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В памет на проф. д-р Маргарита Върбанова
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Резюме. В настоящата разработка е възприета по-обща (от традиционната) 
дефиниция на понятието магически квадрати от четвърти ред и са посочени 
достатъчни условия за тяхното съществуване. С елементарни средства на 
линейната алгебра са изследвани съществени векторно-алгебрични свойства 
на магическите квадрати от четвърти ред. Направено е непосредствено 
доказателство на теоремата за размерността на тяхното векторно пространство, 
без да бъде използвана по-общата теорема за размерността на векторното 
пространство на магическите квадрати от ред n (n  Чрез решаване на 
линейна система от 10 линейни уравнения със 17 неизвестни е показано, че 
при съставяне на магически квадрат от четвърти ред (в общия случай) осем (от 
шестнадесетте) координати могат да бъдат зададени произволно. В подкрепа 
на тезата са формулирани и решени две задачи. Работата е предназначена за 
учебни часове по занимателна математика.

Ключови думи: магически квадрати; векторно пространство; метода на 
Гаус-Жордан; занимателна математика

1. Вместо предисловие
Историята на магическите квадрати води своето начало още от дълбока 

древност. Например магически квадрат от трети ред е намерен в Древен Ки-
тай в книга, писана 40 века преди н.е., а магически квадрат от четвърти ред 
е намерен в Индия – I век от н.е. Магическите квадрати са известни във Ви-
зантия (Емануил Мосхопулос – XIII век) и в Западна Европа (Албрехт Дюрер 
– XVI век).

Обикновено магическите квадрати са свързани с естествените числа от  
1 до n2, където n  3 или с първите n2 членове на аритметична прогресия от 
естествени числа. Но последните 60 – 70 години се наблюдава разширяване 
на „дефиниционното“ множество на магическите квадрати. В научнопопуляр-
ната и математическата литература се появяват магически квадрати, чиито 
елементи са реални (дори комплексни) числа. Новата дефиниция води след 
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Може да се провери директно, че всеки от осемте квадрата на системата е 

магически. 
Ще докажем, че тази система е линейно независима. 
 Нека , , , , , , , са 8 числа, за които линейната комбинация от 

магическите квадрати Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8, с коефициенти съответните числа е 
равна на нулевия квадрат Ω т.е. 

 +  +  +  +  = Ω , 
 

където Ω  
Това означава, че:  

. 

От осмо, десето, единадесето, дванадесето, тринадесето, четиринадесето, 
петнадесето и шестнадесето уравнение следва непосредствено, че: 

, , , , , , , . 
Наредената осморка числа (0,0,0, 0, 0, 0, 0, 0) е решение на системата и при това 

единствено, тъй като всяко от числата , , , , , , ,  може да заеме само 
стойност 0. 

Следователно осморката магически квадрати (Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8) е 
линейно независима система. 

3) Нека Δ, където 
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себе си както нови свойства, така и нови задачи. Например възниква задачата 
за това колко числа могат да бъдат избирани произволно, за да може да бъде 
построен магически квадрат от даден ред, или казано по друг начин, каква е 
размерността на векторното пространство на магическите квадрати от един 
или друг ред.

Във връзка с последната трактовка на магическите квадрати, считаме че е 
важно  да споменем накратко за два библиографски източника, които до този 
момент са ни известни. Първият източник е книгата „Математическая сме-
калка“ на големия руски популяризатор на математиката Борис Кордемски, 
която през 1964 година е преведена на български език под наименованието 
„Математическа досетливост“ (преводът е направен по второто издание на 
книгата от 1955 година.) В дванадесета глава на българското издание, озагла-
вена „Кръстосани суми и вълшебни квадрати“, е изведено (с помощта на не 
съвсем елементарни разсъждения) твърдението, че за построяване на маги-
чески квадрат от ред n числата, които могат да бъдат избрани произволно, са 
n2 – 2n на брой (Кордемски, 1964). Другият източник ни беше посочен от ре-
цензентите (за което сме благодарни) по време на коректурите на  настоящата 
работа. Става дума за статията „Vector Space of Magic Squares“ с автор James 
E. Ward III, поместена в американското списание Mathematics Magazine през 
1980 година. Централната теорема в цитираната статия се отнася за размер-
ността на векторното пространство на магическите квадрати от ред n (n  3) 
и по-конкретно, че тази размерност е n2 – 2n. Доказателството на теоремата е 
направено със средствата на линейната алгебра, като предварително е дока-
зано, че размерността на векторното пространство на магическите квадрати 
от ред n с характеристично число 0 е n2 – 2n – 1. (Ward III, 1980). Теоремите, 
доказани в двата източника („Математическа досетливост“ и „Vector Space of 
Magic Squares“), са формулирани по различни начини, но от математическа 
гледна точка са еквивалентни. Като следствие от тях произтича и верността 
на твърдението за размерността (осем) на векторното пространство на маги-
ческите квадрати от четвърти ред.

