Chemistry: Bulgarian Journal of Science Education, Volume 21, Number 5, 2012
Xumus. I[lpupoonume nayxku 6 06pazosanuemo

Problems
3aoauu

ANEW FORMAL GEOMETRICAL METHOD
FOR BALANCING CONTINUUM CLASSES
OF CHEMICAL REACTIONS

Ice B. Risteski

Abstract. In this article a new formal geometrical method is developed for balancing
continuum class chemical reactions. Here are treated new continuum classes of aliphatic
hydrocarbon chemical reactions which possess atoms with integer oxidation numbers. All
considered continuum reactions are reduced to a set of hyperplanes, which intersection is a
hyperline that contains the required coefficients of reactions. Also, particular reactions derived
from the general continuum classes are balanced in such a way that they do not lose their
continuum properties. To this method is given an advantage, because the so-called chemical
ways for balancing chemical reactions are inconsistent. Actually, here offered geometrical
method is the first scientific method, which treats chemical reactions as n-dimensional geo-
metric entities. By this method, the author proved again that balancing chemical reactions
does not have anything to do with chemistry, because it is a pure mathematical subject.

Keywords: geometrical method, chemical reactions, balancing.

Introduction

The best method of balancing chemical reactions would be one which could be ap-
plied to all oxidation-reduction reactions. Presently, there are such methods in chemistry
and mathematics and they are created by virtue of algebraic principles.

The aim in the balancing of an oxidation-reduction reaction should be to secure a
stoichiometrically correct final reaction and the method applied should emphasize the
fundamental phenomena of certain class of reactions and take into account whatever other
factors may be involved in a particular case which may modify the course of the reaction.

Generally speaking, balancing chemical reactions is an excellent topic for students
who have chemistry as a major subject of study (Risteski, 1990). Mass balance of chemi-
cal reactions is one of the most highly studied subjects in chemical education. In fact,
balancing chemical reactions provides a tremendous demonstrative and pedagogical
example of interconnection between chemistry and linear algebra. In chemistry there are
lots of so-called methods for balancing chemical reactions, but all of them have limited
usage, because they hold only for some elementary chemical reactions. Actually, they
are not methods, just particular procedures founded by virtue of experience, but without
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any formal criteria. A survey of the references which treat problem of balancing chemi-
cal reactions through the prism of chemistry is given in the previous author’s research
works (Risteski, 2007a; 2007b; 2008a; 2008b; 2009).

Most current chemistry textbooks generally support the ion—electron procedure as the
general balancing tool that best makes use of chemical principles. Since, the author of
this article was astonished by the given advantage of that particular procedure, he posed
the following question: why do they do that? This question does not have a philosophical
disposition, just an intention to mention to chemists that it is a big fallacy; in the last
decade, it is very well-known that only the mathematical methods are consistent methods
for balancing chemical reactions. So-called chemical methods for balancing chemical
reactions are inconsistent, because they consider chemical reactions in an informal way,
which produces only paradoxes (Risteski, 2010; 2011).

Now, logically this question arises: what are chemical principles? According to
Risteski (2010) the best short answer to this question is: ‘chemical principles’ are not
defined entities in chemistry, and so this term does not have any meaning. They represent
only a main generator for paradoxes. Actually, ‘chemical principles’ are a remnant of
an old traditional approach in chemistry.

In order for readers to have a better picture about the balancing chemical reactions,
let’s make a small digression. Really, until the second half of the 20™ century there was
no mathematical method for balancing chemical reactions in chemistry, other than the
algebraic method. Then, chemists on an inertial way balanced just simple particular
chemical reactions using only change in oxidation number procedure, partial reactions
procedure and other slightly different modifications derived from them. So-called chemi-
cal principles were an assumption of traditional chemists, who thought that the solution
of the general problem of balancing chemical reactions is possible by use of chemical
procedures. But, practice showed that the solution of the century old problem is possible
only by using a contemporary mathematical method (Risteski, 2007a).

Also, in (Risteski, 2010) the author emphasized very clearly, that balancing chemi-
cal reactions is not chemistry; it is just linear algebra. From a scientific view point, a
chemical reaction can be balanced if and only if it generates a vector space. That is a
necessary and sufficient condition for balancing a chemical reaction. This shows that
chemical reaction must be considered as a formal whole, in a right sense of the word,
if we like it to be balanced in a correct way. In the opposite case, as it was done by the
chemical methods, one obtains only the absurd (Risteski, 2011).

Here, considered aliphatic hydrocarbon chemical reactions belong to the class of
two generator chemical reactions with non-unique coefficients. These reactions are
continuum reactions, because the problem of their coefficients determination reduces
to the generalized continuum problem (Risteski, 2012).
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A new geometrical method

In this section we shall develop a new geometrical method for balancing continuum
chemical reactions. For that purpose, we shall introduce a whole set of auxiliary defini-
tions from n-dimensional geometry (Kendall, 2004) and real finite-dimensional vector
spaces (Halmos, 1987) to make the chemistry work consistently. The more abstract the
theory is, the stronger the cognitive power is.

Let <& be a finite set of molecules.

