19631954BiddiscombeJCED 198025191MundayJChemSoc1935280ButlerJChemSoc1963543614AmbroseJCED 1969 14 98 KemmeJCT199224463GraciaZPC1966401240EfremovFPE1995 107 277 DeakZPX199051080TsimmarniyFPE1987 38 97 GregorowiczFSP197137616KobaJCT19702631AmbroseThisworkIVUZKKT1983 264 514KrestovCanadianJCE195937142ShemiltChemEngSci195511Kay1000000900000800000700000600000P/Pa500000400000300000200000100000333.15313.15353.15453.15473.15

0 273.15 293.15

373.15 393.15 413.15 433.15 T/K

Figure 3. Plot of vapor pressure P/Pa of 1-butanol versus temperature T/K together with the literature values: a) in P-T coordinates; solid line: Clausius–Clapeyron type Eq. (3); b) in ln(P)

- (1/(T-85.0376)) coordinates. solid line: Clausius–Clapeyron type Eq.(3)

Table 4. Antoine parameters A, B, C and standard deviations δP/P of 1-butanol

ABC(P/P)/%22.263289.71-85.0376±1.34Table 5.Clasius - Clapeyron equation fitting parametersA,B,CandDABCD(P/P)/%125.277-10321.5-15.0430.00622461±0.114

The Clausius–Clapeyron type equation constructed in this work, was used for the analysing of literature values. The results of this analysis are discussed in the below and shown in Figure 4.

Figure 4. Plot of absolute deviation of experimental Pexp. and literature Plit. vapor pressure values of 1-butanol versus temperatures T/K.

The earliest vapor pressure values presented by Butler on 1935 up to ambient pressure were compared with our results in 10 measured points. The middle deviation of the compared values is ΔP = 69 Pa. These values have a good deviation from our results. They are increasing up to ΔP = 361 Pa at T = 383.35 K.

The ten values from next measured twenty three vapor pressure values of 1-butanol of (Shemilt et al., 1959) above the ambient pressure systematically higher than our values. This is the first literature results at high temperatures. The deviation at the first measured point (T = 383.35 K) is ΔP = 640 Pa and at the last (T = 456.76 K) is ΔP = 16340 Pa. The mean deviation of all values in this reference from our values is ΔP = ± 7015 Pa.

JCT1992 244 63 GraciaZPX 1992 7 1631 ShahverdiyevJCED 2011 56 2443 Gimenohttp://www.ddbst.comJSChem1963 1954 BiddiscombeJCED 1980 25 191 MundayJChemSoc 1935 280 ButlerJChemSoc 1963 54 3614 AmbroseJCED 1969 14 98 KemmeJCT1992 244 63 GraciaZPC1966 40 1240 EfremovFPE1995 107 277 DeakZPX 1990 5 1080 TsimmarniyFPE 1987 38 97 GregorowiczFSP 1971 37 6 16 KobaJCT 1970 2 631 AmbroseIVUZKKT1983 26 4 514 KrestovCanadianJCE 1959 37 142 ShemiltChemEngSci1955 1 1 Kay2015105ǻP/P,%0-5-10-15

-20 273.15

293.15 313.15 333.15 353.15 373.15 393.15 413.15 433.15 453.15 473.15

T /K
Figure 5. Plot of per cent deviation of experimental Pexp. and literature Plit. vapor pressure values of 1-butanol versus temperatures T/K

Our vapor pressure values of 1-butanol above the ambient pressure are systematically lower than the values of (Ambrose & Townsend, 1963) and the mean deviation is ΔP = ±7005 Pa. The deviation increasing with the increasing of temperature and the maximum deviation is ΔP = 11823 Pa at T = 462.64 K. These deviations can be discussion on the base of uncertainties of pressure sensors in both works.

The eleven values below the ambient pressure and five above the ambient pressure of (Biddiscombe et al., 1963) are higher than our values with the mean deviation ΔP = ±342 Pa. The deviations slowly increasing with the increasing of temperature and the maximum deviation is ΔP = 764 Pa at T = 398.84 K.

The twelve vapor pressure values of 1-butanol from twenty one presented by Efremov (1966) also compared in our experimental temperature interval. The deviations of our results from that source are both negative and positive. The mean deviation of both measurements is ΔP = ±1797 Pa. The maximum deviation is ΔP = 5978 Pa at T = 463.15 K.

Thirteen vapor pressure values of 1-butanol of (Kemme & Kreps, 1969) below the ambient pressure compared with our values and ΔP = ±202 Pa middle deviation was obtained. The deviations slowly increasing with the increasing of temperature and the maximum deviation is ΔP = 1002 Pa at T = 390.95 K.

The comparison of experimental vapor pressure values of (Ambrose & Sprake, 1970) (mostly below the ambient pressure) with our results gives us ΔP = ±307 Pa mean and ΔP = 765 Pa as maximum deviation at T = 398.836 K. Mostly these values are higher than our results.

The twenty two calculated values of (Koba & Polishchuk, 1971) in all experimental temperature interval of our work also were compared. These results have positive or negative deviations from our results, but the deviation in absolute value increasing with increasing of temperature. The middle uncertainty is ΔP = ±2200 Pa and maximum (in T=468.67 K) is ΔP = 11163 Pa.As the same with previous literature results, the uncertainty of comparison is increasing with increasing of temperature.

Four vapor pressure values of (Munday et al., 1980) below the ambient pressure are higher than our results with the mean deviation ΔP = ±56 Pa. The maximum deviation is ΔP = 102 Pa at T = 323.31 K.

Fifteen vapor pressure values measured by Krestov et al. (1983) below the ambient pressure have ΔP = ±164 Pa mean deviation from our results. These values are higher than our results and the maximum deviation is ΔP = 435 Pa at T = 368.15 K.

Fifteen vapor pressure values by Gregorowicz et al. (1987) below ambient pressure have ΔP = ±110 Pa mean deviation with the maximum ΔP = 279 Pa at T=390.542 K. These values are the higher than our results.

Four vapor pressure values of below the ambient pressure measured by Tsimmarniy & Palaguta (1990) are smaller than our values and have ΔP = ±443 Pa mean deviation. The deviations are not characteristic below ambient pressure. The problem can be in the uncertainties (0.6%) of experimental method in this work.

Three vapor pressure values obtained from (p,ρ,T) measurements at saturation pressure at high temperatures by our group (Shahverdiyev et al., 1992) have ΔP = ±4407 Pa middle deviation.

We also analysed the nine experimental vapor pressure values of Gracia et al. (1992) below the ambient pressure and found a very good agreement. The mean deviation between the both results is ΔP = ±27 Pa with the maximum ΔP = ±46 Pa at T=313.08 K.

Six above-ambient vapor pressure measured by Deák et al. (1995) showed ΔP = ±7240 Pa mean deviation from our values. The deviations increase with increasing temperature, and the maximum deviation is ΔP = 1002 Pa at T = 462.53 K. These literature values are higher than our results.

The last ten literature values of Gimeno et al. (2011) below ambient pressure are in a very good agreement with our values. The mean deviation is ΔP = ±31 Pa with the maximum ΔP = ±42 Pa at T=313.15 K. These literature values are higher than our values.

Form these comparison, it is seen that the vapor pressure values for 1-butanol at temperatures up to T=391.01 K (normal boiling temperature at 101325 Pa obtained in this work by interpolation) have good agreement with most literature values within P=±200 Pa. The large deviation between the experimental vapor pressure values of 1-butanol and values obtained in the literature were obtained above normal boiling point of 1-butanol. Sometimes the deviations are up to P = ±18 kPa. This fact have many reasons for the discussion. First, it is diffi cult to measure pressures much higher than the ambient pressure with high accuracy, unlike MKS Baratron pressure sensors for lower pressures (P = ±10 to 30 Pa). Modern pressure transmitters with mechanic membranes are used in such experiments. They have uncertainties 0.1%, sometimes 0.05 % of the maximal measured pressure. There are fi ve experimental and one calculated values at high temperatures up to T=468.67 K. The results of Shemilt et al. (1959), Efremov (1966), Ambrose & Townsend (1963) have no information about the uncertainties of measurements. These works were carried out more than 40 years ago using of older pressure transmitters and thermometers. Our present results obtained with modern pressure transmitters and thermometers have the uncertainties up to P = ±5 Pa. In this case, the uncertainties approximately =±(0.05 to 0.1) % of the measured vapor pressures above normal boiling point must be reasonable. It is impossible to obtain higher accuracy measurements in this region.

