Обучение по природни науки и върхови технологии

2012/5, стр. 708 - 725

A NEW FORMAL GEOMETRICAL METHOD FOR BALANCING CONTINUUM CLASSES O F CHEMICAL REACTIONS

Резюме:

Ключови думи:

Introduction

The best method of balancing chemical reactions would be one which could be applied to all oxidation-reduction reactions. Presently, there are such methods in chemistry and mathematics and they are created by virtue of algebraic principles.

The aim in the balancing of an oxidation-reduction reaction should be to secure a stoichiometrically correct final reaction and the method applied should emphasize the fundamental phenomena of certain class of reactions and take into account whatever other factors may be involved in a particular case which may modify the course of the reaction.

Generally speaking, balancing chemical reactions is an excellent topic for students who have chemistry as a major subject of study (Risteski, 1990). Mass balance of chemical reactions is one of the most highly studied subjects in chemical education. In fact, balancing chemical reactions provides a tremendous demonstrative and pedagogical example of interconnection between chemistry and linear algebra. In chemistry there are lots of so-called methods for balancing chemical reactions, but all of them have limited usage, because they hold only for some elementary chemical reactions. Actually, they are not methods, just particular procedures founded by virtue of experience, but without any formal criteria. A survey of the references which treat problem of balancing chemical reactions through the prism of chemistry is given in the previous author’s research works (Risteski, 2007a; 2007b; 2008a; 2008b; 2009).

Most current chemistry textbooks generally support the ion–electron procedure as the general balancing tool that best makes use of chemical principles. Since, the author of this article was astonished by the given advantage of that particular procedure, he posed the following question: why do they do that? This question does not have a philosophical disposition, just an intention to mention to chemists that it is a big fallacy; in the last decade, it is very well-known that only the mathematical methods are consistent methods for balancing chemical reactions. So-called chemical methods for balancing chemical reactions are inconsistent, because they consider chemical reactions in an informal way, which produces only paradoxes (Risteski, 2010; 2011).

Now, logically this question arises: what are chemical principles? According to Risteski (2010) the best short answer to this question is: ‘chemical principles’ are not defined entities in chemistry, and so this term does not have any meaning. They represent only a main generator for paradoxes. Actually, ‘chemical principles’ are a remnant of an old traditional approach in chemistry.

In order for readers to have a better picture about the balancing chemical reactions, let’s make a small digression. Really, until the second half of the 20th century there was no mathematical method for balancing chemical reactions in chemistry, other than the algebraic method. Then, chemists on an inertial way balanced just simple particular chemical reactions using only change in oxidation number procedure, partial reactions procedure and other slightly different modifications derived from them. So-called chemical principles were an assumption of traditional chemists, who thought that the solution of the general problem of balancing chemical reactions is possible by use of chemical procedures. But, practice showed that the solution of the century old problem is possible only by using a contemporary mathematical method (Risteski, 2007a).

Also, in (Risteski, 2010) the author emphasized very clearly, that balancing chemical reactions is not chemistry; it is just linear algebra. From a scientific view point, a chemical reaction can be balanced if and only if it generates a vector space. That is a necessary and sufficient condition for balancing a chemical reaction. This shows that chemical reaction must be considered as a formal whole, in a right sense of the word, if we like it to be balanced in a correct way. In the opposite case, as it was done by the chemical methods, one obtains only the absurd (Risteski, 2011).

Here, considered aliphatic hydrocarbon chemical reactions belong to the class of two generator chemical reactions with non-unique coefficients. These reactions are continuum reactions, because the problem of their coefficients determination reduces to the generalized continuum problem (Risteski, 2012).

A new geometrical method

In this section we shall develop a new geometrical method for balancing continuum chemical reactions. For that purpose, we shall introduce a whole set of auxiliary definitions from n-dimensional geometry (Kendall, 2004) and real finite-dimensional vector spaces (Halmos, 1987) to make the chemistry work consistently. The more abstract the theory is, the stronger the cognitive power is.

Let X be a finite set of molecules.

Definition 1. A chemical reaction on X is a formal linear combinations of elements of X , such that

ρ:i=1aijxj → 0, (1 ≤ j n) (1).

The coefficients xj, (1 ≤ j n) satisfy three basic principles (corresponding to a closed input-output static model): (i) the law of conservation of atoms; (ii) the law of conservation of mass, and (iii) the reaction time-independence.

Proposition 2. Any chemical reaction can be reduced to a set of hyperplanes of its atoms.

Proof. Since every chemical reaction can be presented in a matrix form Ax = 0, then it corresponds with (1). In fact, the expression (1) is a set of hyperplanes. Opposite, if Let us now consider an arbitrary subset A Í X.

Definition 3. A chemical reaction r may take place in a reaction combination composed of the molecules in A if and only if Domr Í A.

Definition 4. The collection of all possible reactions in the stoichiometrical space (X, R ), that can start from A is given by

R A = {r Î R | Domr Í A (2) }.

Theorem 5. Let U = span{v1, v2, …, vn} in a vector space V of the chemical reaction (1) over the field . Then,

U is a subspace of V containing each of vi, (1 ≤ i n (3)),

U is the smallest subspace containing these vectors in the sense that any subspace

of V that contains each of vi, (1 ≤ i n)(4), must contain U.

Proof. First we shall prove (3). Clearly 0 = 0v1 + 0v2 + + 0vn belongs to U. If v = a1v1 + a2v2 + + anvn and w = b1v1 + b2v2 + + bnvn are two members of U and a Î U, then v + w = (a1 + b1)v1 + (a2 + b2)v2 + + (an + bn)vn, av = (aa1)v1 + (aa2)v2 + + (aan)vn, so both v + w and av lie in U. Hence U is a subspace of V. It contains each of vi, (1 ≤ i n). For instance, v2 = 0v1 + 1v2 + 0v3 + + 0vn. This proves (3).

Now, we shall prove (4). Let W be subspace of V that contains each of vi, (1 ≤ i n). Since W is closed under scalar multiplication, each of aivi, (1 ≤ i n) lies in W for any choice of ai, (1 ≤ i n) in . But, then aivi, (1 ≤ i n) lies in W, because W is closed under addition. This means that W contains every member of U, which proves (4).

Theorem 6. The intersection of any number of subspaces of a vector space V of the chemical reaction (1) over the field is a subspace of V.

Proof. Let {Wi: i « I} be a collection of subspaces of V and let W = « (Wi: i « I). Since each Wi is a subspace, then 0 « Wi, «i « I. Thus 0 « W. Assume u, v « W. Then, u, v « Wi, «i « I. Since each Wi is a subspace, then (au + bv) « Wi, «i « I. Therefore (au + bv) « W. Thus W is a subspace of V of the chemical reaction (1).

Theorem 7. The hyperplanes (1), obtained from the chemical reaction, in n unknowns x1, x2, …, xn over the field has a solution set W, which is a subspace of the vector space n.

Proof. The system (1) is equivalent to the matrix equation Ax = 0. Since A0 = 0, the zero vector 0 « W. Assume u and v are vectors in W, i. e., u and v are solutions of the matrix equation Ax = 0. Then Au = 0 and Av = 0. Therefore, «a, b «, we have A(au + bv) = aAu + bAv = a0 + b0 = 0 + 0 = 0. Hence au + bv is a solution of the matrix equation Ax = 0, i. e., au + bv « W. Thus W is a subspace of n.

Proposition 8. If W is a subspace of V of the chemical reaction (1) over the field , then span{W} = W.

Proof. Since W is a subspace of V of the chemical reaction (1) over the field , W is closed under linear combinations. Hence span{W} « W. But W « span{W}. Both inclusions yield span{W} = W.

The relationship between the two planes a1x1 + a2x2 + + anxn + a = 0, and b1x1 + b2x2 + + bnxn + b = 0, can be described as follows:

1. intersecting if a1/b1 a2/b2 an/bn,

2. parallel if a1/b1 = a2/b2 = = an/bn a/b,

3. coincident if a1/b1 = a2/b2 = = an/bn = a/b.

The angle α(n1, n2) between two hyperplanes is equal to the acute angle determined by the normal vectors of the planes

n1 = (a1, a2, …, an) and n2 = (b1, b2, …, bn (5))

i.e.

α(n1, n2) = arccos{|i=1aibi|/ [(∑ i=1 ai2)1/2 (∑ i=1 bi2)1/2]} (6).

In the next section some very hard problems will be solved from the theory of balancing chemical reactions. Just, for that purpose was built a new n-dimensional geometrical method for balancing two generators aliphatic hydrocarbon chemical reactions. Here balanced reactions are completely new and according to our best knowledge for the first time they appear in scientific literature.

Main results

Problem 1

We shall balance the following aliphatic hydrocarbon chemical reaction

x1 C2H2 + x2 CH4 + x3 C2H4 + x4 C3H4 + x5 C2H6 + x6 C3H (7)6

+ x7 C4H6 + x8 C3H8 + x9 C4H8 x10 C5H10.

Solution
According to the reaction (7), carbon and hydrogen atoms are disposed adequately
on the following hyperplanes

2x1 + x2 + 2x3 + 3x4 + 2x5 + 3x6 + 4x7 + 3x8 + 4x9 = 5x10 (8),

2x1 + 4x2 + 4x3 + 4x4 + 6x5 + 6x6 + 6x7 + 8x8 + 8x9 = 10x10,
which intersection is

x1 = - 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10 (9)/3,

x2 = - 2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3,

where xi > 0, (3 ≤ i ≤ 10) are arbitrary real numbers. The intersection point has these coordinates

(- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3, - 2x3/3 - x4/3 - 4x5/3 - x6 (10)

- 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3, x3, x4, x5, x6, x7, x8, x9, x10), where xi > 0, (3 ≤ i ≤ 10) are arbitrary real numbers.

The system (8) has two (nonzero) linear equations in ten unknowns; and hence it has 10 - 2 = 8 free variables xi > 0, (3 ≤ i ≤ 10). Thus, the dimension of the solution space W of the system (8) is dim W = 8. To obtain a basis for W, we set x3 = 1, x4 = = x10 = 0, x3 = 0, x4 = 1, x5 = = x10 = 0, x3 = x4 = 0, x5 = 1, x6 = = x10 = 0,

x3 = = x5 = 0, x6 = 1, x7 = = x10(11) = 0,

x3 = = x6 = 0, x7 = 1, x8 = = x10 = 0, x3 = = x7 = 0, x8 = 1, x9 = x10 = 0,

x3 = = x8 = 0, x9 = 1, x10 = 0, x3 = = x9 = 0, x10 = 1,

in the expression (10) to obtain the solutions a1 = (- 2/3, - 2/3, 1, 0, 0, 0, 0, 0, 0, 0), a2 = (- 4/3, - 1/3, 0, 1, 0, 0, 0, 0, 0, 0), a3 = (- 1/3, - 4/3, 0, 0, 1, 0, 0, 0, 0, 0),

a4(12) = (- 1, - 1, 0, 0, 0, 1, 0, 0, 0, 0),

a5 = (- 5/3, - 2/3, 0, 0, 0, 0, 1, 0, 0, 0), a6 = (- 2/3, - 5/3, 0, 0, 0, 0, 0, 1, 0, 0), a7 = (- 4/3, - 4/3, 0, 0, 0, 0, 0, 0, 1, 0), a8 = (5/3, 5/3, 0, 0, 0, 0, 0, 0, 0, 1).

The set {a1, a2, a3, a4, a5, a6, a7, a8} is a basis of the solution space W.