Definition 1. A chemical reaction on Uis a formal linear combinations of elements
of U, such that

m

p: Y ap;—0,(1<j<n). |
= (1)

The coefficients x;, (1 <j <n) satisfy three basic principles (corresponding to a closed
input-output static model): () the law of conservation of atoms; (i7) the law of conserva-
tion of mass, and (iii) the reaction time-independence.

Proposition 2. Any chemical reaction can be reduced to a set of hyperplanes of its
atoms.

Proof. Since every chemical reaction can be presented in a matrix form Ax = 0, then
it corresponds with (1). In fact, the expression (1) is a set of hyperplanes. Opposite, if
(1) holds, then exists Ax = 0.

Let us now consider an arbitrary subset ..7C .

Definition 3. 4 chemical reaction p may take place in a reaction combination com-
posed of the molecules in .57 if and only if Domp < .

Definition 4. The collection of all possible reactions in the stoichiometrical space
(&, R), that can start from .7 is given by

R ={pe R |Dompc .7} @)

Theorem 5. Let U= span{v\, vz, ..., va} in a vector space V of the chemical reaction
(1) over the field R. Then,

U is a subspace of 'V containing each of vi, (1 <i<n), 3)

U is the smallest subspace containing these vectors in the sense that any subspace
of V that contains each of vi, (1 <i < n), must contain U. 4)

Proof. First we shall prove (3). Clearly 0=0wi + Ov2 + -+ + Ova belongs to U. If v=aiv
+ a2 + - + anvw and w = bivi + bava + -+ + bavs are two members of U and a € U, then

v+w=(ar+bi)v + (az+ b2)va+ -+ + (an + bn)vn,
av = (aan)vi + (aa2)v2 + - + (aan)vn,
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so both v + w and av lie in U. Hence U is a subspace of V. It contains each of v, (1 <i
<n). For instance, v2 = Ovi + 1v2 + Ovs + --- + Ow,. This proves (3).

Now, we shall prove (4). Let W be subspace of V' that contains each of vi, (1 <i<n).
Since W is closed under scalar multiplication, each of aw;, (1 <i < n) lies in W for any
choice of a;, (1 <i <n)in R. But, then awi, (1 <i<n) lies in W, because W is closed
under addition. This means that W contains every member of U, which proves (4).

Theorem 6. The intersection of any number of subspaces of a vector space V of the
chemical reaction (1) over the field R is a subspace of V.

Proof. Let {W:: i I} be a collection of subspaces of V" and let W= (W::i I). Since
each W:is a subspace, then 0 Wi, i 1. Thus0 W.Assumeu,v W.Then, u,v W, i

I. Since each Wi is a subspace, then (au + bv) Wi, i I. Therefore (au + bv) W.Thus
W is a subspace of V of the chemical reaction (1).

Theorem 7. The hyperplanes (1), obtained from the chemical reaction, in n unknowns
X1, X2, ..., Xn over the field R has a solution set W, which is a subspace of the vector
space R".

Proof: The system (1) is equivalent to the matrix equation Ax = 0. Since 40 =0, the
zero vector 0 . Assume u and v are vectors in W, i. e., u and v are solutions of the
matrix equation Ax = 0. Then Au = 0 and Av = 0. Therefore, a, b R, we have A(au +
bv)=aAu + bAv=a0+ b0 =0+ 0 =0. Hence au + bv is a solution of the matrix equa-
tion Ax=0,i. e., au + bv W. Thus W is a subspace of R".

Proposition 8. If W is a subspace of V of the chemical reaction (1) over the field R,
then span{W} = W.

Proof. Since W is a subspace of V of the chemical reaction (1) over the field R, Wis
closed under linear combinations. Hence span{#} W. But W span{W}. Both inclu-
sions yield span{W} = W.

The relationship between the two planes

aixi+ax>+ - +awxn ta=0,and bixi+ baxa + -+ + baxn + b= 0,

can be described as follows:

1. intersecting if ai/b1# a2/b> # -+ # an/bn,

2. parallel if a1/b1= a2/b> = -+ = an/bn # a/b,

3. coincident if ai/b1= a2/b> = -+ = an/bn = alb.

The angle <a(n1, n2) between two hyperplanes is equal to the acute angle determined
by the normal vectors of the planes

m=(a,a, ...,ar) and n2= (b1, bz, ..., b») (5)

ie.
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Xa(n, ny) = arccos {lz a; b,l/[(z a’)"? (Z b)"*]}. (6)

In the next section some very hard problems will be solved from the theory of balanc-
ing chemical reactions. Just, for that purpose was built a new n-dimensional geometrical
method for balancing two generators aliphatic hydrocarbon chemical reactions. Here
balanced reactions are completely new and according to our best knowledge for the first
time they appear in scientific literature.

Main results
Problem 1
We shall balance the following aliphatic hydrocarbon chemical reaction

x1 C2Hz + x2 CH4 + x3 C2Ha + x4 C3Ha + x5 C2Hs + x6 C3Hs )
+ x7 C4He + x8 CsHs + xo C4Hs — x10 CsHao.

