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Abstract. In this paper, a deterministic model SEIR-SEI model of malaria
transmission consisting of systems of ordinary differential equations, describing
the transmission of malaria between humans and female anopheles mosquitoes, the
definitive hosts of Plasmodium parasites, is examined. The reproduction number is
estimated and the model equilibria and their stabilities are discussed. The disease-
free equilibrium for the model is found to be locally asymptotically stable if the
reproduction number is less than one and unstable if the reproduction number is
greater than one. Numerical simulations are carried out to demonstrate the analytical
results, and suggest that malaria can be controlled by reducing the contact rate
between human and mosquito, the use of active malaria drugs, insecticides and the
use of mosquito treated nets.
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Introduction

Malaria is one of the most dangerous infectious disease caused by Plasmodium
parasites that are transmitted to people through the bites of infected female Anoph-
eles mosquitoes. Malaria has claimed numerous lives around the world, about
33 billion individuals or one-half of the globes populace in 104 nations are at the
threat of getting infected by malaria disease”. It was predicted that between 300
and five hundred million individuals die of malaria yearly. Malaria is an old dis-
ease possessing a big social financial and wellness burden, it is mainly found in
the tropical nations. Despite the fact that the disease was examined for centuries it
still remains a primary public health concern along with 109 nations proclaimed as
endemic to the disease in 2008. There were 243 million malaria cases disclosed and
almost a million fatalities predominantly of little ones under 5 years without effi-
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cient vaccination in sight and most of the older antimalarial medications dropping
efficiency because of the parasite advancing drug resistance, deterrence making use
of bed nets is still the merely recommendations provided to infected individuals.
Malaria has additionally acquired prominence in latest times since weather change
or global warming is forecasted to have unanticipated impacts on its incidence each
increase caused by fluctuation in temperature level influences the vector and par-
asite life cycle, this can easily trigger decreased occurrence of the disease in some
places while it might increase in others areas.

Mathematical models for the transmission mechanics of malaria have a back-
ground of over 100 years. Mathematical models are useful in providing better un-
derstandings into the behaviour of the disease; the models have played excellent
parts in affecting the decision-making process concerning treatment tactics for
preventing and regulating the insurgence of malaria. Amongst all areas in biolo-
gy, scientists in infectious disease were one of the primary to discover the vital
function of mathematics and mathematical models in offering an specific structure
for comprehending the disease transmission mechanics within and between hosts
and parasites. In a mathematical model, several well-known medical and biological
details are featured in a streamlined form through selecting attributes that appear to
be vital to the concern being explored in disease progression and mechanics. As a
result, a model is an estimation of the complex reality and its framework hinges on
the methods being examined and intended for extrapolation based on the concerns
being inquired. These studies can aid the fitting of empirical observations and can
be applied to make theoretical forecasts on known or unidentified conditions. For
instance, mathematical models have been extensively utilized by epidemiologists
as tools to forecast the incident of upsurges of infectious diseases and as a resource
for assisting research for eradication of malaria.

The earliest model on transmission of malaria parasite was proposed by Ross
in 1911 who was awarded the nobel prize in physiology or medicine in 1902, for
being the discoverer of the life cycle of malarial parasite. The Ross’s model con-
tain two non-linear differential equations in pair of state variables that represent
the proportions of infected humans and the infected mosquito. Macdonald (1957)
improved Ross’s differential equations model along with some biological presump-
tions and entomological field data. The Ross-Macdonald model captures the vital
feature of malaria transmission and the modelling structure has extensively been
used to examine the epidemiology of malaria and other mosquito-borne or even
vector-borne disease (Reiner et al. 2013). Jin et al. (2020) added the quarantine
compartment to the Ross-Macdonald model to better study the dynamics of the
transmission of malaria. Ever since the earliest model proposed by Ross, a number
of models have been done for malaria by a number of authors. For instance, Aron
& May (1982), Chitnis et al. (2008, 2010), Khan et al. (2015), Traore et al. (2018)
included different components of malaria to the model of Macdonald featuring an
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incubation period in the mosquito superinfection and a duration of immunity in
humans. Aron & May (1982) formed an SIRS model along with constant infection
rate to fit data on age-prevalence curves. Ngwa & Shu (2000) developed a compart-
mental model along with an SEIRS pattern for individuals and an SEI pattern for
mosquitoes, their model was extended by Chitnis et al. (2006) by means of featur-
ing constant migration of susceptible individuals and generalizing mosquito biting
rate. Although, it was presumed that individuals in the recovered class are invul-
nerable, in the sense that they do not experience serious disease and do not contract
clinical malaria, it was argued that they still have little level of plasmodium in their
blood stream and can contaminate the susceptible mosquitoes (Bai 2015; Macdon-
ald 1957; Ngwa & Shu 2000; Traore, Singapore & Traore 2017).