Conclusion

The vapor pressure of 1-butanol at temperatures T=(274.15 K to 468.15) K experimentally measured in two modern automatic installations based on the static method. The investigations in the such wide range and high quality was carried out for the first time. The obtained experimental results were fitted by two different equations. The Clausius-Clapeyron type equation with four parameters showed the best fit. All available literature on vapor pressure of 1-butanol was analysed, and our experimental results were compared to that.

REFERENCES

Ambrose, D. & Townsend, R. (1963). Thermodynamic properties of organic oxygen compounds, part IX: the critical properties and vapor pressures, above five atmospheres, of six aliphatic alcohols. J. Chem. Soc., 54, 3614-3625.

Ambrose, D. & Sprake, C.H.S. (1970). Thermodynamic properties of organic oxygen compounds, XXV: vapor pressures and normal boiling temperatures of aliphatic alcohols. J. Chem. Therm., 2, 631-645.

Bernardes, M.A.S. (Ed.). (2011). Biofuel production – recent developments and prospects. Rijeka: InTech.

Biddiscombe, D.P., Collerson, R.R., Handley, R., Herington, E.F.G., Martin, J.F. & Sprake, C.H.S. (1963). Thermodynamic properties of organic oxygen compounds, VIII: purification and vapor pressures of the propyl and butyl alcohols. J. Chem. Soc. (Resumed), 1954-1957.

Brown, I. & Smith, F. (1959). Liquid-vapor equilibria. IX: the systems propanol + benzene and butanol + benzene at 45 °C. Australian J. Chem., 12, 407–412.

Butler, J.A.V., Ramchandi, N. & Thomson, D.W. (1935). The solubility of non-electrolytes; part I: the free energy of hydration of some aliphatic alcohols J. Chem. Soc., 280-285.

Calvar, N., Gómez, E., Domínguez, Á. & Macedo, E.A. (2010). Vapor pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate + several alcohols) at T = 323.15 K. J. Chem. Therm., 42, 625-630.

Deák, A., Victorov, A.I. & de Loos, Th.W. (1995). High pressure VLE in alkanol + alkane mixtures: experimental results for n-butane + ethanol, + 1-propanol, + 1-butanol systems and calculations with three EOS methods. Fluid Phase Equilibria, 107, 277-301.

Duncan, A.M., Ahosseini, A., McHenry, R., Depcik, C.D., Stagg-Williams, S.M. & Scurto, S.M. (2010). High-pressure viscosity of biodiesel from soybean, canola, and coconut oils. Energy Fuels, 24, 5708–5716.

Efremov, Y.V. (1966). Density, surface tension, saturated vapor pressures, and critical parameters of alcohols. Zhur. Fiz. Khim., 40, 1240-1247.

Geiseler, G., Stühnel, K. & Quitzsch, K. (1973). Excess behaviours of binary mixtures from isomeric butanols, Z. physik. Chemie, 254, 261-270.

Gimeno, B., Torcal, M., Mainar, A.M. & Perez, P. (2011). Isothermal vapor-liquid equilibrium of (1-butanol þ 1,8-cineole) at 10 Temperatures between (278.15 and 323.15). J. Chem. & Eng. Data, 56, 2443–2448.

Gracia, M., Sanchez, F., Perez, P., Valero, J. & Gutierrez Losa, C. (1992). Vapor pressures of (butan-1-ol + hexane) at temperatures between 283.10 K and 323.12 K. J. Chem. Thermod., 24, 463-471.

Gregorowicz, J., Kiciak, K. & Malanowski, S. (1987). Vapor pressure data for 1-butanol, cumene, n-octane and n-decane and their statistically consistent reduction with the Antoine equation. Fluid Phase Equilibria, 38, 97-107.

Hauschild, T., Wu, S. & Sandler, S.I. (1987). Vapor-liquid equilibrium of the mixtures 2-furaldehyde/1-butanol and 2-furaldehyde/4-methyl-2-pentanone. J. Chem. & Eng. Data, 32, 226–229.

Hiaki, T., Taniguchi, A., Tsuji, T. & Hongo, M. (1998). Isothermal vapor-liquid equilibria of octane with 1-butanol, 2-butanol, or 2-methyl-2-propanol. Fluid Phase Equilibria, 144, 145–155.

Kay, W.B. & Donham, W.E. (1955). Liquid-vapor equilibria in the iso-butanol - n-butanol, methanol - n-butanol and diethyl ether - n-butanol systems. Chem. Eng. Sci., 4, 1-16.

Kemme, H.R. & Kreps, S.I. (1969). Vapor pressure of primary n-alkyl chlorides and alcohols. J. Chem. & Eng. Data, 14, 98-102.

Koba, K.A. & Polishchuk, A.G. (1971). Temperature dependence of the pressure of alcohol vapors. Fermentnaya i Spirtovaya Promyshlennost, 37(6), 16-17.

Krestov, A. G., Klopov, V. I. & Pirogov, A. I. (1983). Saturated vapor pressure in the cholesterol tridecylate-n-butanol system at 298-368 K. Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya, 26(4), 514-517.

Luis, A., Forero, G., Jorge, A. & Velásquez J. (2011). Wagner liquid–vapor pressure equation constants from a simple methodology. J. Chem. Therm., 43, 1235–1251.

Munday, E.B., Mullins, J.C. & Edie, D.D. (1980). Vapor pressure data for toluene, 1-pentanol, 1-butanol, water, and 1-propanol and for the water and 1-propanol system from 273.15 to 323.15. J. Chem. & Eng. Data, 25(3), 191-194.

Oracz, P. & Kolasinska, G. (1987). Vapor-liquid equilibria – III: total vapor pressure measurements for binary mixtures of methanol, ethanol, 1-propanol and 1-butanol with benzene, methylbenzene and p-xylene at 313.15 K. Fluid Phase Equilibria, 35, 253-278.

Polishchuk, A.G. & Koba, K.A. (1972). Equations for the saturated vapor pressure of lower aliphatic alcohols. Vestnik L’vovskogo Politekhnicheskogo Instituta, 71, 10-15.

Sachek, A.I., Peshchenko, A.D., Markovnik, V.S., Ral’ko, O.V., Andreevskii, D.N. & Leont’eva, A.A. (1982). Temperature dependence of vapor pressure of butyl alcohols. Termodinamika Organicheskikh Soedinenii, 94-98.

Safarov, J., Hamidova, R., Zepik, S., Schmidt, H., Kul, I., Shahverdiyev, A. & Hassel, E. (2013). Thermophysical properties of 1-hexyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide at high temperatures and pressures, J. Mol. Liquids, 187, 137-156.

Schmeling, T. & Strey, R. (1983). Equilibrium vapor pressure measurements for the n-alcohols in the temperature range from -30 °C to +30 °C. Ber. Bunsen-Gesellschaft, 87, 871-874.

Shahverdiyev, A.N., Naziev, Y..M. & Safarov, J.T. (1992). Thermal properties of various aliphatic alcohols near the line of phase-change “liquid-vapor”. Russian J. Applied Chem., 7, 1631-1637.

Shemilt, L.W., Esplen, R.W. & Singh Mann, R. (1959). Thermodynamic properties of some organic compounds: I. PVT relationships and calculated thermodynamic properties for normal butanol. Canadian J. Chem. Enging., 37(4), 142–152.

Sundberg, A.T., Laavi, H., Kim, Y., Uusi-Kyyny, P., Pokki, J.-P. & Alopaeus, V. (2012). Vapor-liquid equilibria, excess enthalpy, and excess volume of binary mixtures

[TRC]. (1973). Thermodynamic tables - non hydrocarbons: vapor pressures. College Station: Texas A&M University.

containing an alcohol (1-butanol, 2-butanol, or 2-methyl-2-butanol) and 2-ethoxy-2-methylbuta ne. J. Chem. & Eng. Data, 57, 3502-3509.

Tsymarniy, V. A. & Palaguta, V. M. (1990). Saturation pressure and density of vaporous aliphatic alcohols. Zhur. Prikl. Khimii, 63, 1080-1084.

Wagner, W. & Pruß, A. (2002). The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Physical Chemistry Reference Data, 31, 387-535.

2025 година
Книжка 4
Книжка 3
ПРАЗНИК НА ХИМИЯТА 2025

Александра Камушева, Златина Златанова

ФАТАЛНИЯТ 13

Гинчо Гичев, Росица Стефанова

ХИМИЯ НА МЕДОВИНАТА

Габриела Иванова, Галя Аралова-Атанасова

Х ИМ ИЯ НА Б АНКНОТИТЕ И МОНЕТИТЕ

Ивайло Борисов, Мая Ганева

АЛУМИНИЙ – „ЩАСТЛИВИЯТ“ 13-И ЕЛЕМЕНТ

Мария Кирилова, Ралица Ранчова

МЕТАЛЪТ НА ВРЕМЕТО

Християна Христова, Мария Стойнова

СЛАДКА ЛИ Е ФРЕНСКАТА ЛУЧЕНА СУПА?