От друга страна, тъй като целта на настоящата статия е съсредоточена вър-
ху (практическо) построяване на магически квадрати от конкретен (четвърти) 
ред, то ние (авторите) намираме за дидактически целесъобразно да не „ми-
наваме“ през общия случай, а да изложим непосредствено доказателство на 
теоремата за размерността на векторното пространство в конкретния случай. 
Още повече, че конкретното доказателство дава възможност за пряко констру-
иране на конкретни (примерни) базиси на векторното пространство на раз-
глежданите магическите квадрати.

2. Предварителни бележки за числовите и магическите квадрати
Още в началото ще уточним, че в следващите редове ще става дума за чис-

лови квадрати от четвърти ред.
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Нека числата: α11, α12, α13, α14, α21, α22, α23, α24, α31, α32, α33, α34,α41, α42, α43, α44, 
са реални и квадратната таблица Δ от ред 4
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, , , , , , , , , , , , са реални и 
квадратната таблица Δ от ред 4 

Δ =  
е числов квадрат, за който сборовете по редове, по колони и по диагонали е винаги 
едно и също число (S). В този случай се казва, че Δ е магически квадрат. Който и да е 
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А =  SA = 34, B =  SB = 26 
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 C=  SC = 10, D=  SD = 0 

3. Лесен начин за построяване на магически квадрат от четвърти ред 
В забележителната книга по занимателна математика на У. Бол и Г. Коксетер 

„Математические эссе и развлечения“ (Ball & Coxeter, 1986) намираме интересни 
методи за построяване на магически квадрати, които са достъпни и за учениците от 
началните класове. Накратко ще представим един начин (заимстван от книгата) за 
построяване на магически квадрат от четвърти ред. Убедени сме, че предлаганият 
алгоритъм може да бъде използван успешно от учителя в неговите уроци по 
математика. 

Ето последователните стъпки (действия). 
1) Започваме от квадрат, в който числата от 1 до 16 са записани във възходящ 

ред (фиг. 1а). 
2) Намираме двойките централно симетрични числа от диагоналите, т.е. 

(1, 16), (6, 11), (4, 13), (7, 10). 
3) Разменяме местата на числата във всяка от двойките и получаваме търсения 

магически квадрат (фиг. 1б). 
 

                                                 
                                           а)                                                      б) 

Фигура 1 
 

4. Достатъчни условия за съществуването на магически квадрат от 4-ти ред 
4.1. Теорема. Нека числата: 

, , , , , , , , , , , , , , ,  
са такива, че: 

 =  =  =  =  =  = 
=  =  = A 

 =  =  =  = B 
 =  = C. 

Тогава, посочените числа са елементи на магически квадрат от четвърти ред. 
Доказателство 
Да въведем означенията: 

 = a,  = D. 
Тогава: 
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3. Лесен начин за построяване на магически квадрат от четвърти ред
В забележителната книга по занимателна математика на У. Бол и Г. Кок-

сетер „Математические эссе и развлечения“ (Ball & Coxeter, 1986) намираме 
интересни методи за построяване на магически квадрати, които са достъпни 
и за учениците от началните класове. Накратко ще представим един начин 
(заимстван от книгата) за построяване на магически квадрат от четвърти ред. 
Убедени сме, че предлаганият алгоритъм може да бъде използван успешно от 
учителя в неговите уроци по математика.
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Ето последователните стъпки (действия).
1) Започваме от квадрат, в който числата от 1 до 16 са записани във възхо-

дящ ред (фиг. 1а).
2) Намираме двойките централно симетрични числа от диагоналите, т.е.
(1, 16), (6, 11), (4, 13), (7, 10).
3) Разменяме местата на числата във всяка от двойките и получаваме тър-

сения магически квадрат (фиг. 1б).

