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Abstract. In this paper, a deterministic model SEIR-SEI model of malaria 
transmission consisting of systems of ordinary differential equations, describing 
the transmission of malaria between humans and female anopheles mosquitoes, the 
definitive hosts of Plasmodium parasites, is examined. The reproduction number is 
estimated and the model equilibria and their stabilities are discussed. The disease-
free equilibrium for the model is found to be locally asymptotically stable if the 
reproduction number is less than one and unstable if the reproduction number is 
greater than one. Numerical simulations are carried out to demonstrate the analytical 
results, and suggest that malaria can be controlled by reducing the contact rate 
between human and mosquito, the use of active malaria drugs, insecticides and the 
use of mosquito treated nets.

Keywords: SEIR-SEI model; malaria; plasmodium; parasite; anopheles; 
transmission mechanism; stability, reproduction number, endemic equilibrium

Introduction
Malaria is one of the most dangerous infectious disease caused by Plasmodium 

parasites that are transmitted to people through the bites of infected female Anoph-
eles mosquitoes. Malaria has claimed numerous lives around the world, about  
33 billion individuals or one-half of the globes populace in 104 nations are at the 
threat of getting infected by malaria disease1). It was predicted that between 300 
and five hundred million individuals die of malaria yearly. Malaria is an old dis-
ease possessing a big social financial and wellness burden, it is mainly found in 
the tropical nations. Despite the fact that the disease was examined for centuries it 
still remains a primary public health concern along with 109 nations proclaimed as 
endemic to the disease in 2008. There were 243 million malaria cases disclosed and 
almost a million fatalities predominantly of little ones under 5 years without effi-
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cient vaccination in sight and most of the older antimalarial medications dropping 
efficiency because of the parasite advancing drug resistance, deterrence making use 
of bed nets is still the merely recommendations provided to infected individuals. 
Malaria has additionally acquired prominence in latest times since weather change 
or global warming is forecasted to have unanticipated impacts on its incidence each 
increase caused by fluctuation in temperature level influences the vector and par-
asite life cycle, this can easily trigger decreased occurrence of the disease in some 
places while it might increase in others areas. 

Mathematical models for the transmission mechanics of malaria have a back-
ground of over 100 years. Mathematical models are useful in providing better un-
derstandings into the behaviour of the disease; the models have played excellent 
parts in affecting the decision-making process concerning treatment tactics for 
preventing and regulating the insurgence of malaria. Amongst all areas in biolo-
gy, scientists in infectious disease were one of the primary to discover the vital 
function of mathematics and mathematical models in offering an specific structure 
for comprehending the disease transmission mechanics within and between hosts 
and parasites. In a mathematical model, several well-known medical and biological 
details are featured in a streamlined form through selecting attributes that appear to 
be vital to the concern being explored in disease progression and mechanics. As a 
result, a model is an estimation of the complex reality and its framework hinges on 
the methods being examined and intended for extrapolation based on the concerns 
being inquired. These studies can aid the fitting of empirical observations and can 
be applied to make theoretical forecasts on known or unidentified conditions. For 
instance, mathematical models have been extensively utilized by epidemiologists 
as tools to forecast the incident of upsurges of infectious diseases and as a resource 
for assisting research for eradication of malaria. 

