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A NEW FORMAL GEOMETRICAL METHOD  
FOR BALANCING CONTINUUM CLASSES  

OF CHEMICAL REACTIONS

Ice B. Risteski

Abstract. In this article a new formal geometrical method is developed for balancing 
continuum class chemical reactions. Here are treated new continuum classes of aliphatic 
hydrocarbon chemical reactions which possess atoms with integer oxidation numbers. All 
considered continuum reactions are reduced to a set of hyperplanes, which intersection is a 
hyperline that contains the required coefficients of reactions. Also, particular reactions derived 
from the general continuum classes are balanced in such a way that they do not lose their 
continuum properties. To this method is given an advantage, because the so-called chemical 
ways for balancing chemical reactions are inconsistent. Actually, here offered geometrical 
method is the first scientific method, which treats chemical reactions as n-dimensional geo-
metric entities. By this method, the author proved again that balancing chemical reactions 
does not have anything to do with chemistry, because it is a pure mathematical subject. 

Keywords: geometrical method, chemical reactions, balancing.

Introduction
The best method of balancing chemical reactions would be one which could be ap-

plied to all oxidation-reduction reactions. Presently, there are such methods in chemistry 
and mathematics and they are created by virtue of algebraic principles. 

The aim in the balancing of an oxidation-reduction reaction should be to secure a 
stoichiometrically correct final reaction and the method applied should emphasize the 
fundamental phenomena of certain class of reactions and take into account whatever other 
factors may be involved in a particular case which may modify the course of the reaction.

Generally speaking, balancing chemical reactions is an excellent topic for students 
who have chemistry as a major subject of study (Risteski, 1990). Mass balance of chemi-
cal reactions is one of the most highly studied subjects in chemical education. In fact, 
balancing chemical reactions provides a tremendous demonstrative and pedagogical 
example of interconnection between chemistry and linear algebra. In chemistry there are 
lots of so-called methods for balancing chemical reactions, but all of them have limited 
usage, because they hold only for some elementary chemical reactions. Actually, they 
are not methods, just particular procedures founded by virtue of experience, but without 
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any formal criteria. A survey of the references which treat problem of balancing chemi-
cal reactions through the prism of chemistry is given in the previous author’s research 
works (Risteski, 2007a; 2007b; 2008a; 2008b; 2009).

Most current chemistry textbooks generally support the ion–electron procedure as the 
general balancing tool that best makes use of chemical principles. Since, the author of 
this article was astonished by the given advantage of that particular procedure, he posed 
the following question: why do they do that? This question does not have a philosophical 
disposition, just an intention to mention to chemists that it is a big fallacy; in the last 
decade, it is very well-known that only the mathematical methods are consistent methods 
for balancing chemical reactions. So-called chemical methods for balancing chemical 
reactions are inconsistent, because they consider chemical reactions in an informal way, 
which produces only paradoxes (Risteski, 2010; 2011). 

Now, logically this question arises: what are chemical principles? According to 
Risteski (2010) the best short answer to this question is: ‘chemical principles’ are not 
defined entities in chemistry, and so this term does not have any meaning. They represent 
only a main generator for paradoxes. Actually, ‘chemical principles’ are a remnant of 
an old traditional approach in chemistry. 

In order for readers to have a better picture about the balancing chemical reactions, 
let’s make a small digression. Really, until the second half of the 20th century there was 
no mathematical method for balancing chemical reactions in chemistry, other than the 
algebraic method. Then, chemists on an inertial way balanced just simple particular 
chemical reactions using only change in oxidation number procedure, partial reactions 
procedure and other slightly different modifications derived from them. So-called chemi-
cal principles were an assumption of traditional chemists, who thought that the solution 
of the general problem of balancing chemical reactions is possible by use of chemical 
procedures. But, practice showed that the solution of the century old problem is possible 
only by using a contemporary mathematical method (Risteski, 2007a).

Also, in (Risteski, 2010) the author emphasized very clearly, that balancing chemi-
cal reactions is not chemistry; it is just linear algebra. From a scientific view point, a 
chemical reaction can be balanced if and only if it generates a vector space. That is a 
necessary and sufficient condition for balancing a chemical reaction. This shows that 
chemical reaction must be considered as a formal whole, in a right sense of the word, 
if we like it to be balanced in a correct way. In the opposite case, as it was done by the 
chemical methods, one obtains only the absurd (Risteski, 2011).

Here, considered aliphatic hydrocarbon chemical reactions belong to the class of 
two generator chemical reactions with non-unique coefficients. These reactions are 
continuum reactions, because the problem of their coefficients determination reduces 
to the generalized continuum problem (Risteski, 2012).



Ice B. Risteski

710

A new geometrical method
In this section we shall develop a new geometrical method for balancing continuum 

chemical reactions. For that purpose, we shall introduce a whole set of auxiliary defini-
tions from n-dimensional geometry (Kendall, 2004) and real finite-dimensional vector 
spaces (Halmos, 1987) to make the chemistry work consistently. The more abstract the 
theory is, the stronger the cognitive power is. 

Let X  be a finite set of molecules.
Definition 1. A chemical reaction on X is a formal linear combinations of elements 

of X , such that
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                                                                                              m 

ρ : ∑ aijxj → 0, (1 ≤ j ≤ n). 
                                                                                             i=1 
 

 

     (1) 

The coefficients xj, (1 ≤ j ≤ n) satisfy three basic principles (corresponding to a 

closed input-output static model): (i) the law of conservation of atoms; (ii) the law of 

conservation of mass, and (iii) the reaction time-independence.  

Proposition 2. Any chemical reaction can be reduced to a set of hyperplanes of 

its atoms. 

Proof. Since every chemical reaction can be presented in a matrix form Ax = 0, 

then it corresponds with (1). In fact, the expression (1) is a set of hyperplanes. Opposite, 

if (1) holds, then exists Ax = 0.  