Solution
According to the reaction (7), carbon and hydrogen atoms are disposed adequately
on the following hyperplanes
2x1 + x2 + 2x3 + 3x4 + 2x5 + 3x6 + 4x7 + 3x3 + 4x9 = Sx10, ®)

2x1 + 4x2 + 4xz + 4xa + 6x5 + 6x6 + 6x7 + 8xs + 8x9 = 10x10,
which intersection is

x1=-2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x3/3 - 4x9/3 + 5x10/3, 9)

x2=-2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - Sxs8/3 - 4x9/3 + Sx10/3,
where x; > 0, (3 <i < 10) are arbitrary real numbers. The intersection point has these

coordinates
(- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x5/3 - 4x9/3 + 5x10/3, - 2x3/3 - x4/3 - 4xs/3 - x6  (10)

- 2x7/3 - 5xs8/3 - 4x9/3 + Sx10/3, x3, X4, X5, X6, X7, X8, X9, X10),
where xi > 0, (3 <i < 10) are arbitrary real numbers.
The system (8) has two (nonzero) linear equations in ten unknowns; and hence it has
10 - 2 = 8 free variables x: > 0, (3 <i < 10). Thus, the dimension of the solution space
W of the system (8) is dim W = 8. To obtain a basis for W, we set

x3=1,xa=-= x10=0,
x3=0,x4=1,x5=+-=x10=0,
x3=x4=0,x5=1,x6=--=x10=0,
x3=-=x5=0,x=1,x7= - =x10=0, (11)
x3==x=0,x7=1,x8=--=x10=0,
x3=-=x7=0,xs=1, x0=x10=0,
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x3=-=x8=0,x=1,x10=0,
x3=-=x9=0,x10=1,

in the expression (10) to obtain the solutions
a=(-2/3,-2/3,1,0,0,0,0,0,0, 0)
a>=(-4/3,-1/3,0,1,0,0,0,0,0,0),
as=(-1/3,-4/3,0,0,1,0,0,0,0, 0)
a=(-1,-1,0,0,0,1,0,0,0,0) (12)
O’
0
0

b
b

as=(-5/3.-2/3,0,0,0,0, 1,0, 0, 0),
as=(-2/3.-5/3.0.0.0.0,0. 1,0, 0),
ar=(-4/3,-4/3.0,0.0.0,0.0, 1, 0),

as=(5/3,5/3,0,0,0,0,0,0,0, 1).
The set {a1, az, as, as, as, as, a1, as} is a basis of the solution space W.
The angle <o(nc, nu) between carbon and hydrogen hyperplane (8) is equal to the
acute angle determined by the normal vectors of the planes
nc=(2,1,2,3,2,3,4,3,4,-5) andnn=(2,4,4,4,6,6, 6, 8, 8, - 10),

ie.,
<0(nc, mir) = arccos {(2X2 + 1x4 +2x4+3x4 +2X6+ 3x6 +4x6 + 3x8 +4x8 + 5x10)/[(2* + 12 +2?
+32+22+32+42+32+42+52)1/2 (22+42+42+42+62+62+62+82+82+ 102)1/2]}

= arccos [188/(97x388)"2] = arccos (94/97) = 14.3°.
After substitution of the expressions (9) into (7), the balanced reaction (1) obtains
its general form
(- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x3/3 - 4x9/3 + 5x10/3) C2H2 (13)
+ (- 2x3/3 - x4/3 - 4xs/3 - x6 - 2x7/3 - 5x3/3 - 4xo/3 + Sx10/3) CHa + x3 C2Ha
+ x4 C3Ha + x5 CoaHs + x6 CsHs + x7 CaHs + x5 CsHs + x9 C4Hs — x10 CsHuo,
where xi > 0, (3 <7< 10) are arbitrary real numbers.
Since the generators x1, x2 > 0, then for the general chemical reaction (13) holds this
system of linear inequalities
- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3 > 0, (14)
- 2x3/3 - x4/3 - 4xs/3 - x6 - 2x7/3 - 5xs/3 - 4x9/3 + S5x10/3 > 0.
From (8), one obtains the inequality
x10 > (4x3 + S5x4 + S5xs + 6x6 + Tx7 + Txs + 8x9)/10. (15)
Actually, the inequality (15) is a necessary and sufficient condition to hold the general
reaction (13).
In order to determine a particular reaction of (13) we shall consider the following case.
For x3=x4= -+ =x9=35, from (15) one obtains xi0=22. Now, from (13) immediately
follows the particular reaction
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5 CoH2+ 5 CHa + 15 C2Ha + 15 CsHa + 15 C2He + 15 C3Hs (16)
+ 15 CsHe + 15 C3Hs + 15 C4sHs — 66 CsHoo.
Problem 2
Now, we shall balance this alkyne’s chemical reaction
x1 CsHa + x2 CaHe + x3 CsHs + x4 CeHio + x5 C7Hi2 + x6 CsHia (17)