The angle α(nC, nH) between carbon and hydrogen hyperplane (8) is equal to the acute angle determined by the normal vectors of the planes nC = (2, 1, 2, 3, 2, 3, 4, 3, 4, - 5) and nH = (2, 4, 4, 4, 6, 6, 6, 8, 8, - 10), i.e.,

α(nC, nH) = arccos {(2×2 + 1×4 + 2×4 + 3×4 + 2×6 + 3×6 + 4×6 + 3×8 + 4×8 + 5×10)/[(22 + 12 + 22 + 32 + 22 + 32 + 42 + 32 + 42+ 52)1/2 (22 + 42 + 42+ 42 + 62 + 62 + 62 + 8 2+ 82 + 102)1/2]} = arccos [188/(97×388)1/2] = arccos (94/97) = 14.3°.

After substitution of the expressions (9) into (7), the balanced reaction (1) obtains

its general form

(- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3) C2H(13)2

+ (- 2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3) CH4 + x3 C2H4 + x4 C3H4 + x5 C2H6 + x6 C3H6 + x7 C4H6 + x8 C3H8 + x9 C4H8 x10 C5H10,

where xi > 0, (3 ≤ i ≤ 10) are arbitrary real numbers.

Since the generators x1, x2 > 0, then for the general chemical reaction (13) holds this

system of linear inequalities

- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10(14)/3 > 0,

- 2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3 > 0.

From (8), one obtains the inequality

x10 > (4x3 + 5x4 + 5x5 + 6x6 + 7x7 + 7x8 + 8x9(15))/10.

Actually, the inequality (15) is a necessary and sufficient condition to hold the general reaction (13).

In order to determine a particular reaction of (13) we shall consider the following case.

For x3 = x4 = = x9 = 5, from (15) one obtains x10 = 22. Now, from (13) immediately follows the particular reaction

5 C2H2 + 5 CH4 + 15 C2H4 + 15 C3H4 + 15 C2H6 + 15 C3H (16)6

+ 15 C4H6 + 15 C3H8 + 15 C4H8 → 66 C5H10.

Problem 2 Now, we shall balance this alkyne’s chemical reaction

x1 C3H4 + x2 C4H6 + x3 C5H8 + x4 C6H10 + x5 C7H12 + x6 C8H (17)14

+ x7 C9H16 + x8 C10H18 + x9 C11H20 x10 C12H22 + x11 C2H2. Solution

From the above reaction adequately follow these carbon and hydrogen hyperplanes

3x1 + 4x2 + 5x3 + 6x4 + 7x5 + 8x6 + 9x7 + 10x8 + 11x9 = 12x10 + 2x11 (18),

4x1 + 6x2 + 8x3 + 10x4 + 12x5 + 14x6 + 16x7 + 18x8 + 20x9 = 22x10 + 2x11, which intersection is

x10 = (x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 (19))/10,

x11 = (9x1 + 8x2 + 7x3 + 6x4 + 5x5 + 4x6 + 3x7 + 2x8 + x9)/10, where xi > 0, (1 ≤ i ≤ 9) are arbitrary real numbers. The intersection point has these coordinates

[x1, x2, x3, …, x9, (x1 + 2x2 + 3x3 + + 9x9(20))/10,

(9x1 + 8x2 + 7x3 + 6x4 + + 2x8 + x9)/10], where xi > 0, (1 ≤ i ≤ 9) are arbitrary real numbers.

The system (18) has two (nonzero) linear equations in eleven unknowns; and hence it has 11 - 2 = 9 free variables xi > 0, (1 ≤ i ≤ 9). Thus, the dimension of the solution space W of the system (18) is dim W = 9. To obtain a basis for W, we set

x1 = 1, x2 = = x9 = 0, x1 = 0, x2 = 1, x3 = = x9 = 0, x1 = x2 = 0, x3 = 1, x4 = = x9 = 0, x1 = = x3 = 0, x4 = 1, x5 = = x9 = 0,

x1 = = x4 = 0, x5 = 1, x6 = = x9 (21) = 0,

x1 = = x5 = 0, x6 = 1, x7 = = x9 = 0, x1 = = x6 = 0, x7 = 1, x8 = x9 = 0, x1 = = x7 = 0, x8 = 1, x9 = 0, x1 = = x8 = 0, x9 = 1,

in the expression (20) to obtain the solutions a1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1/10, 9/10), a2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 2/10, 8/10), a3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 3/10, 7/10), a4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 4/10, 6/10),

a5(22) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 5/10, 5/10),

a6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 6/10, 4/10), a7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 7/10, 3/10), a8 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 8/10, 2/10), a9 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 9/10, 1/10).

The set {a1, a2, a3, a4, a5, a6, a7, a8, a9} is a basis of the solution space W.

The angle α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute

angle determined by the normal vectors of the planes

nC = (3, 4, 5, 6, 7, 8, 9, 10, 11, - 12, - 2) and nH =

(4, 6, 8, 10, 12, 14, 16, 18, 20, - 22, - 2), α(nC, nH) = arccos {(2×2 + 3×4 + 4×6 + 5×8 + 6×10 + 7×12 + 8×14 + +9×16 + 10×18 + 11×20 + 12×22)/[(22 + 32 + 42+ 52 + 6 2 + 72 + 82 + 92 + 102 + + 112 + 122)1/2 (22 + 42 + 62 + 82 + 102 + 122 + 142 + 162 + 182 + 202 + 222)1/2]} =

= arccos [12×13/(2×3×23×177)1/2] = 3.5°.

After substitution of the generators (19) into (17), the chemical reaction (17) obtains

its general form

x1 C3H4 + x2 C4H6 + x3 C5H8 + x4 C6H10 + x5 C7H12 + x6 C8H(23)14

+ x7 C9H16 + x8 C10H18 + x9 C11H20 → [(x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9)/10] C12H22 + [(9x1 + 8x2 + 7x3 + 6x4 + 5x5 + 4x6 + 3x7 + 2x8 + x9)/10] C2H2.

where xi > 0, (1 ≤ i ≤ 9) are arbitrary real numbers.

Example

Let’s consider a particular reaction of (23). For x1 = x2 = = x9 = 1 immediately from

(23) follows balanced particular reaction

2 C3H4 + 2 C4H6 + 2 C5H8 + 2 C6H10 + 2 C7H12 + 2 C8H (24)14

+ 2 C9H16 + 2 C10H18 + 2 C11H20 → 9 C12H22 + 9 C2H2.

Problem 3

The above alkyne’s reaction (17) gives an opportunity for its consideration in more general form. Taking into account this fact, now we shall balance the general alkyne’s

chemical reaction

in=1-2xiCi+2H2i+2 xn-1Cn+1H2n + xnC2H2, (n(25) > 2).

Solution

The general alkyne’s chemical reaction (25) reduces adequately to the following carbon and hydrogen hyperplanes

3x1 + 4x2 + 5x3 + + nxn-2 = (n + 1)xn-1 + 2xn(26),

4x1 + 6x2 + 8x3 + + (2n - 2)xn-2 = 2nxn-1 + 2xn, which intersection is

n-2

xn-1 = [1/(n - 1)]i=1ixi,

n-2

xn = [1/(n - 1)](n-ii=1 - 1)xi,

where n > 2 and xi > 0, (1 ≤ i n - 2) are arbitrary real numbers. The intersection point has these coordinates

{x1, x2, x3, …, xn-2, [x1 + 2x2 + 3x3 + + (n - 2)xn-2]/(n (28) - 1),

[(n - 2)x1 + (n - 3)x2 + (n - 4)x3 + + 2xn-3 + xn-2]/(n - 1)}, where xi > 0, (1 ≤ i n - 2) are arbitrary real numbers.

The system (26) has two (nonzero) linear equations in n unknowns; and hence it has n - 2 free variables xi > 0, (1 ≤ i n - 2). Thus, the dimension of the solution space W of the system (26) is dim W = n - 2. To obtain a basis for W, we set

x1 = 1, x2 = = xn-2 = 0, x 1 = 0, x2 = 1, x3 = = xn-2 = 0,

x1 = x2 = 0, x3 = 1, x4 = = xn-2 (29) = 0,


x 1 = = xn-3 = 0, xn-2 = 1,

in the expression (28) to obtain the solutions a1 = [1, 0, 0, …, 0, 1/(n - 1), (n - 2)/(n - 1)], a2 = [0, 1, 0, …, 0, 2/(n - 1), (n - 3)/(n - 1)],

a3 = [0, 0, 1, …, 0, 3/(n - 1), (n - 4)/(n (30) - 1)],

an-2 = [0, 0, 0, …, 1, (n - 2)/(n - 1), 1/(n - 1)].

The set {a1, a2, a3, …, an-2} is a basis of the solution space W.

The angle α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute angle determined by the normal vectors of the planes nC = (3, 4, 5, …, n, - n - 1, - 2) and nH = (4, 6, 8, …, 2n - 2, - 2n, - 2)

α(nC, nH) = arccos {|2×2 + 3×4 + 4×6 + 5×8 + + n×(2n - 2) + (n + 1)×2n|/ [(22 + 32 + 42 + + n2 + (n + 1)2)1/2 (22 + 42 + 62 + + (2n - 2)2 + (2n)2 )1/2]}.

Since

2×2 + 3×4 + 4×6 + 5×8 + + n×(2n - 2) + (n + 1)×2n = 2n(n + 1)(n + 2)/3, 22 + 32 + 42 + 52 + + n2 + (n + 1)2 = n(2n2 + 9n + 13)/6

and

22 + 42 + 62 + 82 + + (2n - 2)2 + (2n)2 = 2n(n + 1)(2n + 1)/3,

then

α(nC, nH) = arccos{2(n + 1)(n + 2)/[(n + 1)(2n + 1)(2n2 + 9n + 13)]1/2}.

According to (27) and (25), balanced alkyne’s chemical reaction obtains this general form n-2 n-2 n-2

(n - 1)i=1xiCi+2H2i+2 (∑i=1 ixi)Cn+1H2n + [∑ i=1 (n - i - 1)xi]C2H2, (n (31) > 2).

where xi > 0, (1 ≤ i n - 2) are arbitrary real numbers.1)

Example

Now, we shall consider a particular case of (31). For x1 = x2 = = xn-2 = 1, the reaction (31) transforms into following balanced particular reaction2) n-2

2i=1 Ci+2H2i+2 → (n - 2)(Cn+1H2n + C2H2), (n(32) > 2).

Problem 4

Like an interesting reaction, we shall balance this alkane’s chemical reaction

x1 C2H6 + x2 C3H8 + x3 C4H10 + x4 C5H12 + x5 C6H14 + x6 C7H(33)16

+ x7 C8H18 + x8 C9H20 + x9 C10H22 + x10 C11H24 x11 C12H26 + x12 CH4.

Solution

From the above alkane’s chemical reaction (33) follows these hyperplanes

2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 + 8x7 + 9x8 + 10x9 + 11x10 = 12x11 + x12 (34),

6x1 + 8x2 + 10x3 + 12x4 + 14x5 + 16x6 + 18x7 + 20x8 + 22x9 + 24x10 =

26x11 + 4x12, which intersection is

x11 = (x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10(35))/11,

x12 = (10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10)/11, where xi > 0, (1 ≤ i ≤ 10) are arbitrary real numbers. The intersection point has these coordinates

[x1, x2, x3, …, x9, x10, (x1 + 2x2 + 3x3 + + 10x10 (36))/11,

(10x1 + 9x2 + 8x3 + 7x4 + + 2x9 + x10)/11], where xi > 0, (1 ≤ i ≤ 10) are arbitrary real numbers.