 C=  SC = 10, D=  SD = 0 
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 = a,  = D. 
Тогава: 

2 1 3 4 

6 
 

5 
 

7 
 

-8 
 

3 
 

8 
 

-6 
 

5 
 

-1 
 

-4 
 

6 
 

9 
 

1 5 6 -12 

-4 
 

0 
 

7 
 

-3 
 

-5 
 

-15 
 

2 
 

18 
 

8 
 

10 
 

-15 
 

-3 
 

2 1 3 4 

6 5 7 8 

10 9 11 12 

14 13 15 16 

2 16 3 13 

11 5 10 8 

7 9 6 12 

14 4 15 1 

Фигура 1

4. Достатъчни условия за съществуването на магически квадрат от 
4-ти ред

4.1. Теорема. Нека числата:
, , , , , , , , , , , , , , ,

са такива, че:
 =  =  =  =  =  =

=  =  = A
 =  =  =  = B
 =  = C.

Тогава посочените числа са елементи на магически квадрат от четвърти ред.
Доказателство
Да въведем означенията:

 = a,  = D.
Тогава:

 = a,  = a + А,  = a + А + В  = a + 2А + В,
 = a + 2А + В + C,  = a + 3А + В + C,  = a + 3А + 2В + C,
 = a + 4А + 2В + C,
 = a + 4А + 2В + C + D,  = a + 5А + 2В + C + D,  = a + 5А + 3В + C + D,
 = a + 6А + 3В + C + D,
 = a + 6А + 3В + 2C + D,  = a + 7А + 3В + 2C + D,
 = a + 7А + 4В + 2C + D,  = a + 8А + 4В + 2C + D.
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Да разгледаме числовия квадрат K, където

 = a,  = a + А,  = a + А + В  = a + 2А + В, 
 = a + 2А + В + C,  = a + 3А + В + C,  = a + 3А + 2В + C, 
 = a + 4А + 2В + C, 
 = a + 4А + 2В + C + D,  = a + 5А + 2В + C + D,  = a + 5А + 3В + C + D, 
 = a + 6А + 3В + C + D, 
 = a + 6А + 3В + 2C + D,  = a + 7А + 3В + 2C + D, 
 = a + 7А + 4В + 2C + D,  = a + 8А + 4В + 2C + D. 

Да разгледаме числовия квадрат K, където 

Κ = . 

Ще докажем, че К е магически квадрат. 
Действително: 

 +  + + = 4a + 16A + 8B + 4C + 2D = S 
 +  + + = 4a + 16A + 8B + 4C + 2D = S 

 +  + + = 4a + 16A + 8B + 4C + 2D = S 
 +  + + = 4a + 16A + 8B + 4C + 2D = S 

 +  + + = 4a + 16A + 8B + 4C + 2D = S 
 +  + + = 4a + 16A + 8B + 4C + 2D = S 
 +  + + = 4a + 16A + 8B + 4C + 2D = S 
 +  + + = 4a + 16A + 8B + 4C + 2D = S 
 +  + + = 4a + 16A + 8B + 4C + 2D = S 
 +  + + =4a + 16A + 8B + 4C + 2D = S 

Следователно, квадратът K e магически с характеристично число  
S =4a + 16A + 8B + 4C + 2D. 

 
4.2. Следствия 
Следствие 1.Нека числата:  

, , , , , , , , , , , , , , ,  
са такива, че наредените четворки:  

( , , , ), ( , , , ), ( , , , ), ( , , , ) 
са аритметични прогресии с една и съща разлика d и  = . 

Тогава посочените числа са елементи на магически квадрат от четвърти ред. 
 
Следствие 2. Нека числата: 

, , , , , , , , , , , , , , ,  
 са последователни членове (в този ред) на аритметична прогресия с разлика d. Тогава 
съществува магически квадрат, на който същите числа са елементи. 

5. За векторното пространство на магическите квадрати от четвърти ред 
5.1. Предварителни бележки  

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 Ще докажем, че К е магически квадрат.

Действително:
 +  + + = 4a + 16A + 8B + 4C + 2D = S
 +  + + = 4a + 16A + 8B + 4C + 2D = S

 +  + + = 4a + 16A + 8B + 4C + 2D = S
 +  + + = 4a + 16A + 8B + 4C + 2D = S

 +  + + = 4a + 16A + 8B + 4C + 2D = S
 +  + + = 4a + 16A + 8B + 4C + 2D = S
 +  + + = 4a + 16A + 8B + 4C + 2D = S

 +  + + = 4a + 16A + 8B + 4C + 2D = S
 +  + + = 4a + 16A + 8B + 4C + 2D = S
 +  + + =4a + 16A + 8B + 4C + 2D = S

Следователно квадратът K e магически с характеристично число 
S =4a + 16A + 8B + 4C + 2D.