+ x7 CoHis + x3 CioHis + x9 C11H20 — x10 C12H22 + x11 C2Ho.
Solution

From the above reaction adequately follow these carbon and hydrogen hyperplanes
3x1 + 4x2 + 5x3 + 634 + Tos + 8xe + 9x7 + 10xs + 1lxo = 12x10+ 201, (18
4x1 + 6x2 + 8x3+ 10xa + 12xs5 + 14x6 + 16x7 + 18xs + 20x9 = 22x10 + 2x11,
which intersection is
x10="(x1 + 2x2 + 3x3 + 4xs + Sxs + 6x6 + 7x7 + 8xs + 9x9)/10, (19)
xu= (9x1+ 8x2 + 7x3 + 6x4 + Sxs5 + 4x6 + 3x7 + 2x38 + x9)/10,
where xi > 0, (1 <i < 9) are arbitrary real numbers. The intersection point has these
coordinates
[x1, x2, X3, ..., X9, (X1 + 2x2 + 3x3 + - + 9x9)/10, (20)
(9x1 + 8x2 + Tx3 + 6xa + -+ + 2x8 + x9)/10],
where xi: > 0, (1 <i<9) are arbitrary real numbers.
The system (18) has two (nonzero) linear equations in eleven unknowns; and hence
it has 11 - 2 =9 free variables x: > 0, (1 <i <9). Thus, the dimension of the solution
space W of the system (18) is dim W = 9. To obtain a basis for W, we set

x1=1,x2==x9=0,
x1=0,x02=1,x3==x=0,
x1=x2=0,x=1,xa=-=x=0,
xt=-=x3=0,x4a=1,x5= - =x9=0,
x1=-=xa=0,x5=1,x==x9=0, (21)
x1=-=x5=0,x=1,x7= - =x9=0,
x1=-=x=0,x7=1,x3=x9=0,
xt=-=x7=0,xs=1,x =0,
xt=-=x3=0,x=1,

in the expression (20) to obtain the solutions

a=(1,0,0,0,0,0,0,0,0, 1/10, 9/10),

a=(0,1,0,0,0,0,0,0,0,2/10, 8/10),
as=(0,0,1,0,0,0,0,0,0, 3/10, 7/10),
as=(0,0,0,1,0,0,0,0,0,4/10, 6/10),
as=(0,0,0,0,1,0,0,0,0, 510, 5/10), (22)
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as=(0,0,0,0,0,1,0,0,0,6/10, 4/10),
a=(0,0,0,0,0,0,1,0,0,7/10, 3/10),
as=(0,0,0,0,0,0,0, 1,0, 810, 2/10),

=(0,0,0,0,0,0,0,0,1,9/10, 1/10).

The set {ai, az, as, as, as, as, a7, as, as} is a basis of the solution space W.
The angle < a(nc, nu) between carbon and hydrogen hyperplane is equal to the acute
angle determined by the normal vectors of the planes
nc=(3,4,5,6,7,8,9,10,11,-12,-2)and nu =
(4,6,8,10,12, 14, 16, 18, 20, - 22, - 2),
Xa(nc, nn) = arccos {(2x2 + 3x4 + 4x6 + 5x8 + 6x10 + 7x12 + 8x14 +
+9x16 + 10x18 + 11x20
+ 12x22)/[(2*+ 32+ 4+ 52+ 6>+ 7P+ 82+ 92+ 10° +
+ 112+ 12512 (22 + 4% + 6> + 8
+10%+ 122+ 142 + 16> + 18>+ 20> + 222)12]} =
= arccos [12x13/(2x3x23x177)"?] = 3.5°.
After substitution of the generators (19) into (17), the chemical reaction (17) obtains
its general form
x1 CsHa + x2 CsHs + x3 CsHs + x4 CéHio + x5 C7Hiz + x6 CsHia (23)
+ x7 CoHie + x5 C1oHis + x9 C11Ha20
— [(x1 + 2x2 + 3x3 + 4x4 + S5x5 + 6x6 + 7x7 + 8xs3 + 9x9)/10] Ci2H22

+ [(9x1 + 8x2 + 7x3 + 6x4 + S5x5 + 4x6 + 3x7 + 2x3 + Xx9)/10] C2Ho.
where x;: > 0, (1 <i<9) are arbitrary real numbers.

Example
Let’s consider a particular reaction of (23). For x1 =x2 = -- =x9= | immediately from
(23) follows balanced particular reaction
2 C3Ha+ 2 C4Hs + 2 CsHs + 2 CsHio + 2 C7Hi2 + 2 CsHus 24)

+ 2 CoHis + 2 CioHis+ 2 CiitH20 — 9 Ci2H22 + 9 CoHo.
Problem 3

The above alkyne’s reaction (17) gives an opportunity for its consideration in more
general form. Taking into account this fact, now we shall balance the general alkyne’s
chemical reaction

n-2

xiCir2Hoi+ Xn—Cn+Hn+XnCH, n>2).
; 2Hziv2 — xn-1CrriH2 2Ho, ( ) 25)

Solution

The general alkyne’s chemical reaction (25) reduces adequately to the following
carbon and hydrogen hyperplanes
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3x1 4 dx2+ Sx3 + o+ nxe2 = (n+ Dn1 + 2, (26)
4x1 + 6x2+ 8x3 + -+ + (2n - 2)xn2 = 2nxn-1 + 20,
which intersection is
X = [1(n - D] ixi, (27)
n-2

xn=[1/(n - 1)]Z(n =i - D,

where n > 2 and xi > 0, (1 <i<n - 2) are arbitrary real numbers. The intersection point
has these coordinates
{1, X2, X3, ooy Xn2y [X1+ 202+ 3x3 + - + (- 2)xn2]/(n - 1), (28)

[(n-2)x1+(m-3)x2+ (m-4)xs+ -+ 2xn3 + xn2]/(n - 1)},

where xi > 0, (1 <i<n - 2) are arbitrary real numbers.