The system (34) has two (nonzero) linear equations in twelve unknowns; and hence it has 12 - 2 = 10 free variables xi > 0, (1 ≤ i ≤ 10). Thus, the dimension of the solution space W of the system (34) is dim W = 10. To obtain a basis for W, we set

x1 = 1, x2 = = x10 = 0, x1 = 0, x2 = 1, x3 = = x10 = 0, x1 = x2 = 0, x3 = 1, x4 = = x10 = 0, x1 = = x3 = 0, x4 = 1, x5 = = x10 = 0,

x1 = = x4 = 0, x5 = 1, x6 = = x10 (37) = 0,

x1 = = x5 = 0, x6 = 1, x7 = = x10 = 0, x1 = = x6 = 0, x7 = 1, x8 = = x10 = 0, x1 = = x7 = 0, x8 = 1, x9 = 0, x1 = = x8 = 0, x9 = 1, x10 = 0, x1 = = x9 = 0, x10 = 1,

in the expression (30) to obtain the solutions a1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/11, 10/11), a2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2/11, 9/11), a3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3/11, 8/11), a4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4/11, 7/11),

a5(38) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5/11, 6/11),

a6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6/11, 5/11), a7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 7/11, 4/11), a8 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 8/11, 3/11), a9 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 9/11, 2/11), a10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10/11, 1/11).

The set {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10} is a basis of the solution space W.

The angle α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute

angle determined by the normal vectors of the planes

nC = (2, 3, 4, 5, …, 11, - 12, - 1) and nH = (6, 8, 10, 12, …, 24, - 26, - 4)

α(nC, nH) = arccos {(1×4 + 2×6 + 3×8 + 4×10 + 6×10 + + 12×26)/ [(1 + 22 + 32 + 42 + + 122)1/2 (42 + 62 + 82 + 102 + + 262)1/2]} = arccos {2×13×14/[5(13×409)1/2]} = 3.26°.

After substitution of the generators (35) into (33), the chemical reaction (33) obtains

its general form

x1 C2H6 + x2 C3H8 + x3 C4H10 + x4 C5H12 + x5 C6H14 + x6 C7H(39)16

+ x7 C8H18 + x8 C9H20 + x9 C10H22 + x10 C11H24

→ [(x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10)/11] C12H26

+ [(10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10)/11] CH4.

where xi > 0, (1 ≤ i ≤ 10) are arbitrary real numbers.

Example

Next, we shall consider a particular reaction of (39). For x1 = x2 = = x10 = 1 immediately from (39) follows balanced particular reaction

C2H6 + C3H8 + C4H10 + C5H12 + C6H14 + C7H16 + C8H(40)18

+ C9H20 + C10H22 + C11H24 → 5 C12H26 + 5 CH4.

Problem 5

According to the last problem, now arises a need to balance the general alkane’s chemical reaction

ni=1-2xiCi+1H2i+4 xn-1CnH2n+2 + xnCH4, (n(41) > 2).

Solution

The general alkane’s chemical reaction (41) reduces to the hyperplanes

2x1 + 3x2 + 4x3 + + (n - 1) xn-2 = nxn-1 + xn(42),

6x1 + 8x2 + 10x3 + + 2nxn-2 = (2n + 2)xn-1 + 4xn, which intersection is given by (27). The intersection point has coordinates (28).

The system (42) has two (nonzero) linear equations in n unknowns; and hence it has n - 2 free variables xi > 0, (1 ≤ i n - 2). Thus, the dimension of the solution space W of the system (42) is dim W = n - 2. To obtain a basis for W, we set (29) in (28) to obtain solutions (30).

The set {a1, a2, a3, …, an-2} is a basis of the solution space W.

The angle α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute angle determined by the normal vectors of the planes nC = (2, 3, 4, 5, …, (n - 1), - n, - 1) and nH = (6, 8, 10, 12, …, 2n, - (2n + 2), - 4)

α(nC, nH) = arccos |1×4 + 2×6 + 3×8 + 4×10 + + (n - 1)×2n + n×(2n + 2)|/

[(12 + 22 + 3 2 + 42 + + n2)1/2 (42 + 62 + + (2n + 2)2 )1/2].

Since

1×4 + 2×6 + 3×8 + 4×10 + + (n - 1)×2n + n×(2n + 2) = 2n(n + 1)(n + 2)/3, 12 + 22 + 32 + 42 + + n2 = n(n + 1)(2n + 1)/6

and

42 + 62 + 82 + 102 + + (2n + 2)2 = 2n(2n2 + 9n + 13)/3,

then

α(nC, nH) = arccos{2(n + 1)1/2(n + 2)/[(2n + 1)(2n2 + 9n + 13)]1/2}.

According to (27) and (41), balanced alkane’s chemical reaction obtains this general form n-2 n-2 n-2

(n - 1)i=1xiCi+1H2i+4 (∑i=1 ixi)CnH2n+2 + [∑ i=1 (n - i - 1)xi]CH4, (n(43) > 2).

where xi > 0, (1 ≤ i n - 2) are arbitrary real numbers.3)

Example

Let’s consider a particular case of (43). For x1 = x2 = = xn-2 = 1, the reaction (43) transforms into following balanced particular reaction4)

2in=1-2 Ci+1H2i+4 → (n - 2)(CnH2n+2 + CH4), (n(44) > 2).

Problem 6

Next, we shall balance the general alkene’s chemical reaction

ni=1-1xiCi+1H2i+2 xnCn+1H2n+2, (n(45) > 1).

Solution

Since the carbon and hydrogen atoms are disposed on the coincident hyperplanes, then the above alkene’s chemical reaction (45) reduces to this linear equation

2x1 + 3x2 + 4x3 + + nxn-1 = (n + 1)xn(46),

which general solution is

xn = [1/(n + 1)]ni=1-1(i + 1)xi, (n(47) > 1)

where xi > 0, (1 ≤ i n - 1) are arbitrary real numbers. The intersection point has these coordinates

{x1, x2, x3, …, xn-1, [2x1 + 3x2 4x3 + + nxn-1]/(n (48) + 1)},

where xi > 0, (1 ≤ i n - 2) are arbitrary real numbers.

The reaction (45) reduces to one (nonzero) linear equations in n unknowns; and hence it has n - 1 free variables xi > 0, (1 ≤ i n - 1). Thus, the dimension of the solution space W of (46) is dim W = n - 1. To obtain a basis for W, we set x1 = 1, x2 = = xn-1 = 0, x 1 = 0, x2 = 1, x3 = = xn-1 = 0,

x1 = x2 = 0, x3 = 1, x4 = = xn-1 (49) = 0,

x1 = = xn-2 = 0, xn-1 = 1, in the expression (48) to obtain the solutions a1 = [1, 0, 0, …, 0, 2/(n + 1)], a2 = [0, 1, 0, …, 0, 3/(n + 1)],

a3 = [0, 0, 1, …, 0, 4/(n (50) + 1)],

an-1 = [0, 0, 0, …, 1, n/(n + 1)].

The set {a1, a2, a3, …, an-1} is a basis of the solution space W.

After substitution of the generator (47) into (45), balanced alkene’s chemical reaction obtains this general form

n-1

(n + 1)ni=1-1xiCi+1H2i+2 [∑i=1 (i + 1)xi]Cn+1H2n+2, (n > 1)

where xi > 0, (1 ≤ i n - 1) are arbitrary real numbers.

Example

Now, we shall consider a particular case of (51). For x1 = x2 = = xn-1 = 1, the reaction (51) transforms into following balanced particular reaction n-1

(2n + 2)i=1 Ci+1H2i+2 → (n - 1)(n + 2)Cn+1H2n+2, (n (52) > 1).

Problem 7

Next, the general alcohol’s chemical reaction will be considered

ni=1-2xiCi+1H2i+4 O → xn-1CnH2n+2O + xnCH4O, (n(53) > 2).

Solution

The general alcohol’s chemical reaction (53) reduces to the following hyperplanes 2x1 + 3x2 + 4x3 + + (n - 1)xn-2 = nxn-1 + xn,

3x1 + 4x2 + 5x3 + + nxn-2 = (n + 1)xn-1 + 2xn(54),

x1 + x2 + x3 + + xn-2 = xn-1 + xn, which intersection is given by (27). The intersection point has coordinates (28). The system (54) has two (nonzero) linear equations in n unknowns; and hence it has n 2 free variables xi > 0, (1 ≤ i n - 2). Thus, the dimension of the solution space W of the system (54) is dim W = n - 2. To obtain a basis for W, we set (29) in the expression (28) to obtain the solutions (30). The set {a1, a2, a3, …, an-2} is a basis of the solution space W.

The angle α(nC, nO) between carbon and oxygen hyperplane is equal to the acute

angle determined by the normal vectors of the planes

nC = (2, 3, 4, …, n - 1, - n, - 1) and nO = (1, 1, 1, …, 1, - 1, - 1)

α(n C, nO) = arccos {|1×1 + 2×1 + 3×1 + 4×1 + + (n - 1)×1 + n×1|/ [(12 + 12 + 12 + + 12 + 12)1/2 (12 + 22 + 32 + 42 + + (n - 1)2 + n2)1/2]}.

Since

1×1 + 2×1 + 3×1 + 4×1 + + (n - 1)×1 + n×1 = n(n + 1)/2, 12 + 12 + 12 + 12 + + 12 + 12 = n,

and

12 + 22 + 32 + 42 + + (n - 1)2 + n2 = n(n + 1)(2n + 1)/6,

then

α(nC, nO) = arccos{[3(n + 1)/2(2n + 1)]1/2}.

The angle α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute

angle determined by the normal vectors of the planes

nC = (2, 3, 4, …, n - 1, - n, - 1), nH = (3, 4, 5, …, n, - n - 1, - 2)

α(nC, nH) = arccos {|1×2 + 2×3 + 3×4 + 4×5 + + (n - 1)×n + n×(n + 1)|/ [(12 + 22 + 32 + + (n - 1)2 + n2)1/2 (22 + 32 + 42 + + n2 + (n + 1)2)1/2]}.

Since

1×2 + 2×3 + 3×4 + 4×5 + + (n - 1)×n + n×(n + 1) = n(n + 1)/2, 12 + 22 + 32 + + (n - 1)2 + n 2 = n(n + 1)(2n + 1)/6,

and

22 + 32 + 42 + + n2 + (n + 1)2 = n(2n2 + 9n + 13)/6,

then

α(nC, nH) = arccos{[3(n + 1)/(2n + 1)(2n2 + 9n + 13)]1/2}.

The angle α(nO, nH) between oxygen and hydrogen hyperplane is equal to the acute

angle determined by the normal vectors of the planes

nO = (1, 1, 1, …, 1, - 1, - 1), nH = (3, 4, 5, …, n, - n - 1, - 2)

α(nO, nH) = arccos {|1×2 + 1×3 + 1×4 + 1×5 + + 1×n + 1×(n + 1)|/ [(12 + 12 + 12 + + 12 + 12)1/2 (22 + 32 + 42 + + n2 + (n + 1)2)1/2]}.

Since

1×2 + 1×3 + 1×4 + 1×5 + + 1×n + 1×(n + 1) = n(n + 3)/2, 12 + 12 + 12 + + 12 + 12 = n,

and

22 + 32 + 42 + + n2 + (n + 1)2 = n(2n2 + 9n + 13)/6,

then

α(nO, nH) = arccos{[3(n + 3)2/2(2n2 + 9n + 13)]1/2}.

According to (27) and (53), balanced alcohol’s reaction obtains this general form
(n - 1)in=1-2xiCi+1H2i+4 O → (∑n-2 i=1 ixi)CnH2n+2O + [∑ n-2 i=1 (n - i - 1)xi]CH4O, (n > 2) (55)
where xi > 0, (1 ≤ i n - 2) are arbitrary real numbers.

Example

Let’s consider a particular case of (55). For x1 = x2 = = xn-2 = 1, the reaction (55) becomes

2in=1-2 Ci+1H2i+4O → (n - 2)(CnH2n+2O + CH4O), (n(56) > 2).