The earliest model on transmission of malaria parasite was proposed by Ross 
in 1911 who was awarded the nobel prize in physiology or medicine in 1902, for 
being the discoverer of the life cycle of malarial parasite. The Ross’s model con-
tain two non-linear differential equations in pair of state variables that represent 
the proportions of infected humans and the infected mosquito. Macdonald (1957) 
improved Ross’s differential equations model along with some biological presump-
tions and entomological field data. The Ross-Macdonald model captures the vital 
feature of malaria transmission and the modelling structure has extensively been 
used to examine the epidemiology of malaria and other mosquito-borne or even 
vector-borne disease (Reiner et al. 2013). Jin et al. (2020) added the quarantine 
compartment to the Ross-Macdonald model to better study the dynamics of the 
transmission of malaria. Ever since the earliest model proposed by Ross, a number 
of models have been done for malaria by a number of authors. For instance, Aron 
& May (1982), Chitnis et al. (2008, 2010), Khan et al. (2015), Traore et al. (2018) 
included different components of malaria to the model of Macdonald featuring an 
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incubation period in the mosquito superinfection and a duration of immunity in 
humans. Aron & May (1982) formed an SIRS model along with constant infection 
rate to fit data on age-prevalence curves. Ngwa & Shu (2000) developed a compart-
mental model along with an SEIRS pattern for individuals and an SEI pattern for 
mosquitoes, their model was extended by Chitnis et al. (2006) by means of featur-
ing constant migration of susceptible individuals and generalizing mosquito biting 
rate. Although, it was presumed that individuals in the recovered class are invul-
nerable, in the sense that they do not experience serious disease and do not contract 
clinical malaria, it was argued that they still have little level of plasmodium in their 
blood stream and can contaminate the susceptible mosquitoes (Bai 2015; Macdon-
ald 1957; Ngwa & Shu 2000; Traore, Singapore & Traore 2017). 

Several other aspects taken into consideration in malaria models have aroused 
considerably interest in recent years, like the impacts of environment on the mechan-
ics of the vector populace and the biting rate from mosquitoes to individual (Khan et 
al. 2015; Zhang, Jia & Song 2014; Li et al. 2002; Parham & Michael 2010), the phase 
framework of the duration in the hosts (Diekmann, Heesterbeek & Metz 1990; Khan 
et al. 2015), seasonal individual migration (Gao et al. 2014), drug resistance (Koella 
& Antia 2003), seasonality and spatial distribution by Plasmodium species (Zang 
et al. 2014) and the kind of incidence function. For instance, Traore et al. (2018) 
and Koutou et al. (2018a) have shown a non-autonomous model and an autonomous 
model for malaria transmission including the premature phases of the mosquitoes re-
spectively. Olaniyi & Obabiyi (2013) and Koutou et al. (2018b) studies the nonlinear 
force of incidence of malaria between human populace and the mosquito parasites. 
Hasibeder & Dey (1988) and Gao et al. (2019) revealed that non-homogeneous inter-
action between individual and mosquitoes triggers a higher basic reproduction num-
ber using Lagragian and Eulerian techniques respectively. During the proliferation of 
the epidemic, time delays exist since an individual might not be infectious until some 
time after ending up being infected (Beretta & Kuang 2002; Zhang et al. 2014), which 
requires some time before the infective organism builds in the vector to the level that 
allows transmission of the infection to others (Khan et al. 2015; Van den Driessche & 
Watmough, 2002). Ruan et al. (2008) proposed a delayed Ross-Macdonald model in 
consideration of the incubation periods of parasites within each humans and mosqui-
toes. Abu-Raddad et al. (2006) and Mukandavire et al. (2009) examined the influence 
of the communication between HIV and malaria in an area. Variation in susceptibility 
exposedness and infectivity between non-immune as well as semi-immune individual 
hosts for malaria transmission were examined by Ducrot et al. (2009).

In this work, we examine the development of malaria, specifically; we take into 
consideration the interaction between individual and anopheles mosquito populace 
both of which are required for the life cycle of Plasmodium. Besides, we respec-
tively examine the stability of the non-trivial disease-free equilibrium and the en-
demic equilibrium.
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Mathematical Model and Formulation
The formulation of the model is for both human populace as well as mosquito 

populace at time t. We divide the human populace into four classes: Susceptible SH, 
Exposed EH, Infectious IH, and Recovery Human RH, and that of the populace of 
anopheles mosquitoes is divided into three classes they are susceptible SV, Exposed 
EV, Infectious IV respectively. The interaction between the human and anopheles 
mosquitoes is shown in the schematics diagram in Figure 1.

Figure 1. Schematic diagram of the transmission of Malaria between Humans and 
Anopheles Mosquitoes

The model equation are given by:
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with the initial condition: where  is the rate lost of immuni-
ty in humans  is the disease-induced death rate of mosquito 

. 
The term  refers to the rate at which the human hosts get infected 
by the anopheles mosquitoe vector while the term  refers to 
the rate at which the susceptible mosquitoes are infected by the human hosts  
at a time. These two tems are the primary parts of the model describing the interac-
tion between the human host and the vector.