The system (26) has two (nonzero) linear equations in # unknowns; and hence it has
n - 2 free variables x: > 0, (1 <i < n - 2). Thus, the dimension of the solution space W of
the system (26) is dim /¥ = n - 2. To obtain a basis for ¥, we set

xi=1,x2==x2=0,
x1=0,x0=1,x3==x2=0,
x1=x2=0,x3=1,x4= - =x2=0, (29)
xX1==x23=0, xn2=1,

in the expression (28) to obtain the solutions
ar=[1,0,0,...,0,1/(n-1),(n-2)(n-1)],
a>=100,1,0,...,0,2/(n-1),(n-3)(n-1)],
a;=1[0,0,1,...,0,3/(n-1),(n-4)/(n-1)], (30)

a2=100,0,0,...,1,(n-2)/(n-1), l/(n-1)].
The set {a1, a2, as, ..., a2} is a basis of the solution space W.
The angle %a(nc, nn) between carbon and hydrogen hyperplane is equal to the acute
angle determined by the normal vectors of the planes
nc=(3,4,5,...,n,-n-1,-2)and nu=(4,6,8, ...,2n-2,-2n,-2)
<a(nc, nn) = arccos {|2X2 + 3x4 + 4x6 + 5x8 + -+ + nx(2n - 2) + (n + 1)x2n|/
[(22+32+42+ -+ +(m+ 1)) 22 +42+ 62+ -+ (2n-2)* + (2n)*)"*]}.
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Since
2X2 +3x4 +4%6 + 5x8 + - + nx(2n -2) + (n + 1)x2n =2n(n + 1)(n + 2)/3,
22+ 32+ 42+ 52+ +n2+(n+1)>=n2n*+9n + 13)/6
and
22+42+6°+ 8+ +(2n-2)+(12n)* =2n(n+ 1)2n + 1)/3,

then

Xa(nc, nn) = arccos {2(n + 1)(n + 2)/[(n + 1)2n + 1)(2n*> + 9n + 13)]"?}.

According to (27) and (25), balanced alkyne’s chemical reaction obtains this general
form

n-2 n-2 n-2

(n- 1)) xiCiaHaia — (O ix:)CoriHan + [ Y (n - i - Dxi]CoHa, (n>2). B

where xi > 0, (1 <i <n - 2) are arbitrary real numbers."

Example

Now, we shall consider a particular case of (31). For x1 = x2 = --- =x»2 = 1, the reac-
tion (31) transforms into following balanced particular reaction?

n-2

2)" CiaHaia — (1 - 2)(Cas1Han + C2Ha), (1> 2). (32)
i=1
Problem 4
Like an interesting reaction, we shall balance this alkane’s chemical reaction
x1 CoHs + x2 C3Hs + x3 CaHio + x4 CsHiz2 + x5 CsHis + x6 C7His (33)

+ x7 CsHis + x8 CoH2o + x9 CioH22 + x10 C1iH24 — x11 C12H26 + x12 CHa.

Solution

From the above alkane’s chemical reaction (33) follows these hyperplanes
2x1+ 3x2+ 4x3 + Sxa+ 6x5 + Txe + 8x7 + 9xs + 10x0 + 11lx10=12x11 + x12,  (34)
6x1 + 8x2 + 10x3 + 12x4 + 14xs + 16x6 + 18x7 + 20x8 + 22x9 + 24x10 =

26x11 + 4x12,
which intersection is

xu = (x1+ 2x2+ 3x3 + 4xs + 5x5 + 6x6 + Tx7 + 8xs + Oxo + 10x10)/11,  (35)
x12=(10x1 + 9x2 + 8x3 + Txa + 6x5 + Sx6 + 4x7 + 3x8 + 2x9 + x10)/11,
where xi > 0, (1 <i < 10) are arbitrary real numbers. The intersection point has these
coordinates
[x1, X2, X3, ..., X9, x10, (X1 + 2x2 + 3x3 + -+ + 10x10)/11, (36)

(10x1 + 9x2 + 8x3 + Txa + -+ + 2x9 + x10)/11],
where x; > 0, (1 <i < 10) are arbitrary real numbers.
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The system (34) has two (nonzero) linear equations in twelve unknowns; and hence
ithas 12 - 2 = 10 free variables xi > 0, (1 <i < 10). Thus, the dimension of the solution
space W of the system (34) is dim W = 10. To obtain a basis for ¥, we set

xi=1l,x=-=x10=0,
x1=0,2=1,x3==x10=0,
xi=x2=0,x3=1,x4a= - =x10=0,
xi=-=x3=0,x4=1,x5=-=x10=0,
x1=-=x2=0,x5=1,x6= - =x10=0, (37)
xi=-=x5=0,x=1, x7= - =x10=0,
x1=-=x=0,x7=1,x8=+=x10=0,
xi=-=x7=0,x3=1,x=0,
x1=--=x3=0,x=1,x10=0,
x1=-=x9=0,x10=1,