Женя Петрова, Мими Димова

ПАРИТЕ – ИСТОРИЯ И НЕОБХОДИМОСТ

Мария Александрова, Румяна Стойнева

АЛУМИНИЯТ – ОТ ОТПАДЪК ДО РЕСУРС

Стилян Атанасов, Никола Иванов, Галина Кирова

ТАЙНАТА ХИМИЯ НА ШВЕЙЦАРСКИТЕ БАНКНОТИ

Ивайла Николова, Марияна Георгиева

ХИМИЯТА – ДЕТЕКТИВ ИЛИ ПРЕСТЪПНИК?

Алвина Илин, Валентина Ткачова, Петя Петрова

БЕБЕШКИ ШАМПОАН ОТ ЯДЛИВИ СЪСТАВКИ: ФОРМУЛИРАНЕ НА НОВ КОЗМЕТИЧЕН ПРОДУКТ

Хана Крипендорф, 5, Даниел Кунев, 5, Цветелина Стоянова

БЪЛГАРСКОТО ИМЕ НА ДЪЛГОЛЕТИЕТО

Сияна Краишникова, Анелия Иванова

ХИМИЯ НА МОНЕТИТЕ

Кристина Анкова, Сияна Христова, Ростислава Цанева

ХИМИЯ НА ШОКОЛАДА

Камелия Вунчева, Мария-Сара Мандил, Марияна Георгиева

ХИМИЯТА НА ПАРИТЕ

Биляна Куртева, Ралица Ранчова

АЛУМИНИЯТ В КРИОГЕНИКАТА

Даниел Анков, Ива Петкова, Марияна Георгиева

ПРИЛОЖЕНИЕ НА АЛУМИНИЯ ВЪВ ВАКСИНИТЕ

Станислав Милчев, Петя Вълкова

АЛУМИНИЙ: „КРИЛА НА ЧОВЕЧЕСТВОТО – ЛЮБИМЕЦ 13“

Ростислав Стойков, Пепа Георгиева

ХИМИЯТА В ПЧЕЛНИЯ МЕД

Сиана Каракашева, Симона Тричкова, Майя Найденова-Георгиева

ХИМИЯ НА МЛЕЧНИТЕ ПРОДУКТИ

Пламена Боиклиева, 10 клас, Дафинка Юрчиева

ХИМИЯ В МАСЛИНИТЕ

Симона Гочева, Майя Найденова

ХИМИЯ НА ЛЮТОТО

Марта Пенчева, Васка Сотирова

ХИНАП – ИЗСЛЕДВАНЕ НА СЪДЪРЖАНИЕТО НА ВИТАМИН С

Елица Нейкова, Елисавета Григорова, Майя Найденова

ХИМИЯ НA ПAРИТE

Игликa Кoлeвa, Eмилия Ивaнoвa

ВЛИЯНИЕ НА МАРИНАТИТЕ ВЪРХУ МЕСОТО

Емил Мирчев, Галя Петрова

АНАЛИЗ НА ПРИРОДНИ ВОДИ В ОБЩИНА СЛИВЕН

Никола Урумов, Анелия Иванова

ТРИНАДЕСЕТИЯТ ЕЛЕМЕНТ – СПАСИТЕЛ ИЛИ ТИХ РАЗРУШИТЕЛ?

Виктория Дечкова, Никола Велчев, Нели Иванова

Книжка 2
Книжка 1
MATHEMATICAL MODELLING OF THE TRANSMISSION DYNAMICS OF PNEUMONIA AND MENINGITIS COINFECTION WITH VACCINATION

Deborah O. Daniel, Sefiu A. Onitilo, Omolade B. Benjamin, Ayoola A. Olasunkanmi

2024 година
Книжка 5-6
Книжка 3-4
Книжка 1-2
2023 година
Книжка 5-6
ПОДКАСТ – КОГА, АКО НЕ СЕГА?

Христо Чукурлиев

Книжка 3-4
Книжка 2
Книжка 1
2022 година
Книжка 6
METEOROLOGICAL DETERMINANTS OF COVID-19 DISEASE: A LITERATURE REVIEW

Z. Mateeva, E. Batchvarova, Z. Spasova, I. Ivanov, B. Kazakov, S. Matev, A. Simidchiev, A. Kitev

Книжка 5
MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A, Usman M. A., Daniel D. O. Odetunde O. S., Ogunwobi Z. O., Hammed F. A., Olubanwo O. O., Ajani A. S., Sanusi A. S., Haruna A. H.

ПОСТАНОВКА ЗА ИЗМЕРВАНЕ СКОРОСТТА НА ЗВУКА ВЪВ ВЪЗДУХ

Станислав Сланев, Хафизе Шабан, Шебнем Шабан, Анета Маринова

Книжка 4
MAGNETIC PROPERTIES

Sofija Blagojević, Lana Vujanović, Andreana Kovačević Ćurić

„TAP, TAP WATER“ QUANTUM TUNNELING DEMONSTRATION

Katarina Borković, Andreana Kovačević Ćurić

Книжка 3
Книжка 2
КОМЕТИТЕ – I ЧАСТ

Пенчо Маркишки

Книжка 1
DISTANCE LEARNING: HOMEMADE COLLOIDAL SILVER

Ana Sofía Covarrubias-Montero, Jorge G. Ibanez

2021 година
Книжка 6
STUDY OF COMPOSITIONS FOR SELECTIVE WATER ISOLATION IN GAS WELLS

Al-Obaidi S.H., Hofmann M., Smirnov V.I., Khalaf F.H., Alwan H.H.

Книжка 5
POTENTIAL APPLICATIONS OF ANTIBACTERIAL COMPOUNDS IN EDIBLE COATING AS FISH PRESERVATIVE

Maulidan Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, Nisrina Rahma Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto

Книжка 4
Книжка 3
Книжка 2
INVESTIGATION OF 238U, 234U AND 210PO CONTENT IN SELECTED BULGARIAN DRINKING WATER

Bozhidar Slavchev, Elena Geleva, Blagorodka Veleva, Hristo Protohristov, Lyuben Dobrev, Desislava Dimitrova, Vladimir Bashev, Dimitar Tonev

Книжка 1
DEMONSTRATION OF DAMPED ELECTRICAL OSCILLATIONS

Elena Grebenakova, Stojan Manolev

2020 година
Книжка 6
ДОЦ. Д-Р МАРЧЕЛ КОСТОВ КОСТОВ ЖИВОТ И ТВОРЧЕСТВО

Здравка Костова, Елена Георгиева

Книжка 5
Книжка 4
JACOB’S LADDER FOR THE PHYSICS CLASSROOM

Kristijan Shishkoski, Vera Zoroska

КАЛЦИЙ, ФОСФОР И ДРУГИ ФАКТОРИ ЗА КОСТНО ЗДРАВЕ

Радка Томова, Светла Асенова, Павлина Косева

Книжка 3
MATHEMATICAL MODELING OF 2019 NOVEL CORONAVIRUS (2019 – NCOV) PANDEMIC IN NIGERIA

Sefiu A. Onitilo, Mustapha A. Usman, Olutunde S. Odetunde, Fatai A. Hammed, Zacheous O. Ogunwobi, Hammed A. Haruna, Deborah O. Daniel

Книжка 2

Книжка 1
WATER PURIFICATION WITH LASER RADIATION

Lyubomir Lazov, Hristina Deneva, Galina Gencheva

2019 година
Книжка 6
LASER MICRO-PERFORATION AND FIELDS OF APPLICATION

Hristina Deneva, Lyubomir Lazov, Edmunds Teirumnieks

ПРОЦЕСЪТ ДИФУЗИЯ – ОСНОВА НА ДИАЛИЗАТА

Берна Сабит, Джемиле Дервиш, Мая Никова, Йорданка Енева

IN VITRO EVALUATION OF THE ANTIOXIDANT PROPERTIES OF OLIVE LEAF EXTRACTS – CAPSULES VERSUS POWDER

Hugo Saint-James, Gergana Bekova, Zhanina Guberkova, Nadya Hristova-Avakumova, Liliya Atanasova, Svobodan Alexandrov, Trayko Traykov, Vera Hadjimitova