Table 1. Parameters description of the malaria transmission model
Parameter Description

Recruitment rate for humans

Recruitment rate for anopheles mosquitoes

Developing rate of exposed (humans) becoming infectious

Recover rate humans(removal rate)

Natural death rate of humans

Disease-induced death rate for humans

Developing rate of exposed (anopheles mosquitoes) becoming infectious

Natural death rate for anopheles mosquito

Probability of transmission of infection from an infectious humans to a susceptible 
anopheles mosquito

Probability of Transmission of infection from an infectious humans to a susceptible 
anopheles mosquitoes

Anopheles mosquitoes biting rate
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Infectious rate  for humans

Infectious rate  for anopheles mosquitoes

Disease-induced death rate of anopheles mosquitoes

Rate of lost of immunity in humans

We also consider the following equations:

then the derivatives of  with respect to  is given by:

The derivative of  with respect to  is given by:

It is easy to see that that  has the disease-free equilibrium 

.

Basic Reproduction Number
To compute the basic reproduction number  for the human and mosquito 

of the model (1), the next-generation matrix technique is adopted.
The infection matrix is 

	 			        		           (3)
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The transition matrix is 

	            (4)

The reproduction number for model (1) is 

			            (5)

where  is the spectral radius such that

 measures the contribution from humans and Plam-
odium Falciparum respectively. 

Stability of Disease-Free Equilibrium

Theorem 1: The disease-free equilibrium 

 of the system of the s (1) is asymptotically 

stable if  and unstable if .

we determine the local geometric al properties of the disease-free equilibrium 

 by considering the 

linearised system of ODE’s (1) by taking the Jacobian matrix and obtained. To get 
 is been reduce to 1 in equation (1)

where
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To get  and  is been reduced and

The local stability of the disease-free equilibrium determined from the Jacobian ma-
trix (6). This implies that the Jacobian matrix of the disease-free equilibrium is given by: 

 

 

and

 



443

Mathematical Modelling of the Transmission...

The determinant of (7) is given by:

Where:

,

and

The eigenvalues of the (8) is given by: Clearly 
 are negatives and

By using the Routh-Hurwitz criterion, It can be seen that all the eigenvalues of 
the characteristic equation (9) have negative real part if and only if:
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where 

It can be seen that all the eigenvalues have negative real parts and therefore the 
disease free equilibrium is Locally asymptotically stable.

Endemic Equilibrium
We consider a situation in which all the steady states coexist in the 

equilibrium. We denote 
 as the endemic equilibrium of the 

system (1) we also obtain
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To find . We find the determinant of the matrix 

The local stability of the endemic equilibrium determined from the Jacobian 
Matrix (6). This implies that the Jacobian matrix of the endemic equilibrium is 
given by:

Where:
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and

To get . We find the determinant of .

Divide through by 

The eigenvalues of the (13) are given by: 

,          

 

Which are negatives and
    					        (14)

By Using the Routh-Hurwitz criterion, it can be seen that all the eigenvalues of 
the characteristic equation (14) have negative real part if and only if:

					             (15)

Where:
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Results and Discussion
The behaviour of the model using some parameter values from Olaniyi & Ob-

abiyi (2013) as presented in Table 1 are used for simulation with the following 
initial conditions:

The numerical simulation was analysed and plotted using MATLAB and the 
results are shown in Figure 2 –10 to illustrate the behaviour for different values of 
the model parameters.