in the expression (30) to obtain the solutions

a=(1,0,0,0,0,0,0,0,0,0,1/11, 10/11),

a=(0,1,0,0,0,0,0,0,0,0,2/11, 9/11),
as=(0,0,1,0,0,0,0,0,0,0, 3/11, 8/11),
a:=(0,0,0,1,0,0,0,0,0,0, 4/11, 7/11),
as=(0,0,0,0,1,0,0,0,0,0, 5/11, 6/11), (38)
as=(0,0,0,0,0,1,0,0,0,0, 6/11, 5/11),
a:=(0,0,0,0,0,0,1,0,0,0, 7/11, 4/11),
as=(0,0,0,0,0,0,0,1,0,0, 8/11, 3/11),
=(0,0,0,0,0,0,0,0,1,0,9/11, 2/11),
ao=(0,0,0,0,0,0,0,0,0,1, 10/11, 1/11).

The set {a1, a2, as, as, as, as, a7, as, as, ao} is a basis of the solution space .
The angle % o(nc, nn) between carbon and hydrogen hyperplane is equal to the acute
angle determined by the normal vectors of the planes
nc=(2,3,4,5,...,11,-12,-1)and nu = (6, 8, 10, 12, ..., 24, - 26, - 4)
Jo(nc, nu) = arccos {(1x4 + 2x6 + 3x8 + 4x10 + 6x10 + --- + 12x26)/
[(1 +224 32442+ oo + 122)1/2 (42 +62+ 824102+ - + 262)1/2]}
= arccos {2x13x14/[5(13x409)'2]} = 3.26°.
After substitution of the generators (35) into (33), the chemical reaction (33) obtains
its general form
x1 C2Hs + x2 CsHs + x3 CaHio + x4 CsHiz + x5 CsHis + x6 C7His (39)
+ x7 CsHis + x8 CoH20 + x9 CioH22+ x10 C11Ho24
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— [(x1 + 2x2 + 3x3 + 4xa + Sxs + 6x6 + 7x7 + 8xs + 9x9 + 10x10)/11] C12Hoe

+ [(10x1 + 9x2 + 8x3 + 7x4 + 6x5 + Sx6 + 4x7 + 3x8 + 2x9 + x10)/11] CHa.
where xi: > 0, (1 <i < 10) are arbitrary real numbers.

Example
Next, we shall consider a particular reaction of (39). For x1 = x2 = -~ = x10 =1 im-
mediately from (39) follows balanced particular reaction
C2Hs + CsHs + CaHio + CsHiz + CeHis + C7Hi6 + CsHas (40)

+ CoH20 + CioH22+ C11H24 — 5 Ci2Ha6 + 5 CHa.

Problem 5
According to the last problem, now arises a need to balance the general alkane’s
chemical reaction

n-2

XiCi+1Haita — Xn-1CaHani2 + x2CHa, (n > 2). (41)
i=1
Solution
The general alkane’s chemical reaction (41) reduces to the hyperplanes
2x1+3x2+4x3+ -+ (n - 1) Xn2 = nXn1 + Xn, (42)

6x1 + 8x2 + 10x3 + - + 2nxn2 = (2n + 2)xn-1 + 4,
which intersection is given by (27). The intersection point has coordinates (28).
The system (42) has two (nonzero) linear equations in #» unknowns; and hence it has
n - 2 free variables x; > 0, (1 <i<n - 2). Thus, the dimension of the solution space W of
the system (42) is dim W = n - 2. To obtain a basis for W, we set (29) in (28) to obtain
solutions (30).
The set {a1, a2, a3, ..., a2} is a basis of the solution space .
The angle <a(nc, nu) between carbon and hydrogen hyperplane is equal to the acute
angle determined by the normal vectors of the planes
nc=(2,3,4,5,...,(n-1),-n,-1)and nu=(6, 8, 10, 12, ..., 2n, - 2n +2),- 4)
<Xanc, i) = arccos |1x4 + 2x6 + 3x8 + 4x10 + - + (n - 1)x2n + nx(2n + 2)|/
[(12 + 22 + 32 + 42 + e + n2)1/2 (42 + 62 + e 4 (211 + 2)2)1/2].
Since
1x4 +2%x6 +3x8 + 4x10 + - + (n - 1)x2n + nx(2n +2) =2n(n + 1)(n + 2)/3,
12+22+32+42+ - +n2=nn+1)2n+1)/6
and
£2+6*+8+ 100+ +(2n+2)>=2n2n*+9n + 13)/3,
then

Xa(nc, nn) = arccos {2(n + 1)"2(n + 2)/[(2n + 1)(2n* + 9n + 13)]"2}.
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According to (27) and (41), balanced alkane’s chemical reaction obtains this general
form

n-2

(n- 1)) xiCiHaia — (D ix:)CaHowa + [ Y (n - i - 1)xi]CHa, (n>2).  (43)
i=1 i=1 =1

where xi > 0, (1 <i <n - 2) are arbitrary real numbers.”

Example

Let’s consider a particular case of (43). For x1 = x2 = -~ = x»2 = 1, the reaction (43)
transforms into following balanced particular reaction?