Бележки върху нормативното осигуряване на оценяването в процеса

БЕЛЕЖКИ ВЪРХУ НОРМАТИВНОТО ОСИГУРЯВАНЕ, НА ОЦЕНЯВАНЕТО В ПРОЦЕСА НА ОБУЧЕНИЕТО

ТЕХНОЛОГИЯ

Б. В. Тошев

Книжка 5
ON THE GENETIC TIES BETWEEN EUROPEAN NATIONS

Jordan Tabov, Nevena Sabeva-Koleva, Georgi Gachev

Иван Странски – майсторът на кристалния растеж [Ivan Stranski

ИВАН СТРАНСКИ – МАЙСТОРЪТ, НА КРИСТАЛНИЯ РАСТЕЖ

Книжка 4

CHEMOMETRIC ANALYSIS OF SCHOOL LIFE IN VARNA

Radka Tomova, Petinka Galcheva, Ivajlo Trajkov, Antoaneta Hineva, Stela Grigorova, Rumyana Slavova, Miglena Slavova

ЦИКЛИТЕ НА КРЕБС

Ивелин Кулев

Книжка 3
ПРИНЦИПИТЕ НА КАРИЕРНОТО РАЗВИТИЕ НА МЛАДИЯ УЧЕН

И. Панчева, М. Недялкова, С. Кирилова, П. Петков, В. Симеонов

UTILISATION OF THE STATIC EVANS METHOD TO MEASURE MAGNETIC SUSCEPTIBILITIES OF TRANSITION METAL ACETYLACETONATE COMPLEXES AS PART OF AN UNDERGRADUATE INORGANIC LABORATORY CLASS

Anton Dobzhenetskiy, Callum A. Gater, Alexander T. M. Wilcock, Stuart K. Langley, Rachel M. Brignall, David C. Williamson, Ryan E. Mewis

THE 100

Maria Atanassova, Radoslav Angelov

A TALE OF SEVEN SCIENTISTS

Scerri, E.R. (2016). A Tale of Seven Scientists and a New Philosophy of Science.

Книжка 2
DEVELOPMENT OF A LESSON PLAN ON THE TEACHING OF MODULE “WATER CONDUCTIVITY”

A. Thysiadou, S. Christoforidis, P. Giannakoudakis

AMPEROMETRIC NITRIC OXIDE SENSOR BASED ON MWCNT CHROMIUM(III) OXIDE NANOCOMPOSITE

Arsim Maloku, Epir Qeriqi, Liridon S. Berisha, Ilir Mazreku, Tahir Arbneshi, Kurt Kalcher

THE EFFECT OF AGING TIME ON Mg/Al HYDROTALCITES STRUCTURES

Eddy Heraldy, Triyono, Sri Juari Santosa, Karna Wijaya, Shogo Shimazu

Книжка 1
A CONTENT ANALYSIS OF THE RESULTS FROM THE STATE MATRICULATION EXAMINATION IN MATHEMATICS

Elena Karashtranova, Nikolay Karashtranov, Vladimir Vladimirov

SOME CONCEPTS FROM PROBABILITY AND STATISTICS AND OPPORTUNITIES TO INTEGRATE THEM IN TEACHING NATURAL SCIENCES

Elena Karashtranova, Nikolay Karashtranov, Nadezhda Borisova, Dafina Kostadinova

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Василева

2018 година
Книжка 6

ЗДРАВЕ И ОКОЛНА СРЕДА

Кадрие Шукри, Светлана Великова, Едис Мехмед

РОБОТИКА ЗА НАЧИНАЕЩИ ЕНТУСИАСТИ

Даниела Узунова, Борис Велковски, Илко Симеонов, Владислав Шабански, Димитър Колев

DESIGN AND DOCKING STUDIES OF HIS-LEU ANALOGUES AS POTENTIOAL ACE INHIBITORS

Rumen Georgiev, , Tatyana Dzimbova, Atanas Chapkanov

X-RAY DIFFRACTION STUDY OF M 2 Zn(TeО3)2 (M - Na, K) ТELLURIDE

Kenzhebek T. Rustembekov, Mitko Stoev, Aitolkyn A. Toibek

CALIBRATION OF GC/MS METHOD FOR DETERMINATION OF PHTHALATES

N. Dineva, I. Givechev, D. Tanev, D. Danalev

ELECTROSYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES WITH SIMULTANEOUS EXTRACTION INTO P-XYLENE

S. S. Fomanyuk, V. O. Smilyk, G. Y. Kolbasov, I. A. Rusetskyi, T. A. Mirnaya

БИОЛОГИЧЕН АСПЕКТ НА РЕКАНАЛИЗАЦИЯ С ВЕНОЗНА ТРОМБОЛИЗА

Мариела Филипова, Даниела Попова, Стоян Везенков

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО VOLUME 27 / ГОДИНА XXVII, 2018 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА 3 / NUMBER 3: 313 – 472 КНИЖКА 4 / NUMBER 4: 473 – 632 КНИЖКА 5 / NUMBER 5: 633 – 792 КНИЖКА 6 / NUMBER 6: 793 – 952 КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА

(South Africa), A. Ali, M. Bashir (Pakistan) 266 – 278: j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)fx and nd1 Configurations and Correlation with L-S Terms / P. L. Meena (India) 760 – 770: Methyl, тhe Smallest Alkyl Group with Stunning Effects / S. Moulay 771 – 776: The Fourth State of Matter / R. Tsekov

Книжка 5
ИМОБИЛИЗИРАНЕНАФРУКТОЗИЛТРАНСФЕРАЗА ВЪРХУКОМПОЗИТНИФИЛМИОТПОЛИМЛЕЧНА КИСЕЛИНА, КСАНТАН И ХИТОЗАН

Илия Илиев, Тонка Василева, Веселин Биволарски, Ася Виранева, Иван Бодуров, Мария Марудова, Теменужка Йовчева

ELECTRICAL IMPEDANCE SPECTROSCOPY OF GRAPHENE-E7 LIQUID-CRYSTAL NANOCOMPOSITE

Todor Vlakhov, Yordan Marinov, Georgi. Hadjichristov, Alexander Petrov

ON THE POSSIBILITY TO ANALYZE AMBIENT NOISERECORDED BYAMOBILEDEVICETHROUGH THE H/V SPECTRAL RATIO TECHNIQUE

Dragomir Gospodinov, Delko Zlatanski, Boyko Ranguelov, Alexander Kandilarov

RHEOLOGICAL PROPERTIES OF BATTER FOR GLUTEN FREE BREAD

G. Zsivanovits, D. Iserliyska, M. Momchilova, M. Marudova

ПОЛУЧАВАНЕ НА ПОЛИЕЛЕКТРОЛИТНИ КОМПЛЕКСИ ОТ ХИТОЗАН И КАЗЕИН

Антоанета Маринова, Теменужка Йовчева, Ася Виранева, Иван Бодуров, Мария Марудова

CHEMILUMINESCENT AND PHOTOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF COCOON EXTRACTS

Y. Evtimova, V. Mihailova, L. A. Atanasova, N. G. Hristova-Avakumova, M. V. Panayotov, V. A. Hadjimitova

ИЗСЛЕДОВАТЕЛСКИ ПРАКТИКУМ

Ивелина Димитрова, Гошо Гоев, Савина Георгиева, Цвета Цанова, Любомира Иванова, Борислав Георгиев

Книжка 4
PARAMETRIC INTERACTION OF OPTICAL PULSES IN NONLINEAR ISOTROPIC MEDIUM

A. Dakova, V. Slavchev, D. Dakova, L. Kovachev

ДЕЙСТВИЕ НА ГАМА-ЛЪЧИТЕ ВЪРХУ ДЕЗОКСИРИБОНУКЛЕИНОВАТА КИСЕЛИНА

Мирела Вачева, Хари Стефанов, Йоана Гвоздейкова, Йорданка Енева

RADIATION PROTECTION

Natasha Ivanova, Bistra Manusheva

СТАБИЛНОСТ НА ЕМУЛСИИ ОТ ТИПА МАСЛО/ ВОДА С КОНЮГИРАНА ЛИНОЛОВА КИСЕЛИНА

И. Милкова-Томова, Д. Бухалова, К. Николова, Й. Алексиева, И. Минчев, Г. Рунтолев