Discussion

Presently in chemistry and mathematics, there are several formal mathematical methods for balancing chemical reactions, which work succesfully for chemical reactions possess atoms with fractional and integer oxidation numbers. These methods are founded by virtue of generalized matrix inverses and all of them need higher level of algebraic knowledge for their application. Just it was a stumbling block for chemists to use these methods for their daily purposes. In order to be avoid that awkward position, the author created this formal geometrical method for balancing continuum chemical reactions, with an intention to adapt a new contemporary mathematical method according to chemists’ requirements.

By the way, this geometrical method reduces any chemical reaction to a set of hyperplanes of its atoms. Intersection of the hyperplanes is a hyperline, where lie all required reaction coefficients. In order to be verified its power and supremacy it was applied on several continuum classes organic reactions, such that obtained results showed that it works perfectly.

Conclusion

In this article are balanced only continuum class organic chemical reactions, such those of aliphatic hydrocarbon chemical reaction. Among considered organic reactions were: alkyne’s general and its particular chemical reactions, alkane’s general and its particular chemical reactions, alkene’s general and its particular chemical reaction, and alcohol’s general and its particular chemical reaction. All chemical reactions looked as elementary two and three atom molecular reactions, but they were very hard to balance. By this method the author proved again that balancing chemical reactions does not have anything with chemistry, because it is a pure mathematical issue.

The strengths of the geometrical method are: (1) This method provides an alternative approach for balancing continuum chemical reactions. By this method is showed that algebraic methods can be substituted by geometrical methods; (2) Since this method is well formalized, it belongs to the class of consistent methods for balancing chemical reaction; (3) This method showed that any chemical reactions can be treated as ndimensional geometrical entity; (4) In fact, here-offered geometrical method simplifies mathematical operations provided by the previous well-known matrix methods and is very easily acceptable for daily practice. The geometrical method has this advantage, because it fits for all continuum chemical reactions, which previously were balanced only by the methods of generalized matrix inverses; (5) For determination of intersection point of hyperplanes any method for solution of system of linear equations can be used; (6) By this method the general form of the balanced chemical reaction much faster than by other matrix methods can be determined; (7) From the general balanced reaction the other particular and sub-particular reactions can be determined; (8) By this method, the angle α(n1, n2) between atom hyperplanes can be determined very easily; (9) The geometrical method provides the dimension of the solution space; (10) Also, by this method a basis of the solution space can be determined; (11) Necessary and sufficient conditions for which some reaction holds can be determined by this method too. These conditions determine the reaction interval of its possibility; (12) This method gives an opportunity to be extended with other numerical calculations necessary for continuum reactions; (13) Here offered geometrical method represents a well basis for building a software package.

The weak sides of the geometrical method are: (14) By this method the minimal reaction coefficients cannot be determined; (15) Also, this method cannot recognize when chemical reaction reduces to one generator reaction; (16) It cannot predict quantitative relations among reaction coefficients; (17) This method cannot arrange molecules disposition; (18) The geometrical method cannot be predicted reaction stability.

This method wild opens the doors in chemistry and mathematics too, for a new research of continuum chemical reactions, which unfortunately today cannot be balanced by usage of computer, because there is not such method. Here developed geometrical method is a big challenge for researchers to extend and adapt it for a computer application. Sure that it is not easy and simple job, but it deserves to be realized as soon as possible. NOTES

1. In the reaction (31), if one substitutes n = 11, then it transforms into (23).

2. The alkyne’s reaction (32), for n = 11 becomes sub-particular reaction (24).

3. In the reaction (43), if one substitutes n = 12, then it transforms into (39).

4. The alkane’s reaction (44), for n = 12 becomes sub-particular reaction (40). REFERENCES

Halmos, P. (1987). Finite-dimensional vector spaces. New York - Berlin - Heidelberg: Springer-Vlg.

Kendall, M. G. (2004). A course in the geometry of n dimensions. Mineola: Dover Pub. Inc.

Risteski, I. B. (1990). The new algebraic criterions to even out the chemical reactions (pp. 313-318). In: 22nd October Meeting of Miners & Metallurgists: Collection of Papers. Oct. 1 - 2, Bor. Institute of Copper Bor & Technical Faculty Bor.

Risteski, I. B. (2007a). A new approach to balancing chemical equations. SIAM Problems & Solutions. 1-10.

Risteski, I. B. (2007b). A new nonsingular matrix method for balancing chemical equations and their stability. Internat. J. Math. Manuscripts, 1, 180-205.

Risteski, I. B. (2008a). A new pseudoinverse matrix method for balancing chemical equations and thier stability. J. Korean Chem. Soc., 52, 223-238.

Risteski, I. B. (2008b). A new generalized matrix inverse method for balancing chemical equations and their stability. Bol. Soc. Quím. México, 2, 104-115.

Risteski, I. B. (2009). A new singular matrix method for balancing chemical equations and their stability. J. Chinese Chem. Soc., 56, 65-79.

Risteski, I. B. (2010). A new complex vector method for balancing chemical equations. Materials & Technology, 44, 193-203.

Risteski, I. B. (2011). New discovered paradoxes in theory of balancing chemical reactions. Materials & Technology, 45, 503-522.

Risteski, I. B. (2012). A new algebra for balancing special chemical reactions, Chemistry, 21, 223-234.

2025 година
Книжка 4
Книжка 3
ПРАЗНИК НА ХИМИЯТА 2025

Александра Камушева, Златина Златанова

ФАТАЛНИЯТ 13

Гинчо Гичев, Росица Стефанова

ХИМИЯ НА МЕДОВИНАТА

Габриела Иванова, Галя Аралова-Атанасова

Х ИМ ИЯ НА Б АНКНОТИТЕ И МОНЕТИТЕ

Ивайло Борисов, Мая Ганева

АЛУМИНИЙ – „ЩАСТЛИВИЯТ“ 13-И ЕЛЕМЕНТ

Мария Кирилова, Ралица Ранчова

МЕТАЛЪТ НА ВРЕМЕТО

Християна Христова, Мария Стойнова

СЛАДКА ЛИ Е ФРЕНСКАТА ЛУЧЕНА СУПА?

Женя Петрова, Мими Димова

ПАРИТЕ – ИСТОРИЯ И НЕОБХОДИМОСТ

Мария Александрова, Румяна Стойнева

АЛУМИНИЯТ – ОТ ОТПАДЪК ДО РЕСУРС

Стилян Атанасов, Никола Иванов, Галина Кирова

ТАЙНАТА ХИМИЯ НА ШВЕЙЦАРСКИТЕ БАНКНОТИ

Ивайла Николова, Марияна Георгиева

ХИМИЯТА – ДЕТЕКТИВ ИЛИ ПРЕСТЪПНИК?

Алвина Илин, Валентина Ткачова, Петя Петрова

БЕБЕШКИ ШАМПОАН ОТ ЯДЛИВИ СЪСТАВКИ: ФОРМУЛИРАНЕ НА НОВ КОЗМЕТИЧЕН ПРОДУКТ

Хана Крипендорф, 5, Даниел Кунев, 5, Цветелина Стоянова

БЪЛГАРСКОТО ИМЕ НА ДЪЛГОЛЕТИЕТО

Сияна Краишникова, Анелия Иванова

ХИМИЯ НА МОНЕТИТЕ

Кристина Анкова, Сияна Христова, Ростислава Цанева

ХИМИЯ НА ШОКОЛАДА

Камелия Вунчева, Мария-Сара Мандил, Марияна Георгиева

ХИМИЯТА НА ПАРИТЕ

Биляна Куртева, Ралица Ранчова

АЛУМИНИЯТ В КРИОГЕНИКАТА

Даниел Анков, Ива Петкова, Марияна Георгиева

ПРИЛОЖЕНИЕ НА АЛУМИНИЯ ВЪВ ВАКСИНИТЕ

Станислав Милчев, Петя Вълкова

АЛУМИНИЙ: „КРИЛА НА ЧОВЕЧЕСТВОТО – ЛЮБИМЕЦ 13“

Ростислав Стойков, Пепа Георгиева

ХИМИЯТА В ПЧЕЛНИЯ МЕД

Сиана Каракашева, Симона Тричкова, Майя Найденова-Георгиева

ХИМИЯ НА МЛЕЧНИТЕ ПРОДУКТИ

Пламена Боиклиева, 10 клас, Дафинка Юрчиева

ХИМИЯ В МАСЛИНИТЕ

Симона Гочева, Майя Найденова

ХИМИЯ НА ЛЮТОТО

Марта Пенчева, Васка Сотирова

ХИНАП – ИЗСЛЕДВАНЕ НА СЪДЪРЖАНИЕТО НА ВИТАМИН С

Елица Нейкова, Елисавета Григорова, Майя Найденова

ХИМИЯ НA ПAРИТE

Игликa Кoлeвa, Eмилия Ивaнoвa

ВЛИЯНИЕ НА МАРИНАТИТЕ ВЪРХУ МЕСОТО

Емил Мирчев, Галя Петрова

АНАЛИЗ НА ПРИРОДНИ ВОДИ В ОБЩИНА СЛИВЕН

Никола Урумов, Анелия Иванова

ТРИНАДЕСЕТИЯТ ЕЛЕМЕНТ – СПАСИТЕЛ ИЛИ ТИХ РАЗРУШИТЕЛ?

Виктория Дечкова, Никола Велчев, Нели Иванова

Книжка 2
Книжка 1
MATHEMATICAL MODELLING OF THE TRANSMISSION DYNAMICS OF PNEUMONIA AND MENINGITIS COINFECTION WITH VACCINATION

Deborah O. Daniel, Sefiu A. Onitilo, Omolade B. Benjamin, Ayoola A. Olasunkanmi

2024 година
Книжка 5-6
Книжка 3-4
Книжка 1-2
2023 година
Книжка 5-6
ПОДКАСТ – КОГА, АКО НЕ СЕГА?

Христо Чукурлиев

Книжка 3-4
Книжка 2
Книжка 1
2022 година
Книжка 6
METEOROLOGICAL DETERMINANTS OF COVID-19 DISEASE: A LITERATURE REVIEW

Z. Mateeva, E. Batchvarova, Z. Spasova, I. Ivanov, B. Kazakov, S. Matev, A. Simidchiev, A. Kitev

Книжка 5
MATHEMATICAL MODELLING OF THE TRANSMISSION MECHANISM OF PLAMODIUM FALCIPARUM

Onitilo S. A, Usman M. A., Daniel D. O. Odetunde O. S., Ogunwobi Z. O., Hammed F. A., Olubanwo O. O., Ajani A. S., Sanusi A. S., Haruna A. H.

ПОСТАНОВКА ЗА ИЗМЕРВАНЕ СКОРОСТТА НА ЗВУКА ВЪВ ВЪЗДУХ

Станислав Сланев, Хафизе Шабан, Шебнем Шабан, Анета Маринова

Книжка 4
MAGNETIC PROPERTIES

Sofija Blagojević, Lana Vujanović, Andreana Kovačević Ćurić

„TAP, TAP WATER“ QUANTUM TUNNELING DEMONSTRATION

Katarina Borković, Andreana Kovačević Ćurić

Книжка 3
Книжка 2
КОМЕТИТЕ – I ЧАСТ

Пенчо Маркишки

Книжка 1
DISTANCE LEARNING: HOMEMADE COLLOIDAL SILVER

Ana Sofía Covarrubias-Montero, Jorge G. Ibanez

2021 година
Книжка 6
STUDY OF COMPOSITIONS FOR SELECTIVE WATER ISOLATION IN GAS WELLS

Al-Obaidi S.H., Hofmann M., Smirnov V.I., Khalaf F.H., Alwan H.H.