Several other aspects taken into consideration in malaria models have aroused
considerably interest in recent years, like the impacts of environment on the mechan-
ics of the vector populace and the biting rate from mosquitoes to individual (Khan et
al. 2015; Zhang, Jia & Song 2014; Li et al. 2002; Parham & Michael 2010), the phase
framework of the duration in the hosts (Diekmann, Heesterbeek & Metz 1990; Khan
et al. 2015), seasonal individual migration (Gao et al. 2014), drug resistance (Koella
& Antia 2003), seasonality and spatial distribution by Plasmodium species (Zang
et al. 2014) and the kind of incidence function. For instance, Traore et al. (2018)
and Koutou et al. (2018a) have shown a non-autonomous model and an autonomous
model for malaria transmission including the premature phases of the mosquitoes re-
spectively. Olaniyi & Obabiyi (2013) and Koutou et al. (2018b) studies the nonlinear
force of incidence of malaria between human populace and the mosquito parasites.
Hasibeder & Dey (1988) and Gao et al. (2019) revealed that non-homogeneous inter-
action between individual and mosquitoes triggers a higher basic reproduction num-
ber using Lagragian and Eulerian techniques respectively. During the proliferation of
the epidemic, time delays exist since an individual might not be infectious until some
time after ending up being infected (Beretta & Kuang 2002; Zhang et al. 2014), which
requires some time before the infective organism builds in the vector to the level that
allows transmission of the infection to others (Khan et al. 2015; Van den Driessche &
Watmough, 2002). Ruan et al. (2008) proposed a delayed Ross-Macdonald model in
consideration of the incubation periods of parasites within each humans and mosqui-
toes. Abu-Raddad et al. (2006) and Mukandavire et al. (2009) examined the influence
of the communication between HI'V and malaria in an area. Variation in susceptibility
exposedness and infectivity between non-immune as well as semi-immune individual
hosts for malaria transmission were examined by Ducrot et al. (2009).

In this work, we examine the development of malaria, specifically; we take into
consideration the interaction between individual and anopheles mosquito populace
both of which are required for the life cycle of Plasmodium. Besides, we respec-
tively examine the stability of the non-trivial disease-free equilibrium and the en-
demic equilibrium.
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Mathematical Model and Formulation

The formulation of the model is for both human populace as well as mosquito
populace at time ¢. We divide the human populace into four classes: Susceptible S, ,
Exposed E,, Infectious 7, and Recovery Human R, , and that of the populace of
anopheles mosquitoes is divided into three classes they are susceptible S, Exposed
E,, Infectious I, respectively. The interaction between the human and anopheles
mosquitoes is shown in the schematics diagram in Figure 1.

Figure 1. Schematic diagram of the transmission of Malaria between Humans and

Anopheles Mosquitoes
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with the initial condition: where wy is the rate lost of immuni-
ty in humans &4, is the disease-induced death rate of mosquito
54(0) = 0,E4(0) = 0,1,(0) = 0,R,(0) 2 0,5,(0) = 0,E,(0) = 0,I,(0) =0
The term 8B5S 11555 iy refers to the rate at which the human hosts get infected
by the anopheles mosquitoe vector I, I;; while the term 8,515 5,51y refers to
the rate at which the susceptible mosquitoes are infected by the human hosts Iy I
at a time. These two tems are the primary parts of the model describing the interac-
tion between the human host and the vector.