4.2. Следствия
Следствие 1.Нека числата: 

, , , , , , , , , , , , , , ,
са такива, че наредените четворки: 

( , , , ), ( , , , ), ( , , , ), ( , , , )
са аритметични прогресии с една и съща разлика d и  = .

Тогава посочените числа са елементи на магически квадрат от четвърти 
ред.

Следствие 2. Нека числата:
, , , , , , , , , , , , , , ,

 са последователни членове (в този ред) на аритметична прогресия с разлика d.  
Тогава съществува магически квадрат, на който същите числа са елементи.
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5. За векторното пространство на магическите квадрати от четвърти ред

5.1. Предварителни бележки 
Нека А и В, където Нека А и В, където  

A =  и B =  са числови квадрати.  

Тогава числовият квадрат С, където 

C=  и 

+ , + , + , + , 

+ , + , + , + , 

+ , + , + , + , 

+ , + , + , +  

нарича алгебричен сбор на квадратите A и B. (Записва се: A + B = C.) 

 
Нека  λ е число. Тогава числовият квадрат D, където 

D =  и 

, , , , 

, , , , 

, , , , 

, , ,  

се нарича произведение на числото λ и квадрата A. (Записва се: λ.A = D.) 
Тъй като всеки числов квадрат от четвърти ред може да се разглежда и като 

наредена шестнадесеторка от числа –  

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Тогава числовият квадрат С, където

Нека А и В, където  

A =  и B =  са числови квадрати.  

Тогава числовият квадрат С, където 

C=  и 

+ , + , + , + , 

+ , + , + , + , 

+ , + , + , + , 

+ , + , + , +  

нарича алгебричен сбор на квадратите A и B. (Записва се: A + B = C.) 

 
Нека  λ е число. Тогава числовият квадрат D, където 

D =  и 

, , , , 

, , , , 

, , , , 

, , ,  

се нарича произведение на числото λ и квадрата A. (Записва се: λ.A = D.) 
Тъй като всеки числов квадрат от четвърти ред може да се разглежда и като 

наредена шестнадесеторка от числа –  

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

+ , + , + , + ,
+ , + , + , + ,
+ , + , + , + ,
+ , + , + , + 

се нарича алгебричен сбор на квадратите A и B. (Записва се: A + B = C.)

Нека  λ е число. Тогава числовият квадрат D, където

Нека А и В, където  

A =  и B =  са числови квадрати.  

Тогава числовият квадрат С, където 

C=  и 

+ , + , + , + , 

+ , + , + , + , 

+ , + , + , + , 

+ , + , + , +  

нарича алгебричен сбор на квадратите A и B. (Записва се: A + B = C.) 

 
Нека  λ е число. Тогава числовият квадрат D, където 

D =  и 

, , , , 

, , , , 

, , , , 

, , ,  

се нарича произведение на числото λ и квадрата A. (Записва се: λ.A = D.) 
Тъй като всеки числов квадрат от четвърти ред може да се разглежда и като 

наредена шестнадесеторка от числа –  
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, , , ,
, , , ,
, , , ,
, , ,

се нарича произведение на числото λ и квадрата A. (Записва се: λ.A = D.)
Тъй като всеки числов квадрат от четвърти ред може да се разглежда и като 

наредена шестнадесеторка от числа – 
( , , , , , , , , , , , , , , , , 
то множеството на числовите квадрати от четвърти ред е векторно простран-
ство с размерност числото 16.

От друга страна, нулевата матрица е магически квадрат, сборът на два ма-
гически квадрата е магически квадрат и произведението на число и магически 
квадрат е магически квадрат. Това означава, че множеството на магическите 
квадрати, от своя страна, също е векторно пространство – подпространство на 
векторното пространство на числовите квадрати.

Изниква въпрос за размерността на векторното пространство на магиче-
ските квадрати от четвърти ред. Този въпрос е свързан с въпроса колко от 
шестнадесетте числа, които участват в магическия квадрат, могат бъдат изби-
рани произволно и как се определят останалите. На повдигнатите въпроси ще 
отговорим в следващите редове.