Книжка 5
POTENTIAL APPLICATIONS OF ANTIBACTERIAL COMPOUNDS IN EDIBLE COATING AS FISH PRESERVATIVE

Maulidan Firdaus, Desy Nila Rahmana, Diah Fitri Carolina, Nisrina Rahma Firdausi, Zulfaa Afiifah, Berlian Ayu Rismawati Sugiarto

Книжка 4
Книжка 3
Книжка 2
INVESTIGATION OF 238U, 234U AND 210PO CONTENT IN SELECTED BULGARIAN DRINKING WATER

Bozhidar Slavchev, Elena Geleva, Blagorodka Veleva, Hristo Protohristov, Lyuben Dobrev, Desislava Dimitrova, Vladimir Bashev, Dimitar Tonev

Книжка 1
DEMONSTRATION OF DAMPED ELECTRICAL OSCILLATIONS

Elena Grebenakova, Stojan Manolev

2020 година
Книжка 6
ДОЦ. Д-Р МАРЧЕЛ КОСТОВ КОСТОВ ЖИВОТ И ТВОРЧЕСТВО

Здравка Костова, Елена Георгиева

Книжка 5
Книжка 4
JACOB’S LADDER FOR THE PHYSICS CLASSROOM

Kristijan Shishkoski, Vera Zoroska

КАЛЦИЙ, ФОСФОР И ДРУГИ ФАКТОРИ ЗА КОСТНО ЗДРАВЕ

Радка Томова, Светла Асенова, Павлина Косева

Книжка 3
MATHEMATICAL MODELING OF 2019 NOVEL CORONAVIRUS (2019 – NCOV) PANDEMIC IN NIGERIA

Sefiu A. Onitilo, Mustapha A. Usman, Olutunde S. Odetunde, Fatai A. Hammed, Zacheous O. Ogunwobi, Hammed A. Haruna, Deborah O. Daniel

Книжка 2

Книжка 1
WATER PURIFICATION WITH LASER RADIATION

Lyubomir Lazov, Hristina Deneva, Galina Gencheva

2019 година
Книжка 6
LASER MICRO-PERFORATION AND FIELDS OF APPLICATION

Hristina Deneva, Lyubomir Lazov, Edmunds Teirumnieks

ПРОЦЕСЪТ ДИФУЗИЯ – ОСНОВА НА ДИАЛИЗАТА

Берна Сабит, Джемиле Дервиш, Мая Никова, Йорданка Енева

IN VITRO EVALUATION OF THE ANTIOXIDANT PROPERTIES OF OLIVE LEAF EXTRACTS – CAPSULES VERSUS POWDER

Hugo Saint-James, Gergana Bekova, Zhanina Guberkova, Nadya Hristova-Avakumova, Liliya Atanasova, Svobodan Alexandrov, Trayko Traykov, Vera Hadjimitova

Бележки върху нормативното осигуряване на оценяването в процеса

БЕЛЕЖКИ ВЪРХУ НОРМАТИВНОТО ОСИГУРЯВАНЕ, НА ОЦЕНЯВАНЕТО В ПРОЦЕСА НА ОБУЧЕНИЕТО

ТЕХНОЛОГИЯ

Б. В. Тошев

Книжка 5
ON THE GENETIC TIES BETWEEN EUROPEAN NATIONS

Jordan Tabov, Nevena Sabeva-Koleva, Georgi Gachev

Иван Странски – майсторът на кристалния растеж [Ivan Stranski

ИВАН СТРАНСКИ – МАЙСТОРЪТ, НА КРИСТАЛНИЯ РАСТЕЖ

Книжка 4

CHEMOMETRIC ANALYSIS OF SCHOOL LIFE IN VARNA

Radka Tomova, Petinka Galcheva, Ivajlo Trajkov, Antoaneta Hineva, Stela Grigorova, Rumyana Slavova, Miglena Slavova

ЦИКЛИТЕ НА КРЕБС

Ивелин Кулев

Книжка 3
ПРИНЦИПИТЕ НА КАРИЕРНОТО РАЗВИТИЕ НА МЛАДИЯ УЧЕН

И. Панчева, М. Недялкова, С. Кирилова, П. Петков, В. Симеонов

UTILISATION OF THE STATIC EVANS METHOD TO MEASURE MAGNETIC SUSCEPTIBILITIES OF TRANSITION METAL ACETYLACETONATE COMPLEXES AS PART OF AN UNDERGRADUATE INORGANIC LABORATORY CLASS

Anton Dobzhenetskiy, Callum A. Gater, Alexander T. M. Wilcock, Stuart K. Langley, Rachel M. Brignall, David C. Williamson, Ryan E. Mewis

THE 100

Maria Atanassova, Radoslav Angelov

A TALE OF SEVEN SCIENTISTS

Scerri, E.R. (2016). A Tale of Seven Scientists and a New Philosophy of Science.

Книжка 2
DEVELOPMENT OF A LESSON PLAN ON THE TEACHING OF MODULE “WATER CONDUCTIVITY”

A. Thysiadou, S. Christoforidis, P. Giannakoudakis

AMPEROMETRIC NITRIC OXIDE SENSOR BASED ON MWCNT CHROMIUM(III) OXIDE NANOCOMPOSITE

Arsim Maloku, Epir Qeriqi, Liridon S. Berisha, Ilir Mazreku, Tahir Arbneshi, Kurt Kalcher

THE EFFECT OF AGING TIME ON Mg/Al HYDROTALCITES STRUCTURES

Eddy Heraldy, Triyono, Sri Juari Santosa, Karna Wijaya, Shogo Shimazu

Книжка 1
A CONTENT ANALYSIS OF THE RESULTS FROM THE STATE MATRICULATION EXAMINATION IN MATHEMATICS

Elena Karashtranova, Nikolay Karashtranov, Vladimir Vladimirov

SOME CONCEPTS FROM PROBABILITY AND STATISTICS AND OPPORTUNITIES TO INTEGRATE THEM IN TEACHING NATURAL SCIENCES

Elena Karashtranova, Nikolay Karashtranov, Nadezhda Borisova, Dafina Kostadinova

45. МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Василева

2018 година
Книжка 6

ЗДРАВЕ И ОКОЛНА СРЕДА

Кадрие Шукри, Светлана Великова, Едис Мехмед

РОБОТИКА ЗА НАЧИНАЕЩИ ЕНТУСИАСТИ

Даниела Узунова, Борис Велковски, Илко Симеонов, Владислав Шабански, Димитър Колев

DESIGN AND DOCKING STUDIES OF HIS-LEU ANALOGUES AS POTENTIOAL ACE INHIBITORS

Rumen Georgiev, , Tatyana Dzimbova, Atanas Chapkanov

X-RAY DIFFRACTION STUDY OF M 2 Zn(TeО3)2 (M - Na, K) ТELLURIDE

Kenzhebek T. Rustembekov, Mitko Stoev, Aitolkyn A. Toibek

CALIBRATION OF GC/MS METHOD FOR DETERMINATION OF PHTHALATES

N. Dineva, I. Givechev, D. Tanev, D. Danalev

ELECTROSYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES WITH SIMULTANEOUS EXTRACTION INTO P-XYLENE

S. S. Fomanyuk, V. O. Smilyk, G. Y. Kolbasov, I. A. Rusetskyi, T. A. Mirnaya

БИОЛОГИЧЕН АСПЕКТ НА РЕКАНАЛИЗАЦИЯ С ВЕНОЗНА ТРОМБОЛИЗА

Мариела Филипова, Даниела Попова, Стоян Везенков

CHEMISTRY: BULGARIAN JOURNAL OF SCIENCE EDUCATION ПРИРОДНИТЕ НАУКИ В ОБРАЗОВАНИЕТО VOLUME 27 / ГОДИНА XXVII, 2018 ГОДИШНО СЪДЪРЖАНИЕ СТРАНИЦИ / PAGES КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА 3 / NUMBER 3: 313 – 472 КНИЖКА 4 / NUMBER 4: 473 – 632 КНИЖКА 5 / NUMBER 5: 633 – 792 КНИЖКА 6 / NUMBER 6: 793 – 952 КНИЖКА 1 / NUMBER 1: 1 – 152 КНИЖКА 2 / NUMBER 2: 153 – 312 КНИЖКА

(South Africa), A. Ali, M. Bashir (Pakistan) 266 – 278: j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)fx and nd1 Configurations and Correlation with L-S Terms / P. L. Meena (India) 760 – 770: Methyl, тhe Smallest Alkyl Group with Stunning Effects / S. Moulay 771 – 776: The Fourth State of Matter / R. Tsekov

Книжка 5
ИМОБИЛИЗИРАНЕНАФРУКТОЗИЛТРАНСФЕРАЗА ВЪРХУКОМПОЗИТНИФИЛМИОТПОЛИМЛЕЧНА КИСЕЛИНА, КСАНТАН И ХИТОЗАН

Илия Илиев, Тонка Василева, Веселин Биволарски, Ася Виранева, Иван Бодуров, Мария Марудова, Теменужка Йовчева

ELECTRICAL IMPEDANCE SPECTROSCOPY OF GRAPHENE-E7 LIQUID-CRYSTAL NANOCOMPOSITE

Todor Vlakhov, Yordan Marinov, Georgi. Hadjichristov, Alexander Petrov

ON THE POSSIBILITY TO ANALYZE AMBIENT NOISERECORDED BYAMOBILEDEVICETHROUGH THE H/V SPECTRAL RATIO TECHNIQUE

Dragomir Gospodinov, Delko Zlatanski, Boyko Ranguelov, Alexander Kandilarov

RHEOLOGICAL PROPERTIES OF BATTER FOR GLUTEN FREE BREAD

G. Zsivanovits, D. Iserliyska, M. Momchilova, M. Marudova

ПОЛУЧАВАНЕ НА ПОЛИЕЛЕКТРОЛИТНИ КОМПЛЕКСИ ОТ ХИТОЗАН И КАЗЕИН

Антоанета Маринова, Теменужка Йовчева, Ася Виранева, Иван Бодуров, Мария Марудова

CHEMILUMINESCENT AND PHOTOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF COCOON EXTRACTS

Y. Evtimova, V. Mihailova, L. A. Atanasova, N. G. Hristova-Avakumova, M. V. Panayotov, V. A. Hadjimitova

ИЗСЛЕДОВАТЕЛСКИ ПРАКТИКУМ

Ивелина Димитрова, Гошо Гоев, Савина Георгиева, Цвета Цанова, Любомира Иванова, Борислав Георгиев

Книжка 4
PARAMETRIC INTERACTION OF OPTICAL PULSES IN NONLINEAR ISOTROPIC MEDIUM

A. Dakova, V. Slavchev, D. Dakova, L. Kovachev

ДЕЙСТВИЕ НА ГАМА-ЛЪЧИТЕ ВЪРХУ ДЕЗОКСИРИБОНУКЛЕИНОВАТА КИСЕЛИНА

Мирела Вачева, Хари Стефанов, Йоана Гвоздейкова, Йорданка Енева

RADIATION PROTECTION

Natasha Ivanova, Bistra Manusheva

СТАБИЛНОСТ НА ЕМУЛСИИ ОТ ТИПА МАСЛО/ ВОДА С КОНЮГИРАНА ЛИНОЛОВА КИСЕЛИНА

И. Милкова-Томова, Д. Бухалова, К. Николова, Й. Алексиева, И. Минчев, Г. Рунтолев