Let us now consider an arbitrary subset A  ⊆ X.  

Definition 3. A chemical reaction ρ may take place in a reaction combination 

composed of the molecules in A   if and only if Domρ ⊆ A.  

Definition 4. The collection of all possible reactions in the stoichiometrical space 

(X, R ), that can start from A   is given by 

                                                                                       R A   = {ρ ∈ R  | Domρ ⊆ A   }. 
 

     (2) 

Theorem 5. Let U = span{v1, v2, …, vn} in a vector space V of the chemical 

reaction (1) over the field ℝ. Then,  

U is a subspace of V containing each of vi, (1 ≤ i ≤ n),          (3) 

U is the smallest subspace containing these vectors in the sense that any subspace 

of V that contains each of vi, (1 ≤ i ≤ n), must contain U.           (4) 

Proof. First we shall prove (3). Clearly 0 = 0v1 + 0v2 + ⋯ + 0vn belongs to U. If v 

= a1v1 + a2v2 + ⋯ + anvn and w = b1v1 + b2v2 + ⋯ + bnvn are two members of U and a ∈ U, 

then  

v + w = (a1 + b1)v1 + (a2 + b2)v2 + ⋯ + (an + bn)vn,    

av = (aa1)v1 + (aa2)v2 + ⋯ + (aan)vn,  

so both v + w and av lie in U. Hence U is a subspace of V. It contains each of vi, (1 ≤ i ≤ 

n). For instance, v2 = 0v1 + 1v2 + 0v3 + ⋯ + 0vn. This proves (3).  
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so both v + w and av lie in U. Hence U is a subspace of V. It contains each of vi, (1 ≤ i 
≤ n). For instance, v2 = 0v1 + 1v2 + 0v3 + ⋯ + 0vn. This proves (3). 

Now, we shall prove (4). Let W be subspace of V that contains each of vi, (1 ≤ i ≤ n). 
Since W is closed under scalar multiplication, each of aivi, (1 ≤ i ≤ n) lies in W for any 
choice of ai, (1 ≤ i ≤ n) in ℝ. But, then aivi, (1 ≤ i ≤ n) lies in W, because W is closed 
under addition. This means that W contains every member of U, which proves (4).

Theorem 6. The intersection of any number of subspaces of a vector space V of the 
chemical reaction (1) over the field ℝ is a subspace of V.

Proof. Let {Wi: i Î I} be a collection of subspaces of V and let W = Ç (Wi: i Î I). Since 
each Wi is a subspace, then 0 Î Wi, “i Î I. Thus 0 Î W. Assume u, v Î W. Then, u, v Î Wi, “i 
Î I. Since each Wi is a subspace, then (au + bv) Î Wi, “i Î I. Therefore (au + bv) Î W. Thus 
W is a subspace of V of the chemical reaction (1).

Theorem 7. The hyperplanes (1), obtained from the chemical reaction, in n unknowns 
x1, x2, …, xn over the field ℝ has a solution set W, which is a subspace of the vector 
space ℝn.

Proof. The system (1) is equivalent to the matrix equation Ax = 0. Since A0 = 0, the 
zero vector 0 Î W. Assume u and v are vectors in W, i. e., u and v are solutions of the 
matrix equation Ax = 0. Then Au = 0 and Av = 0. Therefore, “a, b Î ℝ, we have A(au + 
bv) = aAu + bAv = a0 + b0 = 0 + 0 = 0. Hence au + bv is a solution of the matrix equa-
tion Ax = 0, i. e., au + bv Î W. Thus W is a subspace of ℝn.

Proposition 8. If W is a subspace of V of the chemical reaction (1) over the field ℝ, 
then span{W} = W.

Proof. Since W is a subspace of V of the chemical reaction (1)  over the field ℝ, W is 
closed under linear combinations. Hence span{W} Í W. But W Í span{W}. Both inclu-
sions yield span{W} = W.

The relationship between the two planes
a1x1 + a2x2 + ⋯ + anxn + a = 0, and b1x1 + b2x2 + ⋯ + bnxn + b = 0,    

can be described as follows:
1. intersecting if a1/b1 ≠ a2/b2 ≠ ⋯ ≠ an/bn,
2. parallel if a1/b1 = a2/b2 = ⋯ = an/bn ≠ a/b,
3. coincident if a1/b1 = a2/b2 = ⋯ = an/bn = a/b.
The angle ∢α(n1, n2) between two hyperplanes is equal to the acute angle determined 

by the normal vectors of the planes
n1 = (a1, a2, …, an) and n2 = (b1, b2, …, bn)    (5)

i.e.
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2. parallel if a1/b1 = a2/b2 = ⋯ = an/bn ≠ a/b, 

3. coincident if a1/b1 = a2/b2 = ⋯ = an/bn = a/b. 

The angle ∢α(n1, n2) between two hyperplanes is equal to the acute angle 

determined by the normal vectors of the planes 

n1 = (a1, a2, …, an) and n2 = (b1, b2, …, bn)    (5) 

i.e. 
                                                                                                            n                              n                           n 

∢α(n1, n2) = arccos{|∑ ai bi|/[(∑ ai
2)1/2

 (∑ bi
2)1/2]}. 

                                                                                                          i=1      i=1               i=1 
 

 

     (6) 

In the next section some very hard problems will be solved from the theory of 

balancing chemical reactions. Just, for that purpose was built a new n-dimensional 

geometrical method for balancing two generators aliphatic hydrocarbon chemical 

reactions. Here balanced reactions are completely new and according to our best 

knowledge for the first time they appear in scientific literature. 