THE EFFECT OF EXTRA VIRGIN OLIVE OIL ON THE HUMAN BODY AND QUALITY CONTROL BY USING OPTICAL METHODS

Carsten Tottmann, Valentin Hedderich, Poli Radusheva, Krastena Nikolova

ИНФРАЧЕРВЕНА ТЕРМОГРАФИЯ ЗА ДИАГНОСТИКА НА ФОКАЛНА ИНФЕКЦИЯ

Рая Грозданова-Узунова, Тодор Узунов, Пепа Узунова

ЕЛЕКТРИЧНИ СВОЙСТВА НА КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА

Ася Виранева, Иван Бодуров, Теменужка Йовчева

Книжка 3
ТРИ ИДЕИ ЗА ЕФЕКТИВНО ОБУЧЕНИЕ

Гергана Карафезиева

МАГИЯТА НА ТВОРЧЕСТВОТО КАТО ПЪТ НА ЕСТЕСТВЕНО УЧЕНЕ В УЧЕБНИЯ ПРОЦЕС

Гергана Добрева, Жаклин Жекова, Михаела Чонос

ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ ЧРЕЗ МИСЛОВНИ КАРТИ

Виолета Стоянова, Павлина Георгиева

ИГРА НА ДОМИНО В ЧАС ПО ФИЗИКА

Росица Кичукова, Ценка Маринова

ПРОБЛЕМИ ПРИ ОБУЧЕНИЕТО ПО ФИЗИКА ВЪВ ВВМУ „Н. Й. ВАПЦАРОВ“

А. Христова, Г. Вангелов, И. Ташев, М. Димидов

ИЗГРАЖДАНЕ НА СИСТЕМА ОТ УЧЕБНИ ИНТЕРНЕТ РЕСУРСИ ПО ФИЗИКА И ОЦЕНКА НА ДИДАКТИЧЕСКАТА ИМ СТОЙНОСТ

Желязка Райкова, Георги Вулджев, Наталия Монева, Нели Комсалова, Айше Наби

ИНОВАЦИИ В БОРБАТА С ТУМОРНИ ОБРАЗУВАНИЯ – ЛЕЧЕНИЕ ЧРЕЗ БРАХИТЕРАПИЯ

Георги Върбанов, Радостин Михайлов, Деница Симеонова, Йорданка Енева

NATURAL RADIONUCLIDES IN DRINKING WATER

Natasha Ivanova, Bistra Manusheva

Книжка 2

АДАПТИРАНЕ НА ОБРАЗОВАНИЕТО ДНЕС ЗА УТРЕШНИЯ ДЕН

И. Панчева, М. Недялкова, П. Петков, Х. Александров, В. Симеонов

STRUCTURAL ELUCIDATION OF UNKNOWNS: A SPECTROSCOPIC INVESTIGATION WITH AN EMPHASIS ON 1D AND 2D 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Vittorio Caprio, Andrew S. McLachlan, Oliver B. Sutcliffe, David C. Williamson, Ryan E. Mewis

j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)f

j-jCOUPLEDATOMICTERMSFORNONEQUIVALENT, ELECTRONS OF (n-f X nd CONFIGURATIONS AND, CORRELATION WITH L-S TERMS

INTEGRATED ENGINEERING EDUCATION: THE ROLE OF ANALYSIS OF STUDENTS’ NEEDS

Veselina Kolarski, Dancho Danalev, Senia Terzieva

Книжка 1
ZAGREB CONNECTION INDICES OF TiO2 NANOTUBES

Sohaib Khalid, Johan Kok, Akbar Ali, Mohsin Bashir

SYNTHESIS OF NEW 3-[(CHROMEN-3-YL)ETHYLIDENEAMINO]-PHENYL]-THIAZOLIDIN-4ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Malesore Pllana, Musaj Pacarizi, Veprim Thaçi, Gjyle Mulliqi-Osmani

2017 година
Книжка 6
GEOECOLOGICAL ANALYSIS OF INDUSTRIAL CITIES: ON THE EXAMPLE OF AKTOBE AGGLOMERATION

Zharas Berdenov, Erbolat Mendibaev, Talgat Salihov, Kazhmurat Akhmedenov, Gulshat Ataeva

TECHNOGENESIS OF GEOECOLOGICAL SYSTEMS OF NORTHEN KAZAKHSTAN: PROGRESS, DEVELOPMENT AND EVOLUTION

Kulchichan Dzhanaleyeva, Gulnur Mazhitova, Altyn Zhanguzhina, Zharas Berdenov, Tursynkul Bazarbayeva, Emin Atasoy

СПИСАНИЕ ПРОСВѢТА

Списание „Просвета“ е орган на Просветния съюз в България. Списанието е излизало всеки месец без юли и август. Годишният том съдържа 1280 стра- ници. Списанието се издава от комитет, а главен редактор от 1935 до 1943 г. е проф. Петър Мутафчиев, историк византолог и специалист по средновеков-

Книжка 5
47-А НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

В последните години тези традиционни за българското учителство конфе- ренции се организират от Българското дружество по химическо образование и история и философия на химията. То е асоцииран член на Съюза на химици- те в България, който пък е член на Европейската асоциация на химическите и

JOURNALS OF INTEREST: A REVIEW (2016)

BULGARIAN JOURNAL OF SCIENCE AND EDUCATION POLICY ISSN 1313-1958 (print) ISSN 1313-9118 (online) http://bjsep.org

INVESTIGATING THE ABILITY OF 8

Marina Stojanovska, Vladimir M. Petruševski

SYNTHESIS OF TiO -M (Cd, Co, Mn)

Candra Purnawan, Sayekti Wahyuningsih, Dwita Nur Aisyah

EFFECT OF DIFFERENT CADMIUM CONCENTRATION ON SOME BIOCHEMICAL PARAMETERS IN ‘ISA BROWN’ HYBRID CHICKEN

Imer Haziri, Adem Rama, Fatgzim Latifi, Dorjana Beqiraj-Kalamishi, Ibrahim Mehmeti, Arben Haziri

PHYTOCHEMICAL AND IN VITRO ANTIOXIDANT STUDIES OF PRIMULA VERIS (L.) GROWING WILD IN KOSOVO

Ibrahim Rudhani, Florentina Raci, Hamide Ibrahimi, Arben Mehmeti, Ariana Kameri, Fatmir Faiku, Majlinda Daci, Sevdije Govori, Arben Haziri

ПЕДАГОГИЧЕСКА ПОЕМА

Преди година-две заедно с директора на Националното издателство „Аз- буки“ д-р Надя Кантарева-Барух посетихме няколко училища в Родопите. В едно от тях ни посрещнаха в голямата учителска стая. По стените ѝ имаше големи портрети на видни педагози, а под тях – художествено написани умни мисли, които те по някакъв повод са казали. На централно място бе портретът на Антон Семьонович Макаренко (1888 – 1939). Попитах учителките кой е Макаренко – те посрещнаха въпроса ми с мълчание. А някога, в г

Книжка 4
„СИМВОЛНИЯТ КАПИТАЛ“ НА БЪЛГАРСКОТО УЧИЛИЩЕ

Николай Цанков, Веска Гювийска

KINETICS OF PHOTO-ELECTRO-ASSISTED DEGRADATION OF REMAZOL RED 5B

Fitria Rahmawati, Tri Martini, Nina Iswati

ALLELOPATHIC AND IN VITRO ANTICANCER ACTIVITY OF STEVIA AND CHIA

Asya Dragoeva, Vanya Koleva, Zheni Stoyanova, Eli Zayova, Selime Ali

NOVEL HETEROARYLAMINO-CHROMEN-2-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Gjyle Mulliqi-Osmani, Veprim Thaçi

Книжка 3
Quantum Connement of Mobile Na+ Ions in Sodium Silicate Glassy

QUANTUM CONFINEMENT OF MOBILE Na + IONS, IN SODIUM SILICATE GLASSY NANOPARTICLES

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon, Abolfazl Semnani, Ramin Jaberzadeh Ansari, Hamid Shakoori Langeroodi, Mahboube Shirani, Shima Ghanavati Nasab

EVALUATION OF ANTIBACTERIAL ACTIVITY OF DIFFERENT SOLVENT EXTRACTS OF TEUCRIUM CHAMAEDRYS (L.) GROWING WILD IN KOSOVO

Arben Haziri, Fatmir Faiku, Roze Berisha, Ibrahim Mehmeti, Sevdije Govori, Imer Haziri

Книжка 2
COMPUTER SIMULATORS: APPLICATION FOR GRADUATES’ADAPTATION AT OIL AND GAS REFINERIES

Irena O. Dolganova, Igor M. Dolganov, Kseniya A. Vasyuchka

SYNTHESIS OF NEW [(3-NITRO-2-OXO-2H-CHROMEN4-YLAMINO)-PHENYL]-PHENYL-TRIAZOLIDIN-4-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Hamit Ismaili, Idriz Vehapi, Naser Troni, Gjyle Mulliqi-Osmani, Veprim Thaçi