2)" CistHains — (n - 2)(CaHanza + CHa), (n > 2). (44)

i=1

Problem 6
Next, we shall balance the general alkene’s chemical reaction

n-1
Z xiCintHaiva — xnCrt1Hon2, (n > 1). (45)
=1
Solution
Since the carbon and hydrogen atoms are disposed on the coincident hyperplanes,
then the above alkene’s chemical reaction (45) reduces to this linear equation
2x1 + 3x2 + 4z + -+ + nxar = (n + 1)xa, (46)
which general solution is

o= [1/(n + 1)]i(i+ Dxi, (1> 1) (47)

where xi > 0, (1 <i <n - 1) are arbitrary real numbers. The intersection point has these
coordinates
{x1, X2, X3, ..., X1, [201 + 3x2 4x3 + - + mxaa]/(n + 1)}, (48)
where xi > 0, (1 <i<n - 2) are arbitrary real numbers.
The reaction (45) reduces to one (nonzero) linear equations in » unknowns; and hence
ithas n - 1 free variables x; > 0, (1 <i < - 1). Thus, the dimension of the solution space
W of (46) is dim W =n - 1. To obtain a basis for ¥, we set

xi=1,x2==xx1=0,
x1=0,x=1,x3==xs1=0,
xt=x2=0,x3=1,x4= - =xu1=0, (49)
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x1=-=xn2=0,xn1=1,
in the expression (48) to obtain the solutions
a=[1,0,0,...,0,2/(n+ 1)],
a:=[0,1,0,...,0,3/(n+ 1)],
a;=1[0,0,1,...,0,4/(n+ 1)], (50)

a-1=1[0,0,0,...,1,n/(n+1)].
The set {a1, a2, as, ..., a1} is a basis of the solution space .
After substitution of the generator (47) into (45), balanced alkene’s chemical reaction
obtains this general form

n-1 n-1
(n+ 1) Y. xiCe1Haia — [ Y (i + Dxi]Cus1Hanea, (> 1) (51)
i=1 i=1
where x; > 0, (1 <i<n - 1) are arbitrary real numbers.
Example
Now, we shall consider a particular case of (51). For x1 =x2 = --- = x»1 = 1, the reac-

tion (51) transforms into following balanced particular reaction
n-1

(2n+2) Y CeiHaia — (1 - 1)(n + 2)CoetHonea, (1> 1). (52)

i=1

Problem 7
Next, the general alcohol’s chemical reaction will be considered
n-2
z xiCi+1H2i+40 — xn1CaH2020 + x2CH4O, (n > 2). (53)
i=1
Solution
The general alcohol’s chemical reaction (53) reduces to the following hyperplanes
2x1+ 3x2+ 4x3 + - + (n - 1)xn2 = nxn1 + X,
3x1+4x2+ 5x3 + -+ nxn2= (n+ 1)xn1 + 20, 54)
X1+ x2+Xx3+ =+ X2 = Xn-1 T Xn,
which intersection is given by (27). The intersection point has coordinates (28). The
system (54) has two (nonzero) linear equations in #» unknowns; and hence it has n - 2
free variables x: > 0, (1 <i<n - 2). Thus, the dimension of the solution space W of the
system (54) is dim W =n - 2. To obtain a basis for W, we set (29) in the expression
(28) to obtain the solutions (30). The set {a1, a2, a3, ..., a»2} is a basis of the solution
space W.
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The angle <a(nc, no) between carbon and oxygen hyperplane is equal to the acute
angle determined by the normal vectors of the planes
nc=(2,3,4,...,n-1,-n,-1)and no=(1, 1, 1 ,1,-1,-1)
<o(nc, no) = arccos {|1><1 + %1+ 3x1 +4x1 + = + (n - 1)><1 + nx1|/
[(12+ 12+ 12+ -+ 12+ 12)1/2(12+22+32+42+ +(n 1)2+n2)1/2]}.
Since
Ix1 +2x1 + 3x1 +4x1 + - + (n - 1)x1 + nxl = n(n + 1)/2,
P+12+ 12+ 124+ 124+ 12=np,
and
PP+22+324+4 4+ -1y +n*=nn+1)2n+ 1)/6,
then
Xa(nc, no) = arccos {[3(n + 1)/2(2n + 1)]"?}.
The angle X a(nc, nu) between carbon and hydrogen hyperplane is equal to the acute
angle determined by the normal vectors of the planes
nc=2,3,4,...,n-1,-n,-1),mn=3,4,5,...,n,-n-1,-2)
Xa(nc, nn) = arccos {|1X2 + 2x3 + 3x4 +4x5 + -+ (n - )xn + nx(n + 1))/
[(12 + 22 + 32 4+ o+ (l’l _ 1)2 + n2)1/2 (22 + 32 + 42 4+ o+ n2 + (l’l + 1)2)1/2]}.
Since
IX2+2x3+3x4+4x5+ -+ m-)xn+nx(n+1)=n(n+1)/2,
12+22+ 32+ -+ (-1 +n*=nn+1)2n+ 1)/6,
and
22432+ 4+ -+ pt+ (n+ 1) =n2n* + 9n + 13)/6,
then
<a(nc, nn) = arccos {[3(n + 1)/(2n + 1)(2n* + 9n + 13)]"2}.
The angle <a(no, nn) between oxygen and hydrogen hyperplane is equal to the acute
angle determined by the normal vectors of the planes
no=(1,1,1,...,1,-1,-1),nu=(3,4,5,...,n,-n-1,-2)
<a(no, nu) = arccos {|1><2 FIX3 + Ix4 + IXS + = + Ixn + Ix(n+ 1)/
[(12+ 12+ 12+ 4 12+ 12)1/2(22+32+42+ +n2+(n+ 1)2)1/2]}.
Since
IX2+ IX3+ Ix4+ IXS5+ -+ Ixn+ Ix(n+ 1) =n(n+ 3)/2,
PP+ 12+ 12+ + 12+ 12=n,
and
22432+ 4+ +p*+ (n+ 1) =n2n? +9n + 13)/6,
then
Xa(no, nu) = arccos {[3(n + 3)*/2(2n* + 9n + 13)]"?}.
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According to (27) and (53), balanced alcohol’s reaction obtains this general form