THE EFFECT OF EXTRA VIRGIN OLIVE OIL ON THE HUMAN BODY AND QUALITY CONTROL BY USING OPTICAL METHODS

Carsten Tottmann, Valentin Hedderich, Poli Radusheva, Krastena Nikolova

ИНФРАЧЕРВЕНА ТЕРМОГРАФИЯ ЗА ДИАГНОСТИКА НА ФОКАЛНА ИНФЕКЦИЯ

Рая Грозданова-Узунова, Тодор Узунов, Пепа Узунова

ЕЛЕКТРИЧНИ СВОЙСТВА НА КОМПОЗИТНИ ФИЛМИ ОТ ПОЛИМЛЕЧНА КИСЕЛИНА

Ася Виранева, Иван Бодуров, Теменужка Йовчева

Книжка 3
ТРИ ИДЕИ ЗА ЕФЕКТИВНО ОБУЧЕНИЕ

Гергана Карафезиева

МАГИЯТА НА ТВОРЧЕСТВОТО КАТО ПЪТ НА ЕСТЕСТВЕНО УЧЕНЕ В УЧЕБНИЯ ПРОЦЕС

Гергана Добрева, Жаклин Жекова, Михаела Чонос

ОБУЧЕНИЕ ПО ПРИРОДНИ НАУКИ ЧРЕЗ МИСЛОВНИ КАРТИ

Виолета Стоянова, Павлина Георгиева

ИГРА НА ДОМИНО В ЧАС ПО ФИЗИКА

Росица Кичукова, Ценка Маринова

ПРОБЛЕМИ ПРИ ОБУЧЕНИЕТО ПО ФИЗИКА ВЪВ ВВМУ „Н. Й. ВАПЦАРОВ“

А. Христова, Г. Вангелов, И. Ташев, М. Димидов

ИЗГРАЖДАНЕ НА СИСТЕМА ОТ УЧЕБНИ ИНТЕРНЕТ РЕСУРСИ ПО ФИЗИКА И ОЦЕНКА НА ДИДАКТИЧЕСКАТА ИМ СТОЙНОСТ

Желязка Райкова, Георги Вулджев, Наталия Монева, Нели Комсалова, Айше Наби

ИНОВАЦИИ В БОРБАТА С ТУМОРНИ ОБРАЗУВАНИЯ – ЛЕЧЕНИЕ ЧРЕЗ БРАХИТЕРАПИЯ

Георги Върбанов, Радостин Михайлов, Деница Симеонова, Йорданка Енева

NATURAL RADIONUCLIDES IN DRINKING WATER

Natasha Ivanova, Bistra Manusheva

Книжка 2

АДАПТИРАНЕ НА ОБРАЗОВАНИЕТО ДНЕС ЗА УТРЕШНИЯ ДЕН

И. Панчева, М. Недялкова, П. Петков, Х. Александров, В. Симеонов

STRUCTURAL ELUCIDATION OF UNKNOWNS: A SPECTROSCOPIC INVESTIGATION WITH AN EMPHASIS ON 1D AND 2D 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Vittorio Caprio, Andrew S. McLachlan, Oliver B. Sutcliffe, David C. Williamson, Ryan E. Mewis

j-j Coupled Atomic Terms for Nonequivalent Electrons of (n-1)f

j-jCOUPLEDATOMICTERMSFORNONEQUIVALENT, ELECTRONS OF (n-f X nd CONFIGURATIONS AND, CORRELATION WITH L-S TERMS

INTEGRATED ENGINEERING EDUCATION: THE ROLE OF ANALYSIS OF STUDENTS’ NEEDS

Veselina Kolarski, Dancho Danalev, Senia Terzieva

Книжка 1
ZAGREB CONNECTION INDICES OF TiO2 NANOTUBES

Sohaib Khalid, Johan Kok, Akbar Ali, Mohsin Bashir

SYNTHESIS OF NEW 3-[(CHROMEN-3-YL)ETHYLIDENEAMINO]-PHENYL]-THIAZOLIDIN-4ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Malesore Pllana, Musaj Pacarizi, Veprim Thaçi, Gjyle Mulliqi-Osmani

2017 година
Книжка 6
GEOECOLOGICAL ANALYSIS OF INDUSTRIAL CITIES: ON THE EXAMPLE OF AKTOBE AGGLOMERATION

Zharas Berdenov, Erbolat Mendibaev, Talgat Salihov, Kazhmurat Akhmedenov, Gulshat Ataeva

TECHNOGENESIS OF GEOECOLOGICAL SYSTEMS OF NORTHEN KAZAKHSTAN: PROGRESS, DEVELOPMENT AND EVOLUTION

Kulchichan Dzhanaleyeva, Gulnur Mazhitova, Altyn Zhanguzhina, Zharas Berdenov, Tursynkul Bazarbayeva, Emin Atasoy

СПИСАНИЕ ПРОСВѢТА

Списание „Просвета“ е орган на Просветния съюз в България. Списанието е излизало всеки месец без юли и август. Годишният том съдържа 1280 стра- ници. Списанието се издава от комитет, а главен редактор от 1935 до 1943 г. е проф. Петър Мутафчиев, историк византолог и специалист по средновеков-

Книжка 5
47-А НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

В последните години тези традиционни за българското учителство конфе- ренции се организират от Българското дружество по химическо образование и история и философия на химията. То е асоцииран член на Съюза на химици- те в България, който пък е член на Европейската асоциация на химическите и

JOURNALS OF INTEREST: A REVIEW (2016)

BULGARIAN JOURNAL OF SCIENCE AND EDUCATION POLICY ISSN 1313-1958 (print) ISSN 1313-9118 (online) http://bjsep.org

INVESTIGATING THE ABILITY OF 8

Marina Stojanovska, Vladimir M. Petruševski

SYNTHESIS OF TiO -M (Cd, Co, Mn)

Candra Purnawan, Sayekti Wahyuningsih, Dwita Nur Aisyah

EFFECT OF DIFFERENT CADMIUM CONCENTRATION ON SOME BIOCHEMICAL PARAMETERS IN ‘ISA BROWN’ HYBRID CHICKEN

Imer Haziri, Adem Rama, Fatgzim Latifi, Dorjana Beqiraj-Kalamishi, Ibrahim Mehmeti, Arben Haziri

PHYTOCHEMICAL AND IN VITRO ANTIOXIDANT STUDIES OF PRIMULA VERIS (L.) GROWING WILD IN KOSOVO

Ibrahim Rudhani, Florentina Raci, Hamide Ibrahimi, Arben Mehmeti, Ariana Kameri, Fatmir Faiku, Majlinda Daci, Sevdije Govori, Arben Haziri

ПЕДАГОГИЧЕСКА ПОЕМА

Преди година-две заедно с директора на Националното издателство „Аз- буки“ д-р Надя Кантарева-Барух посетихме няколко училища в Родопите. В едно от тях ни посрещнаха в голямата учителска стая. По стените ѝ имаше големи портрети на видни педагози, а под тях – художествено написани умни мисли, които те по някакъв повод са казали. На централно място бе портретът на Антон Семьонович Макаренко (1888 – 1939). Попитах учителките кой е Макаренко – те посрещнаха въпроса ми с мълчание. А някога, в г

Книжка 4
„СИМВОЛНИЯТ КАПИТАЛ“ НА БЪЛГАРСКОТО УЧИЛИЩЕ

Николай Цанков, Веска Гювийска

KINETICS OF PHOTO-ELECTRO-ASSISTED DEGRADATION OF REMAZOL RED 5B

Fitria Rahmawati, Tri Martini, Nina Iswati

ALLELOPATHIC AND IN VITRO ANTICANCER ACTIVITY OF STEVIA AND CHIA

Asya Dragoeva, Vanya Koleva, Zheni Stoyanova, Eli Zayova, Selime Ali

NOVEL HETEROARYLAMINO-CHROMEN-2-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Naser Troni, Hamit Ismaili, Gjyle Mulliqi-Osmani, Veprim Thaçi

Книжка 3
Quantum Connement of Mobile Na+ Ions in Sodium Silicate Glassy

QUANTUM CONFINEMENT OF MOBILE Na + IONS, IN SODIUM SILICATE GLASSY NANOPARTICLES

OPTIMIZATION OF ENGINE OIL FORMULATION USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM: A COMPARATIVE STUDY

Behnaz Azmoon, Abolfazl Semnani, Ramin Jaberzadeh Ansari, Hamid Shakoori Langeroodi, Mahboube Shirani, Shima Ghanavati Nasab

EVALUATION OF ANTIBACTERIAL ACTIVITY OF DIFFERENT SOLVENT EXTRACTS OF TEUCRIUM CHAMAEDRYS (L.) GROWING WILD IN KOSOVO

Arben Haziri, Fatmir Faiku, Roze Berisha, Ibrahim Mehmeti, Sevdije Govori, Imer Haziri

Книжка 2
COMPUTER SIMULATORS: APPLICATION FOR GRADUATES’ADAPTATION AT OIL AND GAS REFINERIES

Irena O. Dolganova, Igor M. Dolganov, Kseniya A. Vasyuchka

SYNTHESIS OF NEW [(3-NITRO-2-OXO-2H-CHROMEN4-YLAMINO)-PHENYL]-PHENYL-TRIAZOLIDIN-4-ONES AND THEIR ANTIBACTERIAL ACTIVITY

Ramiz Hoti, Hamit Ismaili, Idriz Vehapi, Naser Troni, Gjyle Mulliqi-Osmani, Veprim Thaçi

STABILITY OF RJ-5 FUEL

Lemi Türker, Serhat Variş

A STUDY OF BEGLIKTASH MEGALITHIC COMPLEX

Diana Kjurkchieva, Evgeni Stoykov, Sabin Ivanov, Borislav Borisov, Hristo Hristov, Pencho Kyurkchiev, Dimitar Vladev, Irina Ivanova

Книжка 1
2016 година
Книжка 6
THE EFFECT OF KOH AND KCL ADDITION TO THE DESTILATION OF ETHANOL-WATER MIXTURE

Khoirina Dwi Nugrahaningtyas, Fitria Rahmawati, Avrina Kumalasari

Книжка 5

ОЦЕНЯВАНЕ ЛИЧНОСТТА НА УЧЕНИКА

Министерството на народното просвещение е направило допълне- ния към Правилника за гимназиите (ДВ, бр. 242 от 30 октомври 1941 г.), според които в бъдеще ще се оценяват следните прояви на учениците: (1) трудолюбие; (2) ред, точност и изпълнителност; (3) благовъзпитаност; (4) народностни прояви. Трудолюбието ще се оценява с бележките „образцово“, „добро“, „незадо- волително“. С „образцово“ ще се оценяват учениците, които с любов и по- стоянство извършват всяка възложена им ил

Книжка 4
VOLTAMMERIC SENSOR FOR NITROPHENOLS BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH REDUCED GRAPHENE OXIDE

Arsim Maloku, Liridon S. Berisha, Granit Jashari, Eduard Andoni, Tahir Arbneshi

Книжка 3
ИЗСЛЕДВАНЕ НА ПРОФЕСИОНАЛНО-ПЕДАГОГИЧЕСКАТА РЕФЛЕКСИЯ НА УЧИТЕЛЯ ПО БИОЛОГИЯ (ЧАСТ ВТОРА)

Надежда Райчева, Иса Хаджиали, Наташа Цанова, Виктория Нечева

EXISTING NATURE OF SCIENCE TEACHING OF A THAI IN-SERVICE BIOLOGY TEACHER

Wimol Sumranwanich, Sitthipon Art-in, Panee Maneechom, Chokchai Yuenyong

NUTRIENT COMPOSITION OF CUCURBITA MELO GROWING IN KOSOVO

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

НАГРАДИТЕ „ЗЛАТНА ДЕТЕЛИНА“ ЗА 2016 Г.