 

Main results 

Problem 1  

We shall balance the following aliphatic hydrocarbon chemical reaction  

x1 C2H2 + x2 CH4 + x3 C2H4 + x4 C3H4 + x5 C2H6 + x6 C3H6  (7) 

+ x7 C4H6 + x8 C3H8 + x9 C4H8 → x10 C5H10.  

Solution  

According to the reaction (7), carbon and hydrogen atoms are disposed adequately 

on the following hyperplanes  

2x1 + x2 + 2x3 + 3x4 + 2x5 + 3x6 + 4x7 + 3x8 + 4x9 = 5x10,  (8) 

2x1 + 4x2 + 4x3 + 4x4 + 6x5 + 6x6 + 6x7 + 8x8 + 8x9 = 10x10,  

which intersection is 

x1 = - 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3,  (9) 

x2 = - 2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3,  

where xi > 0, (3 ≤ i ≤ 10) are arbitrary real numbers. The intersection point has these 

coordinates 
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on the following hyperplanes 
2x1 + x2 + 2x3 + 3x4 + 2x5 + 3x6 + 4x7 + 3x8 + 4x9 = 5x10,  (8)

2x1 + 4x2 + 4x3 + 4x4 + 6x5 + 6x6 + 6x7 + 8x8 + 8x9 = 10x10,
which intersection is

x1 = - 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3,  (9)

x2 = - 2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3,
where xi > 0, (3 ≤ i ≤ 10) are arbitrary real numbers. The intersection point has these 
coordinates

(- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3, - 2x3/3 - x4/3 - 4x5/3 - x6 
- 2x7/3  - 5x8/3 - 4x9/3 + 5x10/3, x3, x4, x5, x6, x7, x8, x9, x10),

(10)

where xi > 0, (3 ≤ i ≤ 10) are arbitrary real numbers.
The system (8) has two (nonzero) linear equations in ten unknowns; and hence it has 

10 - 2 = 8 free variables xi > 0, (3 ≤ i ≤ 10). Thus, the dimension of the solution space 
W of the system (8) is dim W = 8. To obtain a basis for W, we set

x3 = 1, x4 = ⋯ =  x10 = 0,
x3 = 0, x4 = 1, x5 = ⋯ = x10 = 0,

x3 = x4 = 0, x5 = 1, x6 = ⋯ = x10 = 0,
x3 = ⋯ = x5 = 0, x6 = 1, x7 = ⋯ = x10 = 0, (11)
x3 = ⋯ = x6 = 0, x7 = 1, x8 = ⋯ = x10 = 0,

x3 = ⋯ = x7 = 0, x8 = 1, x9 = x10 = 0,
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x3 = ⋯ = x8 = 0, x9 = 1, x10 = 0,
x3 = ⋯ = x9 = 0, x10 = 1,

in the expression (10) to obtain the solutions
a1 = (- 2/3, - 2/3, 1, 0, 0, 0, 0, 0, 0, 0),
a2 = (- 4/3, - 1/3, 0, 1, 0, 0, 0, 0, 0, 0),
a3 = (- 1/3, - 4/3, 0, 0, 1, 0, 0, 0, 0, 0),

a4 = (- 1, - 1, 0, 0, 0, 1, 0, 0, 0, 0), (12)
a5 = (- 5/3, - 2/3, 0, 0, 0, 0, 1, 0, 0, 0),
a6 = (- 2/3, - 5/3, 0, 0, 0, 0, 0, 1, 0, 0),
a7 = (- 4/3, - 4/3, 0, 0, 0, 0, 0, 0, 1, 0),

a8 = (5/3, 5/3, 0, 0, 0, 0, 0, 0, 0, 1).
The set {a1, a2, a3, a4, a5, a6, a7, a8} is a basis of the solution space W.
The angle ∢α(nC, nH) between carbon and hydrogen hyperplane (8) is equal to the 

acute angle determined by the normal vectors of the planes
nC = (2, 1, 2, 3, 2, 3, 4, 3, 4, - 5) and nH = (2, 4, 4, 4, 6, 6, 6, 8, 8, - 10),

i.e.,
∢α(nC, nH) = arccos {(2×2 + 1×4 + 2×4 + 3×4 + 2×6 + 3×6 + 4×6 + 3×8 + 4×8 + 5×10)/[(22 + 12 + 22 

+ 32 + 22 + 32 + 42 + 32 + 42 + 52)1/2 (22 + 42 + 42 + 42 + 62 + 62 + 62 + 82 + 82 + 102)1/2]}
= arccos [188/(97×388)1/2] = arccos (94/97) = 14.3°.

After substitution of the expressions (9) into (7), the balanced reaction (1) obtains 
its general form

(- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3) C2H2 (13)
+ (- 2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3) CH4 + x3 C2H4

+ x4 C3H4 + x5 C2H6 + x6 C3H6 + x7 C4H6 + x8 C3H8 + x9 C4H8 → x10 C5H10,
where xi > 0, (3 ≤ i ≤ 10) are arbitrary real numbers.

Since the generators x1, x2 > 0, then for the general chemical reaction (13) holds this 
system of linear inequalities

- 2x3/3 - 4x4/3 - x5/3 - x6 - 5x7/3 - 2x8/3 - 4x9/3 + 5x10/3 > 0, (14)
- 2x3/3 - x4/3 - 4x5/3 - x6 - 2x7/3 - 5x8/3 - 4x9/3 + 5x10/3 > 0.

From (8), one obtains the inequality
x10 > (4x3 + 5x4 + 5x5 + 6x6 + 7x7 + 7x8 + 8x9)/10. (15)

Actually, the inequality (15) is a necessary and sufficient condition to hold the general 
reaction (13). 