Table 2. Model parameters and values used in simulation
Parameters Values

0.00215

0.07

0.12

0.1

0.09

0.0000548

1/15

0.001

0.01

1/17

0.05

1/18

1/730

Figure 2 shows the number of individuals that are susceptible to the virus, ex-
posed to the virus, infected with the virus and recovered from the virus (malaria). 
It is observed that in the human populace, the number of individual reduced drasti-
cally, while those exposed increased initially more than the infected and was later 
stabilized by the rate of recovery experience in the recovery class.
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Figure 2. The number of susceptible, exposed, infectious and recovered  
individuals at time t
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Figure 3. The number of susceptible, exposed, and infectious virus at time t

Figure 3 shows the number of anopheles mosquitoes that are susceptible, ex-
posed and infected in the mosquito populace. It is observed that in the mosquito 
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populace, the number of mosquito in susceptible class reduces, while those in the 
exposed class and infected class in the mosquito populace also reduces with time 
since there is no recovered mosquito.

Figures 4, 5, 6, 7 show the different effect of the biting rate of the mosquito on 
human populace. In particular, Figure 4 shows the susceptible human populace 
dropped as a result of the increase in infection by infectious mosquito and later 
stabilize by the rate of recovery. Figure 5 and Figure 6 respectively show the mag-
nitude at which the exposed and infectious human populace experience decrease in 
human populace in their respective compartment as a result of increase in infection 
by the infectious mosquito. It is also observed that decreased in the magnitude of 
infection by the infectious mosquito contributes to the increase in recovered human 
populace as shown in Figure 7, which sequentially effected the sharp reduction 
experienced by susceptible human populace.

Similarly, Figure 8, Figure 9 and Figure 10 show the different effect of the biting 
rate by the mosquito on mosquito populace. It is observed from Figure 8 that the 
number of susceptible reduced with time as there are no recovered compartment for 
mosquito populace. However, the increase in infection rate by the mosquito popu-
lace reduces the susceptible mosquito populace as seen in Figure 8. The increase in 
biting rate of the infectious mosquito increases exposed anopheles mosquitoes and 
infectious anopheles mosquitoes as shown in Figure 9 and Figure 10 respectively. 
However, it should be noted if the biting rate of the mosquito can reduce, it would 
reduced the number of anopheles mosquitoes that would be exposed and infected 
and in turn will reduce the number of individuals that would be exposed and infect-
ed with malaria.
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Figure 4. The behaviour of susceptible human for different values of 
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Figure 5. The behaviour of exposed human for different values of
 

0 20 40 60 80 100

time

0

10

20

30

40

50

60

I
H

 

V
=0.02

V
=0.12

V
=2.0

Figure 6. The behaviour of Infectious human for different values of 
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Figure 7. The behaviour of Recovered human for different values of 
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Figure 8. The behaviour of Infectious virus for different values of 
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Figure 9. The behaviour of Exposed virus for different values of 
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Summary and Conclusion
Mathematical model is a useful technique for solving real life problems, a deter-

ministic model SEIR-SEI consisting of systems of ordinary differential equations 
was considered in this paper. The model describes the transmission of malaria among 
humans populace and mosquito populace. The existence of the region where the mod-
el is epidemiologically feasible was established. The model is asymptotically stable 
when the reproduction number R0 < 1, which implies that malaria will eventually be 
eliminated from the populace. But, unstable when R0 > 1, which implies that malaria 
would continue to be prevalent among humans. Numerical simulations were conduct-
ed to further study the interaction between human populace and mosquito populace.

From the numerical results, the study concludes that increase in infection rate 
would cause a high increase in the number of anopheles mosquitoes that would be 
exposed and hereby infected causing human populace to go into extinction. To have 
a stable human populace, the recovery rate should be increase and infection rate be-
tween human populace and Anopheles mosquito populace should be reduced.

Accordingly, in line with the above conclusion, the following recommendation 
are made to keep the human populace stable: Use of mathematical models to model 
real life problems which simplifies problems in the society should be encouraged; 
Transmission of malaria can be reduced by reducing the infection rate. The method 
of reduction include fighting against the development of eggs, larvae and pupa by us-
ing larvicide or by cleaning the environment to reduce the breeding sites of eggs and 
larvae; Use of bed nets (mosquito protected nets) and insecticides to reduce contact 
rate between anopheles mosquitoes and humans.

NOTES
1. World Health Organization 2019. World malaria report 2019. https://www.who.

int/publications-detail/world-malaria-report-2019. Accessed 08 August 2022.
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