n-2 n-2 n-2

(n- 1)) xiCi1Haia0 — (O ixi) CiH2u20 + [ Y (n - i - 1)xi]CH4O, (n > 2) (55)
i=1 1 =1

i=

where x: > 0, (1 <i<n - 2) are arbitrary real numbers.

Example
Let’s consider a particular case of (55). For x1 = x2 = - = x»2 = 1, the reaction (55)
becomes
n-2
2 CintH2it40 — (n - 2)(CaH20120 + CH0), (n > 2). (56)
i=1
Discussion

Presently in chemistry and mathematics, there are several formal mathematical
methods for balancing chemical reactions, which work succesfully for chemical reac-
tions possess atoms with fractional and integer oxidation numbers. These methods are
founded by virtue of generalized matrix inverses and all of them need higher level of
algebraic knowledge for their application. Just it was a stumbling block for chemists to
use these methods for their daily purposes. In order to be avoid that awkward position,
the author created this formal geometrical method for balancing continuum chemical
reactions, with an intention to adapt a new contemporary mathematical method accord-
ing to chemists’ requirements.

By the way, this geometrical method reduces any chemical reaction to a set of hyper-
planes of its atoms. Intersection of the hyperplanes is a hyperline, where lie all required
reaction coefficients. In order to be verified its power and supremacy it was applied on
several continuum classes organic reactions, such that obtained results showed that it
works perfectly.

Conclusion

In this article are balanced only continuum class organic chemical reactions, such
those of aliphatic hydrocarbon chemical reaction. Among considered organic reactions
were: alkyne’s general and its particular chemical reactions, alkane’s general and its
particular chemical reactions, alkene’s general and its particular chemical reaction, and
alcohol’s general and its particular chemical reaction. All chemical reactions looked as
elementary two and three atom molecular reactions, but they were very hard to balance.
By this method the author proved again that balancing chemical reactions does not have
anything with chemistry, because it is a pure mathematical issue.
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The strengths of the geometrical method are: (1) This method provides an alternative
approach for balancing continuum chemical reactions. By this method is showed that
algebraic methods can be substituted by geometrical methods; (2) Since this method
is well formalized, it belongs to the class of consistent methods for balancing chemi-
cal reaction; (3) This method showed that any chemical reactions can be treated as n-
dimensional geometrical entity; (4) In fact, here-offered geometrical method simplifies
mathematical operations provided by the previous well-known matrix methods and is
very easily acceptable for daily practice. The geometrical method has this advantage,
because it fits for all continuum chemical reactions, which previously were balanced
only by the methods of generalized matrix inverses; (5) For determination of intersec-
tion point of hyperplanes any method for solution of system of linear equations can be
used; (6) By this method the general form of the balanced chemical reaction much faster
than by other matrix methods can be determined; (7) From the general balanced reaction
the other particular and sub-particular reactions can be determined; (8) By this method,
the angle <a(n1, n2) between atom hyperplanes can be determined very easily; (9) The
geometrical method provides the dimension of the solution space; (10) Also, by this
method a basis of the solution space can be determined; (11) Necessary and sufficient
conditions for which some reaction holds can be determined by this method too. These
conditions determine the reaction interval of its possibility; (12) This method gives an
opportunity to be extended with other numerical calculations necessary for continuum
reactions; (13) Here offered geometrical method represents a well basis for building a
software package.

The weak sides of the geometrical method are: (14) By this method the minimal reac-
tion coefficients cannot be determined; (15) Also, this method cannot recognize when
chemical reaction reduces to one generator reaction; (16) It cannot predict quantitative
relations among reaction coefficients; (17) This method cannot arrange molecules dis-
position; (18) The geometrical method cannot be predicted reaction stability.

This method wild opens the doors in chemistry and mathematics too, for a new re-
search of continuum chemical reactions, which unfortunately today cannot be balanced
by usage of computer, because there is not such method. Here developed geometrical
method is a big challenge for researchers to extend and adapt it for a computer application.
Sure that it is not easy and simple job, but it deserves to be realized as soon as possible.

NOTES

In the reaction (31), if one substitutes » = 11, then it transforms into (23).
The alkyne’s reaction (32), for n = 11 becomes sub-particular reaction (24).
In the reaction (43), if one substitutes » = 12, then it transforms into (39).
The alkane’s reaction (44), for n = 12 becomes sub-particular reaction (40).

L=
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