In order to determine a particular reaction of (13) we shall consider the following case.
For x3 = x4 = ⋯ = x9 = 5, from (15) one obtains x10 = 22. Now, from (13) immediately 

follows the particular reaction
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5 C2H2 + 5 CH4 + 15 C2H4 + 15 C3H4 + 15 C2H6 + 15 C3H6    (16)
+ 15 C4H6 + 15 C3H8 + 15 C4H8 → 66 C5H10.

Problem 2
Now, we shall balance this alkyne’s chemical reaction

x1 C3H4 + x2 C4H6 + x3 C5H8 + x4 C6H10 + x5 C7H12 + x6 C8H14   (17)
+ x7 C9H16 + x8 C10H18 + x9 C11H20 → x10 C12H22 + x11 C2H2.

Solution 
From the above reaction adequately follow these carbon and hydrogen hyperplanes 
3x1 + 4x2 + 5x3 + 6x4 + 7x5 + 8x6 + 9x7 + 10x8 + 11x9 = 12x10 + 2x11,  (18)

4x1 + 6x2 + 8x3 + 10x4 + 12x5 + 14x6 + 16x7 + 18x8 + 20x9 = 22x10 + 2x11,
which intersection is

x10 =  (x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9)/10,  (19)
x11 =  (9x1 + 8x2 + 7x3 + 6x4 + 5x5 + 4x6 + 3x7 + 2x8 + x9)/10,

where xi > 0, (1 ≤ i ≤ 9) are arbitrary real numbers. The intersection point has these 
coordinates

[x1, x2, x3, …, x9, (x1 + 2x2 + 3x3 + ⋯ + 9x9)/10, (20)
(9x1 + 8x2 + 7x3 + 6x4 + ⋯ + 2x8 + x9)/10],

where xi > 0, (1 ≤ i ≤ 9) are arbitrary real numbers.
The system (18) has two (nonzero) linear equations in eleven unknowns; and hence 

it has 11 - 2 = 9 free variables xi > 0, (1 ≤ i ≤ 9). Thus, the dimension of the solution 
space W of the system (18) is dim W = 9. To obtain a basis for W, we set

x1 = 1, x2 = ⋯ = x9 = 0, 
x1 = 0, x2 = 1, x3 = ⋯ = x9 = 0,

x1 = x2 = 0, x3 = 1, x4 = ⋯ = x9 = 0,
x1 = ⋯ = x3 = 0, x4 = 1, x5 = ⋯ = x9 = 0,
x1 = ⋯ = x4 = 0, x5 = 1, x6 = ⋯ = x9 = 0,   (21)
x1 = ⋯ = x5 = 0, x6 = 1, x7 = ⋯ = x9 = 0,

x1 = ⋯ = x6 = 0, x7 = 1, x8 = x9 = 0,
x1 = ⋯ = x7 = 0, x8 = 1, x9 = 0,

x1 = ⋯ = x8 = 0, x9 = 1,
in the expression (20) to obtain the solutions

a1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1/10, 9/10),
a2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 2/10, 8/10),
a3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 3/10, 7/10),
a4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 4/10, 6/10),
a5 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 5/10, 5/10), (22)
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a6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 6/10, 4/10),
a7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 7/10, 3/10),
a8 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 8/10, 2/10),
a9 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 9/10, 1/10).

The set {a1, a2, a3, a4, a5, a6, a7, a8, a9} is a basis of the solution space W.
The angle ∢α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute 

angle determined by the normal vectors of the planes
nC = (3, 4, 5, 6, 7, 8, 9, 10, 11, - 12, - 2) and nH = 

(4, 6, 8, 10, 12, 14, 16, 18, 20, - 22, - 2),
∢α(nC, nH) = arccos {(2×2 + 3×4 + 4×6 + 5×8 + 6×10 + 7×12 + 8×14 + 

+9×16 + 10×18 + 11×20  
+ 12×22)/[(22 + 32 + 42+ 52 + 62 + 72 + 82 + 92 + 102 +  

+ 112 + 122)1/2 (22 + 42 + 62 + 82 
+ 102 + 122 + 142 + 162 + 182 + 202 + 222)1/2]} = 

= arccos [12×13/(2×3×23×177)1/2] = 3.5°.
After substitution of the generators (19) into (17), the chemical reaction (17) obtains 

its general form
x1 C3H4 + x2 C4H6 + x3 C5H8 + x4 C6H10 + x5 C7H12 + x6 C8H14 (23)

+ x7 C9H16 + x8 C10H18 + x9 C11H20 
→ [(x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9)/10] C12H22

+ [(9x1 + 8x2 + 7x3 + 6x4 + 5x5 + 4x6 + 3x7 + 2x8 + x9)/10] C2H2.
where xi > 0, (1 ≤ i ≤ 9) are arbitrary real numbers. 

Example
Let’s consider a particular reaction of (23). For x1 = x2 = ⋯ = x9 = 1 immediately from 

(23) follows balanced particular reaction
2 C3H4 + 2 C4H6 + 2 C5H8 + 2 C6H10 + 2 C7H12 + 2 C8H14  (24)

+ 2 C9H16 + 2 C10H18 + 2 C11H20 → 9 C12H22 + 9 C2H2.
Problem 3 
The above alkyne’s reaction (17) gives an opportunity for its consideration in more 

general form. Taking into account this fact, now we shall balance the general alkyne’s 
chemical reaction 

                                         
    n-2

∑ xiCi+2H2i+2 → xn-1Cn+1H2n + xnC2H2, (n > 2).
                                            i=1 (25)

Solution 
The general alkyne’s chemical reaction (25) reduces adequately to the following 

carbon and hydrogen hyperplanes
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3x1 + 4x2 + 5x3 + ⋯ + nxn-2 = (n + 1)xn-1 + 2xn, (26)
4x1 + 6x2 + 8x3 + ⋯ + (2n - 2)xn-2 = 2nxn-1 + 2xn,

which intersection is
                                                                                                                                            n-2

xn-1 = [1/(n - 1)] ∑ ixi,
                                       i=1

(27)