 5.2. Теорема. Векторното пространство на магическите квадрати от чет-
върти ред е осеммерно.

Доказателство
1) Да фиксираме осем от 16-те елемента – 

, , , , , , , , , , , , , , , 
на магическия квадрат Δ, където

( , , , , , , , , , , , , , , , ,  
то множеството на числовите квадрати от четвърти ред е векторно пространство с 
размерност числото 16. 

От друга страна, нулевата матрица е магически квадрат, сборът на два магически 
квадрата е магически квадрат и произведението на число и магически квадрат е 
магически квадрат. Това означава, че множеството на магическите квадрати, от своя 
страна, също е векторно пространство – подпространство на векторното пространство 
на числовите квадрати. 

Изниква въпрос за размерността на векторното пространство на магическите 
квадрати от четвърти ред. Този въпрос е свързан с въпроса колко от шестнадесетте 
числа, които участват в магическия квадрат, могат бъдат избирани произволно и как се 
определят останалите. На повдигнатите въпроси ще отговорим в следващите редове. 

 5.2. Теорема. Векторното пространство на магическите квадрати от четвърти 
ред е осеммерно. 

Доказателство 
1) Да фиксираме осем от 16-те елемента –  

, , , , , , , , , , , , , , ,  
на магическия квадрат Δ, където 

Δ =  
Нека фиксираните осем елементи са: , , , , , , , . 
За удобство, да въведем означенията: 

 = k,  = l,  = m,  = n,  = p,  = q,  = r,  = s. 
И така, числата:  

, , , , , , , k, , l, m, n, p, q, r, s 
са такива, че Δ, където 

 Δ =  
e магически квадрат с характеристично число S. 

Ще докажем, че числата: , , , , , , , еднозначно се 
определят от числата: k, l, m, n, p, q, r, s. 

Действително. Условието на задачата е еквивалентно на системата от 10 
уравнения: 
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Нека фиксираните елемента са: , , , , , , , .
За удобство да въведем означенията:

 = k,  = l,  = m,  = n,  = p,  = q,  = r,  = s.
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И така, числата: 
, , , , , , , k, , l, m, n, p, q, r, s

са такива, че Δ, където

( , , , , , , , , , , , , , , , ,  
то множеството на числовите квадрати от четвърти ред е векторно пространство с 
размерност числото 16. 

От друга страна, нулевата матрица е магически квадрат, сборът на два магически 
квадрата е магически квадрат и произведението на число и магически квадрат е 
магически квадрат. Това означава, че множеството на магическите квадрати, от своя 
страна, също е векторно пространство – подпространство на векторното пространство 
на числовите квадрати. 

Изниква въпрос за размерността на векторното пространство на магическите 
квадрати от четвърти ред. Този въпрос е свързан с въпроса колко от шестнадесетте 
числа, които участват в магическия квадрат, могат бъдат избирани произволно и как се 
определят останалите. На повдигнатите въпроси ще отговорим в следващите редове. 

 5.2. Теорема. Векторното пространство на магическите квадрати от четвърти 
ред е осеммерно. 

Доказателство 
1) Да фиксираме осем от 16-те елемента –  

, , , , , , , , , , , , , , ,  
на магическия квадрат Δ, където 

Δ =  
Нека фиксираните осем елементи са: , , , , , , , . 
За удобство, да въведем означенията: 

 = k,  = l,  = m,  = n,  = p,  = q,  = r,  = s. 
И така, числата:  

, , , , , , , k, , l, m, n, p, q, r, s 
са такива, че Δ, където 

 Δ =  
e магически квадрат с характеристично число S. 

Ще докажем, че числата: , , , , , , , еднозначно се 
определят от числата: k, l, m, n, p, q, r, s. 

Действително. Условието на задачата е еквивалентно на системата от 10 
уравнения: 
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e магически квадрат с характеристично число S.
Ще докажем, че числата: , , , , , , , еднозначно 

се определят от числата: k, l, m, n, p, q, r, s.
Действително. Условието на задачата е еквивалентно на системата от 10 

уравнения:

Последователно изразяваме членовете: , , ,  чрез фиксирани-
те елементи – {k, l, m, n, p, q, r, s}, (S = ).

Така достигаме до система от 5 уравнения с 4 неизвестни – ( , , , ):
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Матрицата на получената система е показана по-долу в таблица 1.

Таблица 1

Преобразуваме последователно матрицата  на системата по метода на  
Гаус – Жордан и достигаме до матрицата, показана на таблица 2.