На 8 март 2016 г. в голямата зала на Националния политехнически музей в София фондация „Вигория“ връчи годишните си награди – почетен плакет „Златна детелина“. Тази награда се дава за цялостна професионална и творче- ска изява на личности с особени заслуги към обществото в трите направления на фондация „Вигория“ – образование, екология, култура. Наградата цели да се даде израз на признателност за високи постижения на личности, които на професионално равнище и на доброволни начала са рабо

Книжка 2
СТО ГОДИНИ ОТ РОЖДЕНИЕТО НА ПРОФЕСОР ХРИСТО ИВАНОВ (1916 – 2004)

СТО ГОДИНИ ОТ РОЖДЕНИЕТО, НА ПРОФЕСОР ХРИСТО ИВАНОВ, (96 – 00

CONTEXT-BASED CHEMISTRY LAB WORK WITH THE USE OF COMPUTER-ASSISTED LEARNING SYSTEM

N. Y. Stozhko, A. V. Tchernysheva, E.M. Podshivalova, B.I. Bortnik

Книжка 1
ПО ПЪТЯ

Б. В. Тошев

INTERDISCIPLINARY PROJECT FOR ENHANCING STUDENTS’ INTEREST IN CHEMISTRY

Stela Georgieva, Petar Todorov , Zlatina Genova, Petia Peneva

2015 година
Книжка 6
COMPLEX SYSTEMS FOR DRUG TRANSPORT ACROSS CELL MEMBRANES

Nikoleta Ivanova, Yana Tsoneva, Nina Ilkova, Anela Ivanova

SURFACE FUNCTIONALIZATION OF SILICA SOL-GEL MICROPARTICLES WITH EUROPIUM COMPLEXES

Nina Danchova , Gulay Ahmed , Michael Bredol , Stoyan Gutzov

INTERFACIAL REORGANIZATION OF MOLECULAR ASSEMBLIES USED AS DRUG DELIVERY SYSTEMS

I. Panaiotov, Tz. Ivanova, K. Balashev, N. Grozev, I. Minkov, K. Mircheva

KINETICS OF THE OSMOTIC PROCESS AND THE POLARIZATION EFFECT

Boryan P. Radoev, Ivan L. Minkov, Emil D. Manev

WETTING BEHAVIOR OF A NATURAL AND A SYNTHETIC THERAPEUTIC PULMONARY SURFACTANTS

Lidia Alexandrova, Michail Nedyalkov, Dimo Platikanov

Книжка 5
TEACHER’S ACCEPTANCE OF STUDENTS WITH DISABILITY

Daniela Dimitrova-Radojchikj, Natasha Chichevska-Jovanova

IRANIAN UNIVERSITY STUDENTS’ PERCEPTION OF CHEMISTRY LABORATORY ENVIRONMENTS

Zahra Eskandari, Nabi.A Ebrahimi Young Researchers & Elite Club, Arsanjan Branch,

APPLICATION OF LASER INDUCED BREAKDOWN SPECTROSCOPY AS NONDESDUCTRIVE AND SAFE ANALYSIS METHOD FOR COMPOSITE SOLID PROPELLANTS

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, Seyyed Mohamad Reza Darbany, Mehran Karimi, Amir Hossein Rezayi Optics & Laser Science and Technology Research Center,

THE EFFECT OF DIOCTYLPHTHALATE ON INITIAL PROPERTIES AND FIELD PERFORMANCE OF SOME SEMISYNTHETIC ENGINE OILS

Azadeh Ghasemizadeh, Abolfazl Semnani, Hamid Shakoori Langeroodi, Alireza Nezamzade Ejhieh

QUALITY ASSESSMENT OF RIVER’S WATER OF LUMBARDHI PEJA (KOSOVO)

Fatmir Faiku, Arben Haziri, Fatbardh Gashi, Naser Troni

Книжка 4
БЛАГОДАРЯ ВИ!

Александър Панайотов

ТЕМАТА ВЪГЛЕХИДРАТИ В ПРОГРАМИТЕ ПО ХИМИЯ И БИОЛОГИЯ

Радка Томова, Елена Бояджиева, Миглена Славова , Мариан Николов

BILINGUAL COURSE IN BIOTECHNOLOGY: INTERDISCIPLINARY MODEL

V. Kolarski, D. Marinkova, R. Raykova, D. Danalev, S. Terzieva

ХИМИЧНИЯТ ОПИТ – НАУКА И ЗАБАВА

Елица Чорбаджийска, Величка Димитрова, Магдалена Шекерлийска, Галина Бальова, Методийка Ангелова

ЕКОЛОГИЯТА В БЪЛГАРИЯ

Здравка Костова

Книжка 3
SYNTHESIS OF FLUORINATED HYDROXYCINNAMOYL DERIVATIVES OF ANTI-INFLUENZA DRUGS AND THEIR BIOLOGICAL ACTIVITY

Boyka Stoykova, Maya Chochkova, Galya Ivanova, Luchia Mukova, Nadya Nikolova, Lubomira Nikolaeva-Glomb, Pavel Vojtíšek, Tsenka Milkova, Martin Štícha, David Havlíček

SYNTHESIS AND ANTIVIRAL ACTIVITY OF SOME AMINO ACIDS DERIVATIVES OF INFLUENZA VIRUS DRUGS

Radoslav Chayrov, Vesela Veselinova, Vasilka Markova, Luchia Mukova, Angel Galabov, Ivanka Stankova

NEW DERIVATIVES OF OSELTAMIVIR WITH BILE ACIDS

Kiril Chuchkov, Silvia Nakova, Lucia Mukova, Angel Galabov, Ivanka Stankova

MONOHYDROXY FLAVONES. PART III: THE MULLIKEN ANALYSIS

Maria Vakarelska-Popovska, Zhivko Velkov

LEU-ARG ANALOGUES: SYNTHESIS, IR CHARACTERIZATION AND DOCKING STUDIES

Tatyana Dzimbova, Atanas Chapkanov, Tamara Pajpanova

MODIFIED QUECHERS METHOD FOR DETERMINATION OF METHOMYL, ALDICARB, CARBOFURAN AND PROPOXUR IN LIVER

I. Stoykova, T. Yankovska-Stefenova, L.Yotova, D. Danalev Bulgarian Food Safety Agency, Sofi a, Bulgaria

LACTOBACILLUS PLANTARUM AC 11S AS A BIOCATALYST IN MICROBIAL ELECYTOLYSIS CELL

Elitsa Chorbadzhiyska, Yolina Hubenova, Sophia Yankova, Dragomir Yankov, Mario Mitov

STUDYING THE PROCESS OF DEPOSITION OF ANTIMONY WITH CALCIUM CARBONATE

K. B. Omarov, Z. B. Absat, S. K. Aldabergenova, A. B. Siyazova, N. J. Rakhimzhanova, Z. B. Sagindykova

Книжка 2
TEACHING CHEMISTRY AT TECHNICAL UNIVERSITY

Lilyana Nacheva-Skopalik, Milena Koleva

ФОРМИРАЩО ОЦЕНЯВАНЕ PEER INSTRUCTION С ПОМОЩТА НА PLICКERS ТЕХНОЛОГИЯТА

Ивелина Коцева, Мая Гайдарова, Галина Ненчева

VAPOR PRESSURES OF 1-BUTANOL OVER WIDE RANGE OF THEMPERATURES

Javid Safarov, Bahruz Ahmadov, Saleh Mirzayev, Astan Shahverdiyev, Egon Hassel

Книжка 1
РУМЕН ЛЮБОМИРОВ ДОЙЧЕВ (1938 – 1999)

Огнян Димитров, Здравка Костова

NAMING OF CHEMICAL ELEMENTS

Maria Atanassova

НАЙДЕН НАЙДЕНОВ, 1929 – 2014 СПОМЕН ЗА ПРИЯТЕЛЯ

ИНЖ. НАЙДЕН ХРИСТОВ НАЙДЕНОВ, СЕКРЕТАР, НА СЪЮЗА НА ХИМИЦИТЕ В БЪЛГАРИЯ (2.10.1929 – 25.10.2014)

2014 година
Книжка 6
145 ГОДИНИ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

145 ANNIVERSARY OF THE BULGARIAN ACADEMY OF SCIENCES

ПАРНО НАЛЯГАНЕ НА РАЗТВОРИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

LUBRICATION PROPERTIES OF DIFFERENT PENTAERYTHRITOL-OLEIC ACID REACTION PRODUCTS

Abolfazl Semnani, Hamid Shakoori Langeroodi, Mahboube Shirani

THE ORIGINS OF SECONDARY AND TERTIARY GENERAL EDUCATION IN RUSSIA: HISTORICAL VIEWS FROM THE 21ST CENTURY

V. Romanenko, G. Nikitina Academy of Information Technologies in Education, Russia

ALLELOPATHIC AND CYTOTOXIC ACTIVITY OF ORIGANUM VULGARE SSP. VULGARE GROWING WILD IN BULGARIA

Asya Pencheva Dragoeva, Vanya Petrova Koleva, Zheni Dimitrova Nanova, Mariya Zhivkova Kaschieva, Irina Rumenova Yotova

Книжка 5
GENDER ISSUES OF UKRAINIAN HIGHER EDUCATION

Н.H.Petruchenia, M.I.Vorovka

МНОГОВАРИАЦИОННА СТАТИСТИЧЕСКА ОЦЕНКА НА DREEM – БЪЛГАРИЯ: ВЪЗПРИЕМАНЕ НА ОБРАЗОВАТЕЛНАТА СРЕДА ОТ СТУДЕНТИТЕ В МЕДИЦИНСКИЯ УНИВЕРСИТЕТ – СОФИЯ

Радка Томова, Павлина Гатева, Радка Хаджиолова, Зафер Сабит, Миглена Славова, Гергана Чергарова, Васил Симеонов

MUSSEL BIOADHESIVES: A TOP LESSON FROM NATURE

Saâd Moulay Université Saâd Dahlab de Blida, Algeria

Книжка 4
ЕЛЕКТРОННО ПОМАГАЛO „ОТ АТОМА ДО КОСМОСА“ ЗА УЧЕНИЦИ ОТ Х КЛАС

Силвия Боянова Професионална гимназия „Акад. Сергей П. Корольов“ – Дупница

ЕСЕТО КАТО ИНТЕГРАТИВЕН КОНСТРУКТ – НОРМАТИВЕН, ПРОЦЕСУАЛЕН И ОЦЕНЪЧНО-РЕЗУЛТАТИВЕН АСПЕКТ

Надежда Райчева, Иван Капурдов, Наташа Цанова, Иса Хаджиали, Снежана Томова

44

Донка Ташева, Пенка Василева

ДОЦ. Д.П.Н. АЛЕКСАНДЪР АТАНАСОВ ПАНАЙОТОВ

Наташа Цанова, Иса Хаджиали, Надежда Райчева

COMPUTER ASSISTED LEARNING SYSTEM FOR STUDYING ANALYTICAL CHEMISTRY

N. Y. Stozhko, A. V. Tchernysheva, L.I. Mironova

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА: БОРБА С ЕДНА ЛЕДЕНА ЕПОХА В ГОДИНАТА 3000 СЛЕД ХРИСТА. 3.

С РАКЕТНА ГРАНАТА КЪМ МЕСЕЦА:, БОРБА С ЕДНА ЛЕДЕНА ЕПОХА, В ГОДИНАТА 000 СЛЕД ХРИСТА. .