                                                                                                                              n-2

xn = [1/(n - 1)] ∑ (n - i - 1)xi,
          i=1

where n > 2 and xi > 0, (1 ≤ i ≤ n - 2) are arbitrary real numbers. The intersection point 
has these coordinates

{x1, x2, x3, …, xn-2, [x1 + 2x2 + 3x3 + ⋯ + (n - 2)xn-2]/(n - 1), 
[(n - 2)x1 + (n - 3)x2 + (n - 4)x3 + ⋯ + 2xn-3 + xn-2]/(n - 1)},

  (28)

where xi > 0, (1 ≤ i ≤ n - 2) are arbitrary real numbers.
The system (26) has two (nonzero) linear equations in n unknowns; and hence it has 

n - 2 free variables xi > 0, (1 ≤ i ≤ n - 2). Thus, the dimension of the solution space W of 
the system (26) is dim W = n - 2. To obtain a basis for W, we set

x1 = 1, x2 = ⋯ = xn-2 = 0,
x1 = 0, x2 = 1, x3 = ⋯ = xn-2 = 0,

x1 = x2 = 0, x3 = 1, x4 = ⋯ = xn-2 = 0,   (29)
⋮

x1 = ⋯ = xn-3 = 0, xn-2 = 1,
in the expression (28) to obtain the solutions

a1 = [1, 0, 0, …, 0, 1/(n - 1), (n - 2)/(n - 1)],
a2 = [0, 1, 0, …, 0, 2/(n - 1), (n - 3)/(n - 1)],
a3 = [0, 0, 1, …, 0, 3/(n - 1), (n - 4)/(n - 1)],  (30)

⋮  
an-2 = [0, 0, 0, …, 1, (n - 2)/(n - 1), 1/(n - 1)].

The set {a1, a2, a3, …, an-2} is a basis of the solution space W.
The angle ∢α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute 

angle determined by the normal vectors of the planes
nC = (3, 4, 5, …, n, - n - 1, - 2) and nH = (4, 6, 8, …, 2n - 2, - 2n, - 2)

∢α(nC, nH) = arccos {|2×2 + 3×4 + 4×6 + 5×8 + ⋯ + n×(2n - 2) + (n + 1)×2n|/ 
[(22 + 32 + 42 + ⋯ + n2 + (n + 1)2)1/2 (22 + 42 + 62 + ⋯ + (2n - 2)2 + (2n)2)1/2]}.
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Since 
2×2 + 3×4 + 4×6 + 5×8 + ⋯ + n×(2n - 2) + (n + 1)×2n = 2n(n + 1)(n + 2)/3,

22 + 32 + 42 + 52 + ⋯ + n2 + (n + 1)2 = n(2n2 + 9n + 13)/6
and

22 + 42 + 62 + 82 + ⋯ + (2n - 2)2 + (2n)2 = 2n(n + 1)(2n + 1)/3,
then
∢α(nC, nH) = arccos {2(n + 1)(n + 2)/[(n + 1)(2n + 1)(2n2 + 9n + 13)]1/2}.
According to (27) and (25), balanced alkyne’s chemical reaction obtains this general 

form
                         n-2                                                   n-2                                                   n-2

(n - 1)∑ xiCi+2H2i+2 → (∑ ixi)Cn+1H2n + [∑ (n - i - 1)xi]C2H2, (n > 2).
                         i=1                                                   i=1                                                    i=1

 (31)

where xi > 0, (1 ≤ i ≤ n - 2) are arbitrary real numbers.1)

Example  
Now, we shall consider a particular case of (31). For x1 = x2 = ⋯ = xn-2 = 1, the reac-

tion (31) transforms into following balanced particular reaction2) 
                                         

  n-2

2∑ Ci+2H2i+2 → (n - 2)(Cn+1H2n + C2H2), (n > 2).
                                           i=1

(32)

Problem 4 
Like an interesting reaction, we shall balance this alkane’s chemical reaction

x1 C2H6 + x2 C3H8 + x3 C4H10 + x4 C5H12 + x5 C6H14 + x6 C7H16 (33)
+ x7 C8H18 + x8 C9H20 + x9 C10H22 + x10 C11H24 → x11 C12H26 + x12 CH4.
Solution 
From the above alkane’s chemical reaction (33) follows these hyperplanes

2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 + 8x7 + 9x8 + 10x9 + 11x10 = 12x11 + x12,  (34)
6x1 + 8x2 + 10x3 + 12x4 + 14x5 + 16x6 + 18x7 + 20x8 + 22x9 + 24x10 = 

26x11 + 4x12,
which intersection is

x11 =  (x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10)/11, (35)
x12 =  (10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10)/11,

where xi > 0, (1 ≤ i ≤ 10) are arbitrary real numbers. The intersection point has these 
coordinates

[x1, x2, x3, …, x9, x10, (x1 + 2x2 + 3x3 + ⋯ + 10x10)/11,  (36)
(10x1 + 9x2 + 8x3 + 7x4 + ⋯ + 2x9 + x10)/11],

where xi > 0, (1 ≤ i ≤ 10) are arbitrary real numbers.
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The system (34) has two (nonzero) linear equations in twelve unknowns; and hence 
it has 12 - 2 = 10 free variables xi > 0, (1 ≤ i ≤ 10). Thus, the dimension of the solution 
space W of the system (34) is dim W = 10. To obtain a basis for W, we set