STABILITY OF RJ-5 FUEL

Lemi Türker, Serhat Variş

A STUDY OF BEGLIKTASH MEGALITHIC COMPLEX

Diana Kjurkchieva, Evgeni Stoykov, Sabin Ivanov, Borislav Borisov, Hristo Hristov, Pencho Kyurkchiev, Dimitar Vladev, Irina Ivanova

Книжка 1
2016 година
Книжка 6
THE EFFECT OF KOH AND KCL ADDITION TO THE DESTILATION OF ETHANOL-WATER MIXTURE

Khoirina Dwi Nugrahaningtyas, Fitria Rahmawati, Avrina Kumalasari

Книжка 5

ОЦЕНЯВАНЕ ЛИЧНОСТТА НА УЧЕНИКА

Министерството на народното просвещение е направило допълне- ния към Правилника за гимназиите (ДВ, бр. 242 от 30 октомври 1941 г.), според които в бъдеще ще се оценяват следните прояви на учениците: (1) трудолюбие; (2) ред, точност и изпълнителност; (3) благовъзпитаност; (4) народностни прояви. Трудолюбието ще се оценява с бележките „образцово“, „добро“, „незадо- волително“. С „образцово“ ще се оценяват учениците, които с любов и по- стоянство извършват всяка възложена им ил

Книжка 4
VOLTAMMERIC SENSOR FOR NITROPHENOLS BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH REDUCED GRAPHENE OXIDE

Arsim Maloku, Liridon S. Berisha, Granit Jashari, Eduard Andoni, Tahir Arbneshi

Книжка 3
ИЗСЛЕДВАНЕ НА ПРОФЕСИОНАЛНО-ПЕДАГОГИЧЕСКАТА РЕФЛЕКСИЯ НА УЧИТЕЛЯ ПО БИОЛОГИЯ (ЧАСТ ВТОРА)

Надежда Райчева, Иса Хаджиали, Наташа Цанова, Виктория Нечева

EXISTING NATURE OF SCIENCE TEACHING OF A THAI IN-SERVICE BIOLOGY TEACHER

Wimol Sumranwanich, Sitthipon Art-in, Panee Maneechom, Chokchai Yuenyong

NUTRIENT COMPOSITION OF CUCURBITA MELO GROWING IN KOSOVO

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

НАГРАДИТЕ „ЗЛАТНА ДЕТЕЛИНА“ ЗА 2016 Г.

На 8 март 2016 г. в голямата зала на Националния политехнически музей в София фондация „Вигория“ връчи годишните си награди – почетен плакет „Златна детелина“. Тази награда се дава за цялостна професионална и творче- ска изява на личности с особени заслуги към обществото в трите направления на фондация „Вигория“ – образование, екология, култура. Наградата цели да се даде израз на признателност за високи постижения на личности, които на професионално равнище и на доброволни начала са рабо

Книжка 2
СТО ГОДИНИ ОТ РОЖДЕНИЕТО НА ПРОФЕСОР ХРИСТО ИВАНОВ (1916 – 2004)

СТО ГОДИНИ ОТ РОЖДЕНИЕТО, НА ПРОФЕСОР ХРИСТО ИВАНОВ, (96 – 00

CONTEXT-BASED CHEMISTRY LAB WORK WITH THE USE OF COMPUTER-ASSISTED LEARNING SYSTEM

N. Y. Stozhko, A. V. Tchernysheva, E.M. Podshivalova, B.I. Bortnik

Книжка 1
ПО ПЪТЯ

Б. В. Тошев

INTERDISCIPLINARY PROJECT FOR ENHANCING STUDENTS’ INTEREST IN CHEMISTRY

Stela Georgieva, Petar Todorov , Zlatina Genova, Petia Peneva

2015 година
Книжка 6
COMPLEX SYSTEMS FOR DRUG TRANSPORT ACROSS CELL MEMBRANES

Nikoleta Ivanova, Yana Tsoneva, Nina Ilkova, Anela Ivanova

SURFACE FUNCTIONALIZATION OF SILICA SOL-GEL MICROPARTICLES WITH EUROPIUM COMPLEXES

Nina Danchova , Gulay Ahmed , Michael Bredol , Stoyan Gutzov

INTERFACIAL REORGANIZATION OF MOLECULAR ASSEMBLIES USED AS DRUG DELIVERY SYSTEMS

I. Panaiotov, Tz. Ivanova, K. Balashev, N. Grozev, I. Minkov, K. Mircheva

KINETICS OF THE OSMOTIC PROCESS AND THE POLARIZATION EFFECT

Boryan P. Radoev, Ivan L. Minkov, Emil D. Manev

WETTING BEHAVIOR OF A NATURAL AND A SYNTHETIC THERAPEUTIC PULMONARY SURFACTANTS

Lidia Alexandrova, Michail Nedyalkov, Dimo Platikanov

Книжка 5
TEACHER’S ACCEPTANCE OF STUDENTS WITH DISABILITY

Daniela Dimitrova-Radojchikj, Natasha Chichevska-Jovanova

IRANIAN UNIVERSITY STUDENTS’ PERCEPTION OF CHEMISTRY LABORATORY ENVIRONMENTS

Zahra Eskandari, Nabi.A Ebrahimi Young Researchers & Elite Club, Arsanjan Branch,

APPLICATION OF LASER INDUCED BREAKDOWN SPECTROSCOPY AS NONDESDUCTRIVE AND SAFE ANALYSIS METHOD FOR COMPOSITE SOLID PROPELLANTS

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, Seyyed Mohamad Reza Darbany, Mehran Karimi, Amir Hossein Rezayi Optics & Laser Science and Technology Research Center,

THE EFFECT OF DIOCTYLPHTHALATE ON INITIAL PROPERTIES AND FIELD PERFORMANCE OF SOME SEMISYNTHETIC ENGINE OILS

Azadeh Ghasemizadeh, Abolfazl Semnani, Hamid Shakoori Langeroodi, Alireza Nezamzade Ejhieh

QUALITY ASSESSMENT OF RIVER’S WATER OF LUMBARDHI PEJA (KOSOVO)

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

Книжка 4
БЛАГОДАРЯ ВИ!

Александър Панайотов

ТЕМАТА ВЪГЛЕХИДРАТИ В ПРОГРАМИТЕ ПО ХИМИЯ И БИОЛОГИЯ

Радка Томова, Елена Бояджиева, Миглена Славова , Мариан Николов

BILINGUAL COURSE IN BIOTECHNOLOGY: INTERDISCIPLINARY MODEL

V. Kolarski, D. Marinkova, R. Raykova, D. Danalev, S. Terzieva

ХИМИЧНИЯТ ОПИТ – НАУКА И ЗАБАВА

Елица Чорбаджийска, Величка Димитрова, Магдалена Шекерлийска, Галина Бальова, Методийка Ангелова

ЕКОЛОГИЯТА В БЪЛГАРИЯ

Здравка Костова

Книжка 3
SYNTHESIS OF FLUORINATED HYDROXYCINNAMOYL DERIVATIVES OF ANTI-INFLUENZA DRUGS AND THEIR BIOLOGICAL ACTIVITY

Boyka Stoykova, Maya Chochkova, Galya Ivanova, Luchia Mukova, Nadya Nikolova, Lubomira Nikolaeva-Glomb, Pavel Vojtíšek, Tsenka Milkova, Martin Štícha, David Havlíček

SYNTHESIS AND ANTIVIRAL ACTIVITY OF SOME AMINO ACIDS DERIVATIVES OF INFLUENZA VIRUS DRUGS

Radoslav Chayrov, Vesela Veselinova, Vasilka Markova, Luchia Mukova, Angel Galabov, Ivanka Stankova

NEW DERIVATIVES OF OSELTAMIVIR WITH BILE ACIDS

Kiril Chuchkov, Silvia Nakova, Lucia Mukova, Angel Galabov, Ivanka Stankova

MONOHYDROXY FLAVONES. PART III: THE MULLIKEN ANALYSIS

Maria Vakarelska-Popovska, Zhivko Velkov

LEU-ARG ANALOGUES: SYNTHESIS, IR CHARACTERIZATION AND DOCKING STUDIES

Tatyana Dzimbova, Atanas Chapkanov, Tamara Pajpanova

MODIFIED QUECHERS METHOD FOR DETERMINATION OF METHOMYL, ALDICARB, CARBOFURAN AND PROPOXUR IN LIVER

I. Stoykova, T. Yankovska-Stefenova, L.Yotova, D. Danalev Bulgarian Food Safety Agency, Sofi a, Bulgaria

LACTOBACILLUS PLANTARUM AC 11S AS A BIOCATALYST IN MICROBIAL ELECYTOLYSIS CELL

Elitsa Chorbadzhiyska, Yolina Hubenova, Sophia Yankova, Dragomir Yankov, Mario Mitov