Table 1. Parameters description of the malaria transmission model

Parameter | Description
Yu Recruitment rate for humans
v Recruitment rate for anopheles mosquitoes
g Developing rate of exposed (humans) becoming infectious
Eapy Recover rate humans(removal rate)
Ky Natural death rate of humans
a Disease-induced death rate for humans
oy Developing rate of exposed (anopheles mosquitoes) becoming infectious
Uy Natural death rate for anopheles mosquito
Qg Probability of trar}smission of infection from an infectious humans to a susceptible
anopheles mosquito
Qv Probability of Trgnsmission of infection from an infectious humans to a susceptible
anopheles mosquitoes
L Anopheles mosquitoes biting rate
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By :
Infectious rate Gy X Ny for humans
v Infectious rate Qy X Ny for anopheles mosquitoes
& Disease-induced death rate of anopheles mosquitoes
v
Wy Rate of lost of immunity in humans

We also consider the following equations:
Ny(t) = 5u(t) + By () + I;(t) + Ry (t) (2)

then the derivatives of Ng(t) N (t) with respect to tt is given by:
Ny _ N, — &1
dr = Youo — BglVy H
lim N, (£) < 22
t—oo H
The derivative of Ny (t) Ny (t) with respect to tt is given by:
dN,
ar =¥y — Myl
lim N, (t) < Yy
r— oo v

It is easy to see that that (1) has the disease-free equilibrium

Eowr = (2£,0,0,0,7%,0,0).

Basic Reproduction Number
To compute the basic reproduction number RyH for the human and mosquito

of the model (1), the next-generation matrix technique is adopted.
The infection matrix is

0 By 0 py
0 0 0 0

F=(0o 0 0 0 (3)
0 0 0 O
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The transition matrix is

(eyy +uy) O 0 0
ST (ctzy +py +8) 0 0
V=|o0 0 (g + 1) O 4)
0 0 @y (uy +6y)
The reproduction number for model (1) is
Rj_ — p(FV—lj — IEH _|_ E:VIEV (5)

gog tug 8 (g tug+ 8 (pptéy)

R, = Ry +Ry;is the spectral radius such that

R,y and Ry, R,y and Ry, measures the contribution from humans and Plam-

odium Falciparum respectively.

Stability of Disease-Free Equilibrium

Theorem 1: The disease-free equilibrium Eggr = (i_irnrnrur;_';r 'l':')
Eome = G—i’ﬂ’ﬂ’ﬂ’i_z’ 'l':') of the system of the @DE's (1) is asymptotically
stable if Ry <~ 1 and unstable if By = 1.

we determine the local geometric al properties of the disease-free equilibrium
= (¥ v = (¥ w sderi
Eppr = (#H ,0,0,0, o’ IJ,D)EDHF (#H ,0,0,0, a’ l],l]) by considering the

linearised system of ODE’s (1) by taking the Jacobian matrix and obtained. To get
Jo = S By Iy, Ryly = Sy By, Iy, Ry is been reduce to 1 in equation (1)

Jor S Bl RSB k) = [0 | ©)
1 U3
where
—Byly — py + wyRy 0 —BuSy
Jo = 0 —(ayy + py) BuSy
0 g —(ay +py +0)
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[0 0 @,y
|0 0 0
s 00 0
o 0 0
0 0 0 0
J:=1|0 0 0 0
o 0 0 0
[— Ly 0 0 0
_| 0 =Byl — oy 0 —BySy
J3=| o 0 — —B.5
(fxiv + .uvj ng v
L 0 0 iy —(uy +34y)

Thelocalstability ofthedisease-freeequilibriumdetermined fromthe Jacobianma-
trix(6). Thisimpliesthatthe Jacobianmatrix ofthe disease-free equilibriumis givenby:

do Ja
J(Esy) = [JE J (7)
1 dJs3
_ Vi _
—u 0 -8, 2
" HF'H
= ¥,
Jo 0 _(fxw‘i'.“ﬂ] ﬁgi !
Hy
L 0 E1n —(agy +py +6).-
g g “E;‘f 00 0 0
di = o0 ol J.=10 0 0 0O
o 0 0 0 00
and
r—Ligy 0 0 0
147
0 —Hy 0 —By—
_ Hy
Ja = Yv
0 0 —(ay + uy) —fr—
v
L 0 0 Xy —(py + 8)
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The determinant of (7) is given by:

Jo
E...)—All= “1=0 8
|L‘}( DHLJ | 31 33 [ :]
Where:
M — _p ¥
By — A 0 By ugy
0 0 0 aqy
Jiy=10 0 0 o |
o 0 0 0
0O 0 0 0
g = [D o 0 EI]
O 0 0 0
and
[—pgy — A 0 0 0 T
0 —py — 4 0 _ng'}’_v
_ Hyr
Js = W
0 0 —(ayy +py) —4 —By—
v
L 0 0 yy —(py +8) — Al

The eigenvalues of the (8) is given by: Clearly A= —pgy, A= —p,
A = —py, A = —u, are negatives and

402 +p 27+ pyd+p, =0 (9)
By using the Routh-Hurwitz criterion, It can be seen that all the eigenvalues of
the characteristic equation (9) have negative real part if and only if:

py =0,p, > 0,py =0,p, = 0,p,0,0; — Py : _plzp4 >0
DyDa P30y — D030y = 0

(10)
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where Py = Gy + 20y + Gay + 6 + 20y + @y
Py = 2@ty + 4ttty + 200y + @ty + Gy gy + 8y + 20400 + @iy

_ 1y By Yy _ﬁHTH
By Ky
Py = Qyylyy + Qaglty + @yl + gty + 1y * + Oty + 2500ty + 2yl iy

+ 2a,50my + 20510y + 2upuy 24 Ayl Ay + Qyylyyfly T Qiu@piy
T Ay yyity T Qyyity 24 @15y 0 fty '+ 2ay,0py, 3.“;{ T gy aﬂv ;

@15y By ¥y _ 2ayyiyByyy 4y EIGVT’V _ a0y,

Hyr By Hy By

+ a8, % -

B 2py ByYy _ 01y BaYy
By by

_ 3 3 3 3 3, 2
Dy = Qg Qo @yplly ~ + Gy Qqpily “Hy + @0, 0, ° + Qg iy "y + Qypty "y

ayyByy BV _ Qi LyVuby _ By¥u by :
Hyly Hy Hy

+ Oayypy E.U'H +

_ @150 Qay By Yy _ @yl By ¥y _ @15 @1y 0ByYy _ oy yyity By¥y

Hy Hy Hy Hy

_ Gayly “Buyy _ ey ity By Yy
Ky Hy

It can be seen that all the eigenvalues have negative real parts and therefore the

disease free equilibrium is Locally asymptotically stable.

Endemic Equilibrium

We consider a situation in which all the steady states coexist in the

equilibrium. ~ We  denote  Ejy = (Sy " Ey %Iy " Ry .Sy =E, "I, *)
Efy = (Sy % Ey "1y * Ry .5, =, E; I, ) as the endemic equilibrium of the
system (1) we also obtain

St — (a1 +py) — (@ +py +6)

H
@y
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_ Ay ByYy — Uy (fxw + ﬂH] [fxﬂf +py + a)
QAygbglPy [cle + F’H]
I = @y BV — My (@ + py) (@ + py +6)
H Bulasy + gy + 6) (ayy + 1y + wy)
RE = g (@ BV — My ) (g + by ) (o + g + 8y)
H Belaay +py + 8)(uy + wy +ayy)
_ Ay By — F':V[alv + .va] (Ffv + 5vj
‘xwﬁv(fxw + P'fv:]
_ gy Byl — ﬂfa(cxw + .va] (.va + ﬁv]
ﬂivﬁv(fxw + Ffvj

Eq

Ey

I;

To find 5.5 We find the determinant of the matrix (J5
(@ + py) (py + 6y) — @By Sy
(etyy) + py) (py + 8y) —5.*
=y
.y By