x1 = 1, x2 = ⋯ = x10 = 0, 
x1 = 0, x2 = 1, x3 = ⋯ = x10 = 0,

x1 = x2 = 0, x3 = 1, x4 = ⋯ = x10 = 0,
x1 = ⋯ = x3 = 0, x4 = 1, x5 = ⋯ = x10 = 0,
x1 = ⋯ = x4 = 0, x5 = 1, x6 = ⋯ = x10 = 0,   (37)
x1 = ⋯ = x5 = 0, x6 = 1, x7 = ⋯ = x10 = 0,
x1 = ⋯ = x6 = 0, x7 = 1, x8 = ⋯ = x10 = 0,

x1 = ⋯ = x7 = 0, x8 = 1, x9 = 0,
x1 = ⋯ = x8 = 0, x9 = 1, x10 = 0,

x1 = ⋯ = x9 = 0, x10 = 1,
in the expression (30) to obtain the solutions

a1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/11, 10/11),
a2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2/11, 9/11),
a3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3/11, 8/11),
a4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4/11, 7/11),
a5 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5/11, 6/11), (38)
a6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6/11, 5/11),
a7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 7/11, 4/11),
a8 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 8/11, 3/11),
a9 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 9/11, 2/11),

a10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10/11, 1/11).
The set {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10} is a basis of the solution space W.
The angle ∢α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute 

angle determined by the normal vectors of the planes
nC = (2, 3, 4, 5, …, 11, - 12, - 1) and nH = (6, 8, 10, 12, …, 24, - 26, - 4)
∢α(nC, nH) = arccos {(1×4 + 2×6 + 3×8 + 4×10 + 6×10 + ⋯ + 12×26)/  

[(1 + 22 + 32 + 42 + ⋯ + 122)1/2 (42 + 62 + 82 + 102 + ⋯ + 262)1/2]}
= arccos {2×13×14/[5(13×409)1/2]} = 3.26°.

After substitution of the generators (35) into (33), the chemical reaction (33) obtains 
its general form

x1 C2H6 + x2 C3H8 + x3 C4H10 + x4 C5H12 + x5 C6H14 + x6 C7H16 (39)
+ x7 C8H18 + x8 C9H20 + x9 C10H22 + x10 C11H24 
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→ [(x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10)/11] C12H26

+ [(10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10)/11] CH4.
where xi > 0, (1 ≤ i ≤ 10) are arbitrary real numbers. 

Example
Next, we shall consider a particular reaction of (39). For x1 = x2 = ⋯ = x10 = 1 im-

mediately from (39) follows balanced particular reaction
C2H6 + C3H8 + C4H10 + C5H12 + C6H14 + C7H16 + C8H18 (40)

+ C9H20 + C10H22 + C11H24 → 5 C12H26 + 5 CH4.

Problem 5 
According to the last problem, now arises a need to balance the general alkane’s 

chemical reaction
                                             

 n-2

∑ xiCi+1H2i+4 → xn-1CnH2n+2 + xnCH4, (n > 2).
                                              i=1

(41)

Solution 
The general alkane’s chemical reaction (41) reduces to the hyperplanes 

2x1 + 3x2 + 4x3 + ⋯ + (n - 1) xn-2 = nxn-1 + xn, (42)
6x1 + 8x2 + 10x3 + ⋯ + 2nxn-2 = (2n + 2)xn-1 + 4xn,

which intersection is given by (27). The intersection point has coordinates (28).
The system (42) has two (nonzero) linear equations in n unknowns; and hence it has 

n - 2 free variables xi > 0, (1 ≤ i ≤ n - 2). Thus, the dimension of the solution space W of 
the system (42) is dim W = n - 2. To obtain a basis for W, we set (29) in (28) to obtain 
solutions (30). 

The set {a1, a2, a3, …, an-2} is a basis of the solution space W.
The angle ∢α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute 

angle determined by the normal vectors of the planes
nC = (2, 3, 4, 5, …, (n - 1), - n, - 1) and nH = (6, 8, 10, 12, …, 2n, - (2n + 2), - 4)
∢α(nC, nH) = arccos |1×4 + 2×6 + 3×8 + 4×10 + ⋯ + (n - 1)×2n + n×(2n + 2)|/ 

[(12 + 22 + 32 + 42 + ⋯ + n2)1/2 (42 + 62 + ⋯ + (2n + 2)2)1/2].
Since 

1×4 + 2×6 + 3×8 + 4×10 + ⋯ + (n - 1)×2n + n×(2n + 2) = 2n(n + 1)(n + 2)/3,
12 + 22 + 32 + 42 + ⋯ + n2 = n(n + 1)(2n + 1)/6

and
42 + 62 + 82 +  102 + ⋯ + (2n + 2)2 = 2n(2n2 + 9n + 13)/3,

then
∢α(nC, nH) = arccos {2(n + 1)1/2(n + 2)/[(2n + 1)(2n2 + 9n + 13)]1/2}.
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According to (27) and (41), balanced alkane’s chemical reaction obtains this general 
form

                          n-2                                                   n-2                                                   n-2

(n - 1)∑ xiCi+1H2i+4 → (∑ ixi)CnH2n+2 + [∑ (n - i - 1)xi]CH4, (n > 2).
                          i=1                                                    i=1                                                   i=1

(43)

where xi > 0, (1 ≤ i ≤ n - 2) are arbitrary real numbers.3)

Example  
Let’s consider a particular case of (43). For x1 = x2 = ⋯ = xn-2 = 1, the reaction (43) 

transforms into following balanced particular reaction4) 
                                            

n-2

2∑ Ci+1H2i+4 → (n - 2)(CnH2n+2 + CH4), (n > 2).
                                            i=1

(44)

Problem 6 
Next, we shall balance the general alkene’s chemical reaction

                                                           
n-1

∑ xiCi+1H2i+2 → xnCn+1H2n+2, (n > 1).
                                                           i=1

(45)