Книжка 3
KNOWLEDGE OF AND ATTITUDES TOWARDS WATER IN 5

Antoaneta Angelacheva, Kalina Kamarska

ВИСША МАТЕМАТИКА ЗА УЧИТЕЛИ, УЧЕНИЦИ И СТУДЕНТИ: ДИФЕРЕНЦИАЛНО СМЯТАНЕ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ВАСИЛ ХРИСТОВ БОЗАРОВ

Пенка Бозарова, Здравка Костова

БИБЛИОГРАФИЯ НА СТАТИИ ЗА МИСКОНЦЕПЦИИТЕ В ОБУЧЕНИЕТО ПО ПРИРОДНИ НАУКИ ВЪВ ВСИЧКИ ОБРАЗОВАТЕЛНИ НИВА

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 2
SCIENTIX – OБЩНОСТ ЗА НАУЧНО ОБРАЗОВАНИЕ В ЕВРОПА

Свежина Димитрова Народна астрономическа обсерватория и планетариум „Николай Коперник“ – Варна

BOTYU ATANASSOV BOTEV

Zdravka Kostova, Margarita Topashka-Ancheva

CHRONOLOGY OF CHEMICAL ELEMENTS DISCOVERIES

Maria Atanassova, Radoslav Angelov

Книжка 1
ОБРАЗОВАНИЕ ЗА ПРИРОДОНАУЧНА ГРАМОТНОСТ

Адриана Тафрова-Григорова

A COMMENTARY ON THE GENERATION OF AUDIENCE-ORIENTED EDUCATIONAL PARADIGMS IN NUCLEAR PHYSICS

Baldomero Herrera-González Universidad Autónoma del Estado de México, Mexico

2013 година
Книжка 6
DIFFERENTIAL TEACHING IN SCHOOL SCIENCE EDUCATION: CONCEPTUAL PRINCIPLES

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ШЕСТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО „ЧОВЕКЪТ И ПРИРОДАТА“

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

HISTORY AND PHILOSOPHY OF SCIENCE: SOME RECENT PERIODICALS (2013)

Chemistry: Bulgarian Journal of Science Education

45. НАЦИОНАЛНА КОНФЕРЕНЦИЯ НА УЧИТЕЛИТЕ ПО ХИМИЯ

„Образователни стандарти и природонаучна грамотност“ – това е темата на състоялата се от 25 до 27 октомври 2013 г. в Габрово 45. Национална конфе- ренция на учителите по химия с международно участие, която по традиция се проведе комбинирано с Годишната конференция на Българското дружество за химическо образование и история и философия на химията. Изборът на темата е предизвикан от факта, че развиването на природонаучна грамотност е обща тенденция на реформите на учебните програми и главна

Книжка 5

ЗА ХИМИЯТА НА БИРАТА

Ивелин Кулев

МЕТЕОРИТЪТ ОТ БЕЛОГРАДЧИК

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
RECASTING THE DERIVATION OF THE CLAPEYRON EQUATION INTO A CONCEPTUALLY SIMPLER FORM

Srihari Murthy Meenakshi Sundararajan Engineering College, India

CHEMICAL REACTIONS DO NOT ALWAYS MODERATE CHANGES IN CONCENTRATION OF AN ACTIVE COMPONENT

Joan J. Solaz-Portolés, Vicent Sanjosé Universitat de Valènciа, Spain

POLYMETALLIC COMPEXES: CV. SYNTHESIS, SPECTRAL, THERMOGRAVIMETRIC, XRD, MOLECULAR MODELLING AND POTENTIAL ANTIBACTERIAL PROPERTIES OF TETRAMERIC COMPLEXES OF Co(II), Ni(II), Cu(II), Zn(II), Cd(II) AND Hg(II) WITH OCTADENTATE AZODYE LIGANDS

Bipin B. Mahapatra, S. N. Dehury, A. K. Sarangi, S. N. Chaulia G. M. Autonomous College, India Covt. College of Engineering Kalahandi, India DAV Junior College, India

ПРОФЕСОР ЕЛЕНА КИРКОВА НАВЪРШИ 90 ГОДИНИ

CELEBRATING 90TH ANNIVERSARY OF PROFESSOR ELENA KIRKOVA

Книжка 3
SIMULATION OF THE FATTY ACID SYNTHASE COMPLEX MECHANISM OF ACTION

M.E.A. Mohammed, Ali Abeer, Fatima Elsamani, O.M. Elsheikh, Abdulrizak Hodow, O. Khamis Haji

FORMING OF CONTENT OF DIFFERENTIAL TEACHING OF CHEMISTRY IN SCHOOL EDUCATION OF UKRAINE

G. Yuzbasheva Kherson Academy of Continuing Education, Ukraine

ИЗСЛЕДВАНЕ НА РАДИКАЛ-УЛАВЯЩА СПОСОБНОСТ

Станислав Станимиров, Живко Велков

Книжка 2
Книжка 1
COLORFUL EXPERIMENTS FOR STUDENTS: SYNTHESIS OF INDIGO AND DERIVATIVES

Vanessa BIANDA, Jos-Antonio CONSTENLA, Rolf HAUBRICHS, Pierre-Lonard ZAFFALON

OBSERVING CHANGE IN POTASSIUM ABUNDANCE IN A SOIL EROSION EXPERIMENT WITH FIELD INFRARED SPECTROSCOPY

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

ЦАРСКАТА ПЕЩЕРА

Рафаил ПОПОВ

УЧИЛИЩНИ ЛАБОРАТОРИИ И ОБОРУДВАНЕ SCHOOL LABORATORIES AND EQUIPMENT

Учебни лаборатории Илюстрации от каталог на Franz Hugershoff, Лайциг, притежаван от бъдещия

2012 година
Книжка 6
ADDRESING STUDENTS’ MISCONCEPTIONS CONCERNING CHEMICAL REACTIONS AND SYMBOLIC REPRESENTATIONS

Marina I. Stojanovska, Vladimir M. Petruševski, Bojan T. Šoptrajanov

АНАЛИЗ НА ПОСТИЖЕНИЯТА НА УЧЕНИЦИТЕ ОТ ПЕТИ КЛАС ВЪРХУ РАЗДЕЛ „ВЕЩЕСТВА И ТЕХНИТЕ СВОЙСТВА“ ПО ЧОВЕКЪТ И ПРИРОДАТА

Иваничка Буровска, Стефан Цаковски Регионален инспекторат по образованието – Ловеч

ЕКОТОКСИКОЛОГИЯ

Васил Симеонов

ПРОФ. МЕДОДИЙ ПОПОВ ЗА НАУКАТА И НАУЧНАТА ДЕЙНОСТ (1920 Г.)

Проф. Методий Попов (1881-1954) Госпожици и Господа студенти,

Книжка 5
КОНЦЕПТУАЛНА СХЕМА НА УЧИЛИЩНИЯ КУРС П О ХИМИЯ – МАКР О СКОПСКИ ПОДХОД

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ROLE OF ULTRASONIC WAVES TO STUDY MOLECULAR INTERACTIONS IN AQUEOUS SOLUTION OF DICLOFENAC SODIUM

Sunanda S. Aswale, Shashikant R. Aswale, Aparna B. Dhote Lokmanya Tilak Mahavidyalaya, INDIA Nilkanthrao Shinde College, INDIA

SIMULTANEOUS ESTIMATION OF IBUPROFEN AND RANITIDINE HYDROCHLORIDE USING UV SPECTROPHOT O METRIC METHOD

Jadupati Malakar, Amit Kumar Nayak Bengal College of Pharmaceutical Sciences and Research, INDIA

GAPS AND OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION ASSESSMENT

Mila Ivanova Luleva, Harald van der Werff, Freek van der Meer, Victor Jetten

РАДИОХИМИЯ И АРХЕОМЕТРИЯ: ПРО Ф. ДХН ИВЕЛИН КУЛЕВ RADIOCHEMISTRY AND ARCHEOMETRY: PROF. IVELIN KULEFF, DSc

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

Книжка 4
TEACHING THE CONSTITUTION OF MATTER

Małgorzata Nodzyńska, Jan Rajmund Paśko

СЪСИРВАЩА СИСТЕМА НА КРЪВТА

Маша Радославова, Ася Драгоева

CATALITIC VOLCANO

CATALITIC VOLCANO

43-ТА МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка ТАШЕВА, Пенка ЦАНОВА

ЮБИЛЕЙ: ПРОФ. ДХН БОРИС ГЪЛЪБОВ JUBILEE: PROF. DR. BORIS GALABOV

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ПЪРВИЯТ ПРАВИЛНИК ЗА УЧЕБНИЦИТЕ (1897 Г.)

Чл. 1. Съставянето и издаване на учебници се предоставя на частната инициа- тива. Забележка: На учителите – съставители на учебници се запрещава сами да разпродават своите учебници. Чл. 2. Министерството на народното просвещение може да определя премии по конкурс за съставяне на учебници за горните класове на гимназиите и специ- алните училища. Чл. 3. Никой учебник не може да бъде въведен в училищата, ако предварително не е прегледан и одобрен от Министерството на народното просвещение. Чл.

JOHN DEWEY: HOW WE THINK (1910)

John Dewey (1859 – 1952)

ИНФОРМАЦИЯ ЗА СПЕЦИАЛНОСТИТЕ В ОБЛАСТТА НА ПРИРОДНИТЕ НАУКИ В СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ

1. Биология Студентите от специалност Биология придобиват знания и практически умения в областта на биологическите науки, като акцентът е поставен на организмово равнище. Те се подготвят да изследват биологията на организмите на клетъчно- организмово, популационно и екосистемно ниво в научно-функционален и прило- жен аспект, с оглед на провеждане на научно-изследователска, научно-приложна, производствена и педагогическа дейност. Чрез широк набор избираеми и факул- тативни курсове студентите

Книжка 3
УЧИТЕЛИТЕ ПО ПРИРОДНИ НАУКИ – ЗА КОНСТРУКТИВИСТКАТА УЧЕБНА СРЕДА В БЪЛГАРСКОТО УЧИЛИЩЕ

Адриана Тафрова-Григорова, Милена Кирова, Елена Бояджиева

ПОВИШАВАНЕ ИНТЕРЕСА КЪМ ИСТОРИЯТА НА ХИМИЧНИТЕ ЗНАНИЯ И ПРАКТИКИ ПО БЪЛГАРСКИТЕ ЗЕМИ

Людмила Генкова, Свобода Бенева Българско дружество за химическо образование и история и философия на химията

НАЧАЛО НА ПРЕПОДАВАНЕТО НА УЧЕБЕН ПРЕДМЕТ ХИМИЯ В АПРИЛОВОТО УЧИЛИЩЕ В ГАБРОВО

Мария Николова Национална Априловска гимназия – Габрово

ПРИРОДОНАУЧНОТО ОБРАЗОВАНИЕ В БЪЛГАРИЯ – ФОТОАРХИВ

В един дълъг период от време гимназиалните учители по математика, физика, химия и естествена

Книжка 2
„МАГИЯТА НА ХИМИЯТА“ – ВЕЧЕР НА ХИМИЯТА В ЕЗИКОВА ГИМНАЗИЯ „АКАД. Л. СТОЯНОВ“ БЛАГОЕВГРАД

Стефка Михайлова Езикова гимназия „Акад. Людмил Стоянов“ – Благоевград

МЕЖДУНАРОДНАТА ГОДИНА НА ХИМИЯТА 2011 В ПОЩЕНСКИ МАРКИ

Б. В. Тошев Българско дружество за химическо образование и история и философия на химията

ЗА ПРИРОДНИТЕ НАУКИ И ЗА ПРАКТИКУМА ПО ФИЗИКА (Иванов, 1926)

Бурният развой на естествознанието във всичките му клонове през XIX –ия век предизвика дълбоки промени в мирогледа на културния свят, в техниката и в индустрията, в социалните отношения и в държавните интереси. Можем ли днес да си представим един философ, един държавен мъж, един обществен деец, един индустриалец, просто един културен човек, който би могъл да игнорира придобив- ките на природните науки през последния век. Какви ужасни катастрофи, какви социални сътресения би сполетяло съвре

Книжка 1
MURPHY’S LAW IN CHEMISTRY

Milan D. Stojković

42-рa МЕЖДУНАРОДНА ОЛИМПИАДА ПО ХИМИЯ

Донка Ташева, Пенка Цанова

СЕМЕЙНИ УЧЕНИЧЕСКИ ВЕЧЕРИНКИ

Семейството трябва да познава училишето и училишето трябва да познава семейството. Взаимното познанство се налага от обстоятелството, че те, макар и да са два различни по природата си фактори на възпитанието, преследват една и съща проста цел – младото поколение да бъде по-умно, по-нравствено, физически по-здраво и по-щастливо от старото – децата да бъдат по-щастливи от родителите