(aw + .“vj (.”'v + 5vj

4y fy

*:
v

(11)

The local stability of the endemic equilibrium determined from the Jacobian
Matrix (6). This implies that the Jacobian matrix of the endemic equilibrium is
given by:

J(SH seJ'E._H GcJ"{H gJRH 315[,!' 315[; $JIV $:]J(Egﬂvj = |;jj g;] (12)
Where:
—Byly * — py + wyRy 0 —ByuSy "
Jo = 0 _[fle + F’Hj BuSy -~
0 Ty —(ay + py +6)
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0 0 a.y
|0 0 0
=10 0 o
0 0 0
0 0 0 0
J:-=(0 0 0 0
o 0 0 0
and
[— gy 0 0 0
Ja = 0 _Ev'{v - Hy 0 _ngsﬁ
3 0 0 _(awﬁvj ﬁ'v.‘j'f,ﬁ

To get 55 *. We find the determinant of Jj.
b= (e + py) — (@ + iy +6) — ayy fuSylayy + py) — (aay +py +6)
= a1l Sy (13)
Divide through by ¢4

The eigenvalues of the (13) are given by:

(o gy g oy +ppg +6)
*’11:_[ b +itg) (o g +8) |
g
_ a, v By vy
":I"H - - - -
uy ey +uy ) (uy+8y)

F’H]: Ay = —py,

Which are negatives and
B+ iP+g,t+gh+q,=0 (14)
By Using the Routh-Hurwitz criterion, it can be seen that all the eigenvalues of
the characteristic equation (14) have negative real part if and only if:

q,>0,g,>0,g;=0,g,>=0,

419, — 43 = 0, (15)
419283 — 3~ — 4y gy >0
419,939: — 42959 > 0

Where:
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= @y T o4aguy + 20ay +oagguy + 2apuy + 4“;2; + 8y + 2uguy

=
B2
|

+ 2ugagy + agply oy + agguy + 6y + dagy + duy +upayy
Ty Oy Uy byt By ay + By by

O3 = Quplpgly T Ciyloylyy T Quulogly T Ciglylly T Qo + Qg
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+ ayfy Gy + Cyply by T Gpgly Py F U@l + UEGy T+ Hgly
+ Uy g T Sugy + Ougay + OuG + 2uRuy + 20y by iy
+ gy by T agBy ey T agyly by + 2ugBy ayy + 2ugfy wy
+ 0wy uy + 8y ayy + 0By wy + @y o agpayly +oagg gty
+ Qygllylyy + Qiglyt 001,00 + 00140y + apogily + Quloglly
T Uglgpy T Uglay T Mgy T uhay +ouy + Ougly + ey g
+ 6uf + oy

Gy = 2@yl Wy + 20500y Uy + Qyglply By + gty by Uy + aygligly
+ @by By ayy + aiglghy by + dayguy @y + dagguy ug
+ Sy By tyy + Sayfy by + Qoglighy Gy + Gouliily
+ QoglpBylyy + GoghipBy by T Uiy Gy + uEHy T UGBy ayy
+ wgby wy + Sugiy @y + Sujuy + Sugby ayy + Suguy By
t @y By + @iy by + aiglpay by
T @ity Gl By T alpBy by + 0ayay by + Sagy
+ 8By by + My Cogly T UEGy by T Ma@By Guy M By by
+ ugky + uEBy by + Sughy gy + Suguy + Sughy ayy + Suyby
+ Suyby y
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Results and Discussion

The behaviour of the model using some parameter values from Olaniyi & Ob-
abiyi (2013) as presented in Table 1 are used for simulation with the following
initial conditions:
5,4(0)=100,E4(0) = 20,1,(0) = 10,R,(0) = 0,5,(0) = 1000,E,(0) = 20,1,(0) = 30.

The numerical simulation was analysed and plotted using MATLAB and the
results are shown in Figure 2 —10 to illustrate the behaviour for different values of
the model parameters.