Solution 
Since the carbon and hydrogen atoms are disposed on the coincident hyperplanes, 

then the above alkene’s chemical reaction (45) reduces to this linear equation
2x1 + 3x2 + 4x3 + ⋯ + nxn-1 = (n + 1)xn, (46)

which general solution is 
                                                                                                                

n-1

xn = [1/(n + 1)] ∑ (i + 1)xi, (n > 1)
                                                                                                                i=1

(47)

where xi > 0, (1 ≤ i ≤ n - 1) are arbitrary real numbers. The intersection point has these 
coordinates

{x1, x2, x3, …, xn-1, [2x1 + 3x2 4x3 + ⋯ + nxn-1]/(n + 1)},   (48)
where xi > 0, (1 ≤ i ≤ n - 2) are arbitrary real numbers.
The reaction (45) reduces to one (nonzero) linear equations in n unknowns; and hence 

it has n - 1 free variables xi > 0, (1 ≤ i ≤ n - 1). Thus, the dimension of the solution space 
W of (46) is dim W = n - 1. To obtain a basis for W, we set

x1 = 1, x2 = ⋯ = xn-1 = 0,
x1 = 0, x2 = 1, x3 = ⋯ = xn-1 = 0,

x1 = x2 = 0, x3 = 1, x4 = ⋯ = xn-1 = 0,   (49)
⋮
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x1 = ⋯ = xn-2 = 0, xn-1 = 1,
in the expression (48) to obtain the solutions

a1 = [1, 0, 0, …, 0, 2/(n + 1)],
a2 = [0, 1, 0, …, 0, 3/(n + 1)],
a3 = [0, 0, 1, …, 0, 4/(n + 1)],   (50)

⋮   
an-1 = [0, 0, 0, …, 1, n/(n + 1)].

The set {a1, a2, a3, …, an-1} is a basis of the solution space W.
After substitution of the generator (47) into (45), balanced alkene’s chemical reaction 

obtains this general form
                                                      n-1                                                   n-1

(n + 1) ∑ xiCi+1H2i+2 → [∑ (i + 1)xi]Cn+1H2n+2, (n > 1)
                                                      i=1                                                   i=1

(51)

where xi > 0, (1 ≤ i ≤ n - 1) are arbitrary real numbers.
Example  
Now, we shall consider a particular case of (51). For x1 = x2 = ⋯ = xn-1 = 1, the reac-

tion (51) transforms into following balanced particular reaction
                                                         n-1

(2n + 2) ∑ Ci+1H2i+2 → (n - 1)(n + 2)Cn+1H2n+2, (n > 1).
                                                         i=1

 (52)

Problem 7
Next, the general alcohol’s chemical reaction will be considered

                                     n-2

∑ xiCi+1H2i+4O → xn-1CnH2n+2O + xnCH4O, (n > 2).
                                     i=1

(53)

Solution 
The general alcohol’s chemical reaction (53) reduces to the following hyperplanes

2x1 + 3x2 + 4x3 + ⋯ + (n - 1)xn-2 = nxn-1 + xn,
3x1 + 4x2 + 5x3 + ⋯ + nxn-2 = (n + 1)xn-1 + 2xn, (54)

x1 + x2 + x3 + ⋯ + xn-2 = xn-1 + xn,
which intersection is given by (27). The intersection point has coordinates (28). The 
system (54) has two (nonzero) linear equations in n unknowns; and hence it has n - 2 
free variables xi > 0, (1 ≤ i ≤ n - 2). Thus, the dimension of the solution space W of the 
system (54) is dim W = n - 2. To obtain a basis for W, we set (29) in the expression 
(28) to obtain the solutions (30). The set {a1, a2, a3, …, an-2} is a basis of the solution 
space W.
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The angle ∢α(nC, nO) between carbon and oxygen hyperplane is equal to the acute 
angle determined by the normal vectors of the planes

nC = (2, 3, 4, …, n - 1, - n, - 1) and nO = (1, 1, 1, …, 1, - 1, - 1)
∢α(nC, nO) = arccos {|1×1 + 2×1 + 3×1 + 4×1 + ⋯ + (n - 1)×1 + n×1|/ 

[(12 + 12 + 12 + ⋯ + 12 + 12)1/2 (12 + 22 + 32 + 42 + ⋯ + (n - 1)2 + n2)1/2]}.
Since 

1×1 + 2×1 + 3×1 + 4×1 + ⋯ + (n - 1)×1 + n×1 = n(n + 1)/2,
12 + 12 + 12 + 12 + ⋯ + 12 + 12 = n,

and
12 + 22 + 32 + 42 + ⋯ + (n - 1)2 + n2 = n(n + 1)(2n + 1)/6,

then
∢α(nC, nO) = arccos {[3(n + 1)/2(2n + 1)]1/2}.

The angle ∢α(nC, nH) between carbon and hydrogen hyperplane is equal to the acute 
angle determined by the normal vectors of the planes

nC = (2, 3, 4, …, n - 1, - n, - 1), nH = (3, 4, 5, …, n, - n - 1, - 2)
∢α(nC, nH) = arccos {|1×2 + 2×3 + 3×4 + 4×5 + ⋯ + (n - 1)×n + n×(n + 1)|/ 

[(12 + 22 + 32 + ⋯ + (n - 1)2 + n2)1/2 (22 + 32 + 42 + ⋯ + n2 + (n + 1)2)1/2]}.
Since 

1×2 + 2×3 + 3×4 + 4×5 + ⋯ + (n - 1)×n + n×(n + 1) = n(n + 1)/2,
12 + 22 + 32 + ⋯ + (n - 1)2 + n2 = n(n + 1)(2n + 1)/6,

and
22 + 32 + 42 + ⋯ + n2 + (n + 1)2 = n(2n2 + 9n + 13)/6,

then
∢α(nC, nH) = arccos {[3(n + 1)/(2n + 1)(2n2 + 9n + 13)]1/2}.