STUDYING THE PROCESS OF DEPOSITION OF ANTIMONY WITH CALCIUM CARBONATE

K. B. Omarov, Z. B. Absat, S. K. Aldabergenova, A. B. Siyazova, N. J. Rakhimzhanova, Z. B. Sagindykova

Книжка 2
TEACHING CHEMISTRY AT TECHNICAL UNIVERSITY

Lilyana Nacheva-Skopalik, Milena Koleva

ФОРМИРАЩО ОЦЕНЯВАНЕ PEER INSTRUCTION С ПОМОЩТА НА PLICКERS ТЕХНОЛОГИЯТА

Ивелина Коцева, Мая Гайдарова, Галина Ненчева

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Javid Safarov, Bahruz Ahmadov, Saleh Mirzayev, Astan Shahverdiyev, Egon Hassel

Книжка 1
РУМЕН ЛЮБОМИРОВ ДОЙЧЕВ (1938 – 1999)

Огнян Димитров, Здравка Костова

NAMING OF CHEMICAL ELEMENTS

Maria Atanassova

НАЙДЕН НАЙДЕНОВ, 1929 – 2014 СПОМЕН ЗА ПРИЯТЕЛЯ

ИНЖ. НАЙДЕН ХРИСТОВ НАЙДЕНОВ, СЕКРЕТАР, НА СЪЮЗА НА ХИМИЦИТЕ В БЪЛГАРИЯ (2.10.1929 – 25.10.2014)

2014 година
Книжка 6
145 ГОДИНИ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

145 ANNIVERSARY OF THE BULGARIAN ACADEMY OF SCIENCES

ПАРНО НАЛЯГАНЕ НА РАЗТВОРИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

LUBRICATION PROPERTIES OF DIFFERENT PENTAERYTHRITOL-OLEIC ACID REACTION PRODUCTS

Abolfazl Semnani, Hamid Shakoori Langeroodi, Mahboube Shirani

THE ORIGINS OF SECONDARY AND TERTIARY GENERAL EDUCATION IN RUSSIA: HISTORICAL VIEWS FROM THE 21ST CENTURY

V. Romanenko, G. Nikitina Academy of Information Technologies in Education, Russia

ALLELOPATHIC AND CYTOTOXIC ACTIVITY OF ORIGANUM VULGARE SSP. VULGARE GROWING WILD IN BULGARIA

Asya Pencheva Dragoeva, Vanya Petrova Koleva, Zheni Dimitrova Nanova, Mariya Zhivkova Kaschieva, Irina Rumenova Yotova

Книжка 5
GENDER ISSUES OF UKRAINIAN HIGHER EDUCATION

Н.H.Petruchenia, M.I.Vorovka

МНОГОВАРИАЦИОННА СТАТИСТИЧЕСКА ОЦЕНКА НА DREEM – БЪЛГАРИЯ: ВЪЗПРИЕМАНЕ НА ОБРАЗОВАТЕЛНАТА СРЕДА ОТ СТУДЕНТИТЕ В МЕДИЦИНСКИЯ УНИВЕРСИТЕТ – СОФИЯ

Радка Томова, Павлина Гатева, Радка Хаджиолова, Зафер Сабит, Миглена Славова, Гергана Чергарова, Васил Симеонов

MUSSEL BIOADHESIVES: A TOP LESSON FROM NATURE

Saâd Moulay Université Saâd Dahlab de Blida, Algeria

Книжка 4
ЕЛЕКТРОННО ПОМАГАЛO „ОТ АТОМА ДО КОСМОСА“ ЗА УЧЕНИЦИ ОТ Х КЛАС

Силвия Боянова Професионална гимназия „Акад. Сергей П. Корольов“ – Дупница

ЕСЕТО КАТО ИНТЕГРАТИВЕН КОНСТРУКТ – НОРМАТИВЕН, ПРОЦЕСУАЛЕН И ОЦЕНЪЧНО-РЕЗУЛТАТИВЕН АСПЕКТ

Надежда Райчева, Иван Капурдов, Наташа Цанова, Иса Хаджиали, Снежана Томова

44

Донка Ташева, Пенка Василева

ДОЦ. Д.П.Н. АЛЕКСАНДЪР АТАНАСОВ ПАНАЙОТОВ

Наташа Цанова, Иса Хаджиали, Надежда Райчева

COMPUTER ASSISTED LEARNING SYSTEM FOR STUDYING ANALYTICAL CHEMISTRY

N. Y. Stozhko, A. V. Tchernysheva, L.I. Mironova

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА: БОРБА С ЕДНА ЛЕДЕНА ЕПОХА В ГОДИНАТА 3000 СЛЕД ХРИСТА. 3.

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА:, БОРБА С ЕДНА ЛЕДЕНА ЕПОХА, В ГОДИНАТА 000 СЛЕД ХРИСТА. .

Книжка 3
KNOWLEDGE OF AND ATTITUDES TOWARDS WATER IN 5

Antoaneta Angelacheva, Kalina Kamarska

ВИСША МАТЕМАТИКА ЗА УЧИТЕЛИ, УЧЕНИЦИ И СТУДЕНТИ: ДИФЕРЕНЦИАЛНО СМЯТАНЕ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ВАСИЛ ХРИСТОВ БОЗАРОВ

Пенка Бозарова, Здравка Костова

БИБЛИОГРАФИЯ НА СТАТИИ ЗА МИСКОНЦЕПЦИИТЕ В ОБУЧЕНИЕТО ПО ПРИРОДНИ НАУКИ ВЪВ ВСИЧКИ ОБРАЗОВАТЕЛНИ НИВА

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 2
SCIENTIX – OБЩНОСТ ЗА НАУЧНО ОБРАЗОВАНИЕ В ЕВРОПА

Свежина Димитрова Народна астрономическа обсерватория и планетариум „Николай Коперник“ – Варна

BOTYU ATANASSOV BOTEV

Zdravka Kostova, Margarita Topashka-Ancheva

CHRONOLOGY OF CHEMICAL ELEMENTS DISCOVERIES

Maria Atanassova, Radoslav Angelov

Книжка 1
ОБРАЗОВАНИЕ ЗА ПРИРОДОНАУЧНА ГРАМОТНОСТ

Адриана Тафрова-Григорова

A COMMENTARY ON THE GENERATION OF AUDIENCE-ORIENTED EDUCATIONAL PARADIGMS IN NUCLEAR PHYSICS

Baldomero Herrera-González Universidad Autónoma del Estado de México, Mexico

2013 година
Книжка 6
DIFFERENTIAL TEACHING IN SCHOOL SCIENCE EDUCATION: CONCEPTUAL PRINCIPLES

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ШЕСТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО „ЧОВЕКЪТ И ПРИРОДАТА“

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

HISTORY AND PHILOSOPHY OF SCIENCE: SOME RECENT PERIODICALS (2013)

Chemistry: Bulgarian Journal of Science Education

45. НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

„Образователни стандарти и природонаучна грамотност“ – това е темата на състоялата се от 25 до 27 октомври 2013 г. в Габрово 45. Национална конфе- ренция на учителите по химия с международно участие, която по традиция се проведе комбинирано с Годишната конференция на Българското дружество за химическо образование и история и философия на химията. Изборът на темата е предизвикан от факта, че развиването на природонаучна грамотност е обща тенденция на реформите на учебните програми и главна

Книжка 5

ЗА ХИМИЯТА НА БИРАТА

Ивелин Кулев

МЕТЕОРИТЪТ ОТ БЕЛОГРАДЧИК

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
RECASTING THE DERIVATION OF THE CLAPEYRON EQUATION INTO A CONCEPTUALLY SIMPLER FORM

Srihari Murthy Meenakshi Sundararajan Engineering College, India

CHEMICAL REACTIONS DO NOT ALWAYS MODERATE CHANGES IN CONCENTRATION OF AN ACTIVE COMPONENT

Joan J. Solaz-Portolés, Vicent Sanjosé Universitat de Valènciа, Spain

POLYMETALLIC COMPEXES: CV. SYNTHESIS, SPECTRAL, THERMOGRAVIMETRIC, XRD, MOLECULAR MODELLING AND POTENTIAL ANTIBACTERIAL PROPERTIES OF TETRAMERIC COMPLEXES OF Co(II), Ni(II), Cu(II), Zn(II), Cd(II) AND Hg(II) WITH OCTADENTATE AZODYE LIGANDS