Table 2. Model parameters and values used in simulation

Parameters Values
Y 0.00215
v 0.07
b 0.12
g 0.1
Ty 0.09
By 0.0000548
By 115
Gy 0.001
8y 0.01
X1y 117
Xy 0.05
Ly 1/18

w 1/730

Figure 2 shows the number of individuals that are susceptible to the virus, ex-
posed to the virus, infected with the virus and recovered from the virus (malaria).
It is observed that in the human populace, the number of individual reduced drasti-
cally, while those exposed increased initially more than the infected and was later
stabilized by the rate of recovery experience in the recovery class.
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Figure 2. The number of susceptible, exposed, infectious and recovered
individuals at time ¢
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Figure 3. The number of susceptible, exposed, and infectious virus at time ¢

Figure 3 shows the number of anopheles mosquitoes that are susceptible, ex-
posed and infected in the mosquito populace. It is observed that in the mosquito
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populace, the number of mosquito in susceptible class reduces, while those in the
exposed class and infected class in the mosquito populace also reduces with time
since there is no recovered mosquito.

Figures 4, 5, 6, 7 show the different effect of the biting rate of the mosquito on
human populace. In particular, Figure 4 shows the susceptible human populace
dropped as a result of the increase in infection by infectious mosquito and later
stabilize by the rate of recovery. Figure 5 and Figure 6 respectively show the mag-
nitude at which the exposed and infectious human populace experience decrease in
human populace in their respective compartment as a result of increase in infection
by the infectious mosquito. It is also observed that decreased in the magnitude of
infection by the infectious mosquito contributes to the increase in recovered human
populace as shown in Figure 7, which sequentially effected the sharp reduction
experienced by susceptible human populace.

Similarly, Figure 8, Figure 9 and Figure 10 show the different effect of the biting
rate by the mosquito on mosquito populace. It is observed from Figure 8 that the
number of susceptible reduced with time as there are no recovered compartment for
mosquito populace. However, the increase in infection rate by the mosquito popu-
lace reduces the susceptible mosquito populace as seen in Figure 8. The increase in
biting rate of the infectious mosquito increases exposed anopheles mosquitoes and
infectious anopheles mosquitoes as shown in Figure 9 and Figure 10 respectively.
However, it should be noted if the biting rate of the mosquito can reduce, it would
reduced the number of anopheles mosquitoes that would be exposed and infected
and in turn will reduce the number of individuals that would be exposed and infect-
ed with malaria.

0 20 40 60 80 100

time

Figure 4. The behaviour of susceptible human for different values of 17
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Figure 5. The behaviour of exposed human for different values of 1y
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Figure 6. The behaviour of Infectious human for different values of 17,
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Summary and Conclusion

Mathematical model is a useful technique for solving real life problems, a deter-
ministic model SEIR-SEI consisting of systems of ordinary differential equations
was considered in this paper. The model describes the transmission of malaria among
humans populace and mosquito populace. The existence of the region where the mod-
el is epidemiologically feasible was established. The model is asymptotically stable
when the reproduction number R < 1, which implies that malaria will eventually be
eliminated from the populace. But, unstable when R > 1, which implies that malaria
would continue to be prevalent among humans. Numerical simulations were conduct-
ed to further study the interaction between human populace and mosquito populace.

From the numerical results, the study concludes that increase in infection rate
would cause a high increase in the number of anopheles mosquitoes that would be
exposed and hereby infected causing human populace to go into extinction. To have
a stable human populace, the recovery rate should be increase and infection rate be-
tween human populace and Anopheles mosquito populace should be reduced.

Accordingly, in line with the above conclusion, the following recommendation
are made to keep the human populace stable: Use of mathematical models to model
real life problems which simplifies problems in the society should be encouraged;
Transmission of malaria can be reduced by reducing the infection rate. The method
of reduction include fighting against the development of eggs, larvae and pupa by us-
ing larvicide or by cleaning the environment to reduce the breeding sites of eggs and
larvae; Use of bed nets (mosquito protected nets) and insecticides to reduce contact
rate between anopheles mosquitoes and humans.

NOTES

1. World Health Organization 2019. World malaria report 2019. https://www.who.
int/publications-detail/world-malaria-report-2019. Accessed 08 August 2022.
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