The angle ∢α(nO, nH) between oxygen and hydrogen hyperplane is equal to the acute 
angle determined by the normal vectors of the planes

nO = (1, 1, 1, …, 1, - 1, - 1), nH = (3, 4, 5, …, n, - n - 1, - 2)
∢α(nO, nH) = arccos {|1×2 + 1×3 + 1×4 + 1×5 + ⋯ + 1×n + 1×(n + 1)|/ 

[(12 + 12 + 12 + ⋯ + 12 + 12)1/2 (22 + 32 + 42 + ⋯ + n2 + (n + 1)2)1/2]}.
Since 

1×2 + 1×3 + 1×4 + 1×5 + ⋯ + 1×n + 1×(n + 1) = n(n + 3)/2,
12 + 12 + 12 + ⋯ + 12 + 12 = n,

and
22 + 32 + 42 + ⋯ + n2 + (n + 1)2 = n(2n2 + 9n + 13)/6,

then
∢α(nO, nH) = arccos {[3(n + 3)2/2(2n2 + 9n + 13)]1/2}.
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According to (27) and (53), balanced alcohol’s reaction obtains this general form
                       n-2                                                        n-2                                                         n-2

(n - 1)∑ xiCi+1H2i+4O → (∑ ixi)CnH2n+2O + [∑ (n - i - 1)xi]CH4O, (n > 2)
                      i=1                                                         i=1                                                         i=1

(55)

where xi > 0, (1 ≤ i ≤ n - 2) are arbitrary real numbers.

Example  
Let’s consider a particular case of (55). For x1 = x2 = ⋯ = xn-2 = 1, the reaction (55) 

becomes
                               

      n-2

2 ∑ Ci+1H2i+4O → (n - 2)(CnH2n+2O + CH4O), (n > 2).
                                     i=1

(56)

Discussion
Presently in chemistry and mathematics, there are several formal mathematical 

methods for balancing chemical reactions, which work succesfully for chemical reac-
tions possess atoms with fractional and integer oxidation numbers. These methods are 
founded by virtue of generalized matrix inverses and all of them need higher level of 
algebraic knowledge for their application. Just it was a stumbling block for chemists to 
use these methods for their daily purposes. In order to be avoid that awkward position, 
the author created this formal geometrical method for balancing continuum chemical 
reactions, with an intention to adapt a new contemporary mathematical method accord-
ing to chemists’ requirements. 

By the way, this geometrical method reduces any chemical reaction to a set of hyper-
planes of its atoms. Intersection of the hyperplanes is a hyperline, where lie all required 
reaction coefficients. In order to be verified its power and supremacy it was applied on 
several continuum classes organic reactions, such that obtained results showed that it 
works perfectly.  

Conclusion
In this article are balanced only continuum class organic chemical reactions, such 

those of aliphatic hydrocarbon chemical reaction. Among considered organic reactions 
were: alkyne’s general and its particular chemical reactions, alkane’s general and its 
particular chemical reactions, alkene’s general and its particular chemical reaction, and 
alcohol’s general and its particular chemical reaction. All chemical reactions looked as 
elementary two and three atom molecular reactions, but they were very hard to balance. 
By this method the author proved again that balancing chemical reactions does not have 
anything with chemistry, because it is a pure mathematical issue. 
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The strengths of the geometrical method are: (1) This method provides an alternative 
approach for balancing continuum chemical reactions. By this method is showed that 
algebraic methods can be substituted by geometrical methods; (2) Since this method 
is well formalized, it belongs to the class of consistent methods for balancing chemi-
cal reaction; (3) This method showed that any chemical reactions can be treated as n-
dimensional geometrical entity; (4) In fact, here-offered geometrical method simplifies 
mathematical operations provided by the previous well-known matrix methods and is 
very easily acceptable for daily practice. The geometrical method has this advantage, 
because it fits for all continuum chemical reactions, which previously were balanced 
only by the methods of generalized matrix inverses; (5) For determination of intersec-
tion point of hyperplanes any method for solution of system of linear equations can be 
used; (6)  By this method the general form of the balanced chemical reaction much faster 
than by other matrix methods can be determined; (7) From the general balanced reaction 
the other particular and sub-particular reactions can be determined; (8) By this method, 
the angle ∢α(n1, n2) between atom hyperplanes can be determined very easily; (9) The 
geometrical method provides the dimension of the solution space; (10) Also, by this 
method a basis of the solution space can be determined; (11) Necessary and sufficient 
conditions for which some reaction holds can be determined by this method too. These 
conditions determine the reaction interval of its possibility; (12) This method gives an 
opportunity to be extended with other numerical calculations necessary for continuum 
reactions; (13) Here offered geometrical method represents a well basis for building a 
software package.

The weak sides of the geometrical method are: (14) By this method the minimal reac-
tion coefficients cannot be determined; (15) Also, this method cannot recognize when 
chemical reaction reduces to one generator reaction; (16) It cannot predict quantitative 
relations among reaction coefficients; (17) This method cannot arrange molecules dis-
position; (18) The geometrical method cannot be predicted reaction stability.

This method wild opens the doors in chemistry and mathematics too, for a new re-
search of continuum chemical reactions, which unfortunately today cannot be balanced 
by usage of computer, because there is not such method. Here developed geometrical 
method is a big challenge for researchers to extend and adapt it for a computer application. 
Sure that it is not easy and simple job, but it deserves to be realized as soon as possible.  

NOTES
1.	 In the reaction (31), if one substitutes n = 11, then it transforms into (23). 
2.	 The alkyne’s reaction (32), for n = 11 becomes sub-particular reaction (24). 
3.	 In the reaction (43), if one substitutes n = 12, then it transforms into (39). 
4. 	The alkane’s reaction (44), for n = 12 becomes sub-particular reaction (40). 
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