Bipin B. Mahapatra, S. N. Dehury, A. K. Sarangi, S. N. Chaulia G. M. Autonomous College, India Covt. College of Engineering Kalahandi, India DAV Junior College, India

ПРОФЕСОР ЕЛЕНА КИРКОВА НАВЪРШИ 90 ГОДИНИ

CELEBRATING 90TH ANNIVERSARY OF PROFESSOR ELENA KIRKOVA

Книжка 3
SIMULATION OF THE FATTY ACID SYNTHASE COMPLEX MECHANISM OF ACTION

M.E.A. Mohammed, Ali Abeer, Fatima Elsamani, O.M. Elsheikh, Abdulrizak Hodow, O. Khamis Haji

FORMING OF CONTENT OF DIFFERENTIAL TEACHING OF CHEMISTRY IN SCHOOL EDUCATION OF UKRAINE

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

ИЗСЛЕДВАНЕ НА РАДИКАЛ-УЛАВЯЩА СПОСОБНОСТ

Станислав Станимиров, Живко Велков

Книжка 2
Книжка 1
COLORFUL EXPERIMENTS FOR STUDENTS: SYNTHESIS OF INDIGO AND DERIVATIVES

Vanessa BIANDA, Jos-Antonio CONSTENLA, Rolf HAUBRICHS, Pierre-Lonard ZAFFALON

OBSERVING CHANGE IN POTASSIUM ABUNDANCE IN A SOIL EROSION EXPERIMENT WITH FIELD INFRARED SPECTROSCOPY

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

ЦАРСКАТА ПЕЩЕРА

Рафаил ПОПОВ

УЧИЛИЩНИ ЛАБОРАТОРИИ И ОБОРУДВАНЕ SCHOOL LABORATORIES AND EQUIPMENT

Учебни лаборатории Илюстрации от каталог на Franz Hugershoff, Лайциг, притежаван от бъдещия

2012 година
Книжка 6
ADDRESING STUDENTS’ MISCONCEPTIONS CONCERNING CHEMICAL REACTIONS AND SYMBOLIC REPRESENTATIONS

Marina I. Stojanovska, Vladimir M. Petruševski, Bojan T. Šoptrajanov

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ПЕТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО ЧОВЕКЪТ И ПРИРОДАТА

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

ЕКОТОКСИКОЛОГИЯ

Васил Симеонов

ПРОФ. МЕДОДИЙ ПОПОВ ЗА НАУКАТА И НАУЧНАТА ДЕЙНОСТ (1920 Г.)

Проф. Методий Попов (1881-1954) Госпожици и Господа студенти,

Книжка 5
КОНЦЕПТУАЛНА СХЕМА НА УЧИЛИЩНИЯ КУРС П О ХИМИЯ – МАКР О СКОПСКИ ПОДХОД

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ROLE OF ULTRASONIC WAVES TO STUDY MOLECULAR INTERACTIONS IN AQUEOUS SOLUTION OF DICLOFENAC SODIUM

Sunanda S. Aswale, Shashikant R. Aswale, Aparna B. Dhote Lokmanya Tilak Mahavidyalaya, INDIA Nilkanthrao Shinde College, INDIA

SIMULTANEOUS ESTIMATION OF IBUPROFEN AND RANITIDINE HYDROCHLORIDE USING UV SPECTROPHOT O METRIC METHOD

Jadupati Malakar, Amit Kumar Nayak Bengal College of Pharmaceutical Sciences and Research, INDIA

GAPS AND OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION ASSESSMENT

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

РАДИОХИМИЯ И АРХЕОМЕТРИЯ: ПРО Ф. ДХН ИВЕЛИН КУЛЕВ RADIOCHEMISTRY AND ARCHEOMETRY: PROF. IVELIN KULEFF, DSc

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
TEACHING THE CONSTITUTION OF MATTER

Małgorzata Nodzyńska, Jan Rajmund Paśko

СЪСИРВАЩА СИСТЕМА НА КРЪВТА

Маша Радославова, Ася Драгоева

CATALITIC VOLCANO

CATALITIC VOLCANO

43-ТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка ТАШЕВА, Пенка ЦАНОВА

ЮБИЛЕЙ: ПРОФ. ДХН БОРИС ГЪЛЪБОВ JUBILEE: PROF. DR. BORIS GALABOV

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ПЪРВИЯТ ПРАВИЛНИК ЗА УЧЕБНИЦИТЕ (1897 Г.)

Чл. 1. Съставянето и издаване на учебници се предоставя на частната инициа- тива. Забележка: На учителите – съставители на учебници се запрещава сами да разпродават своите учебници. Чл. 2. Министерството на народното просвещение може да определя премии по конкурс за съставяне на учебници за горните класове на гимназиите и специ- алните училища. Чл. 3. Никой учебник не може да бъде въведен в училищата, ако предварително не е прегледан и одобрен от Министерството на народното просвещение. Чл.

JOHN DEWEY: HOW WE THINK (1910)

John Dewey (1859 – 1952)

ИНФОРМАЦИЯ ЗА СПЕЦИАЛНОСТИТЕ В ОБЛАСТТА НА ПРИРОДНИТЕ НАУКИ В СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ

1. Биология Студентите от специалност Биология придобиват знания и практически умения в областта на биологическите науки, като акцентът е поставен на организмово равнище. Те се подготвят да изследват биологията на организмите на клетъчно- организмово, популационно и екосистемно ниво в научно-функционален и прило- жен аспект, с оглед на провеждане на научно-изследователска, научно-приложна, производствена и педагогическа дейност. Чрез широк набор избираеми и факул- тативни курсове студентите

Книжка 3
УЧИТЕЛИТЕ ПО ПРИРОДНИ НАУКИ – ЗА КОНСТРУКТИВИСТКАТА УЧЕБНА СРЕДА В БЪЛГАРСКОТО УЧИЛИЩЕ

Адриана Тафрова-Григорова, Милена Кирова, Елена Бояджиева

ПОВИШАВАНЕ ИНТЕРЕСА КЪМ ИСТОРИЯТА НА ХИМИЧНИТЕ ЗНАНИЯ И ПРАКТИКИ ПО БЪЛГАРСКИТЕ ЗЕМИ

Людмила Генкова, Свобода Бенева Българско дружество за химическо образование и история и философия на химията

НАЧАЛО НА ПРЕПОДАВАНЕТО НА УЧЕБЕН ПРЕДМЕТ ХИМИЯ В АПРИЛОВОТО УЧИЛИЩЕ В ГАБРОВО

Мария Николова Национална Априловска гимназия – Габрово

ПРИРОДОНАУЧНОТО ОБРАЗОВАНИЕ В БЪЛГАРИЯ – ФОТОАРХИВ

В един дълъг период от време гимназиалните учители по математика, физика, химия и естествена

Книжка 2
„МАГИЯТА НА ХИМИЯТА“ – ВЕЧЕР НА ХИМИЯТА В ЕЗИКОВА ГИМНАЗИЯ „АКАД. Л. СТОЯНОВ“ БЛАГОЕВГРАД

Стефка Михайлова Езикова гимназия „Акад. Людмил Стоянов“ – Благоевград

МЕЖДУНАРОДНАТА ГОДИНА НА ХИМИЯТА 2011 В ПОЩЕНСКИ МАРКИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ЗА ПРИРОДНИТЕ НАУКИ И ЗА ПРАКТИКУМА ПО ФИЗИКА (Иванов, 1926)

Бурният развой на естествознанието във всичките му клонове през XIX –ия век предизвика дълбоки промени в мирогледа на културния свят, в техниката и в индустрията, в социалните отношения и в държавните интереси. Можем ли днес да си представим един философ, един държавен мъж, един обществен деец, един индустриалец, просто един културен човек, който би могъл да игнорира придобив- ките на природните науки през последния век. Какви ужасни катастрофи, какви социални сътресения би сполетяло съвре

Книжка 1
MURPHY’S LAW IN CHEMISTRY

Milan D. Stojković

42-рa МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Цанова

СЕМЕЙНИ УЧЕНИЧЕСКИ ВЕЧЕРИНКИ

Семейството трябва да познава училишето и училишето трябва да познава семейството. Взаимното познанство се налага от обстоятелството, че те, макар и да са два различни по природата си фактори на възпитанието, преследват една и съща проста цел – младото поколение да бъде по-умно, по-нравствено, физически по-здраво и по-щастливо от старото – децата да бъдат по-щастливи от родителите