Таблица 2

Следователно за числата , , ,, , , k, , l, m, n, p, q, r, s на 
магическия квадрат Δ са верни следните равенства:

БЕЛЕЖКИ 

върху странирания вариант на статията  

ЗА ВЕКТОРНОТО ПРОСТРАНСТВО НА МАГИЧЕСКИТЕ КВАДРАТИ ОТ 
ЧЕТВЪРТИ РЕД (В ЗАНИМАТЕЛНАТА МАТЕМАТИКА) 

 
1. Стр. 532, в точката  Ключови думи  вместо думата:  „развлекателна“ да се 

запише думата: „занимателна“ 
 
2. На стр. 540, формулите на последните 11 реда са набрани погрешно. На тяхно 

място да се запише следното:  
          ; 

    =              ; 
    = – k + l – m – n + 2p + q; 
    =     +     ; 

   =       ; 
    =              ; 

    = k – l + n     +  ; 
    = k; 

    =       +        ;      = l;      = m;      = n; 
    = p;      = q;      = r;       = s. 

 

 

С уважение, 
Здравко Лалчев 
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2) Използваме получените зависимости на елементите на магическия квад- 
рат и построяваме системата от 8 квадрата (Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8) по след-
ния начин:

Δ1 е квадрат, за който k = 1, l = 0, m = 0, n = 0, p = 0, q = 0, r = 0, s = 0;
Δ2 е квадрат, за който k = 0, l = 1, m = 0, n = 0, p = 0, q = 0, r = 0, s = 0;
Δ3 е квадрат, за който k = 0, l = 0, m = 1, n = 0, p = 0, q = 0, r = 0, s = 0;
Δ4 е квадрат, за който k = 0,  l = 0, m = 0, n = 1,  p = 0, q = 0,  r = 0,  s = 0;
Δ5 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 1, q = 0,  r = 0,  s = 0;
Δ6 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 0, q = 1,  r = 0,  s = 0;
Δ7 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 0, q = 0,  r = 1,  s = 0;
Δ8 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 0, q = 0,  r = 0,  s = 1.

 
= ; 

 = ; 
 = k – l + n + ; 

 =k; 
 

 = + ;  = l;  = m;  = n; 

 
 = p;  = q; = r;  = s. 

 
2) Използваме получените зависимости на елементите на магическия квадрат и 

построяваме системата от 8 квадрата (Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8) по следния начин: 
Δ1 е квадрат, за който k = 1, l = 0, m = 0, n = 0, p = 0, q = 0, r = 0, s = 0; 
Δ2 е квадрат, за който k = 0, l = 1, m = 0, n = 0, p = 0, q = 0, r = 0, s = 0; 
Δ3 е квадрат, за който k = 0, l = 0, m = 1, n = 0, p = 0, q = 0, r = 0, s = 0; 
Δ4 е квадрат, за който k = 0,  l = 0, m = 0, n = 1,  p = 0, q = 0,  r = 0,  s = 0; 
Δ5 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 1, q = 0,  r = 0,  s = 0; 
Δ6 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 0, q = 1,  r = 0,  s = 0; 
Δ7 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 0, q = 0,  r = 1,  s = 0; 
Δ8 е квадрат, за който k = 0,  l = 0, m = 0, n = 0,  p = 0, q = 0,  r = 0,  s = 1. 
 

=  =  = 
  

 

=  =  = 
  

 

=  =  
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0 0 0 0 

–1 0 1 0 
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1 –1 0 0 
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Може да се провери директно, че всеки от осемте квадрата на системата е 
магически.

Ще докажем, че тази система е линейно независима.
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 Нека x1, x2, x3, x4, x5, x6, x7, x8, са 8 числа, за които линейната комбинация от 
магическите квадрати Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8, с коефициенти съответните 
числа е равна на нулевия квадрат Ω, т.е.

 +  +  +  +  = Ω ,

където Ω = 

   
Може да се провери директно, че всеки от осемте квадрата на системата е 

магически. 
Ще докажем, че тази система е линейно независима. 
 Нека , , , , , , , са 8 числа, за които линейната комбинация от 

магическите квадрати Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8, с коефициенти съответните числа е 
равна на нулевия квадрат Ω т.е. 

 +  +  +  +  = Ω , 
 

където Ω  
Това означава, че:  

. 

От осмо, десето, единадесето, дванадесето, тринадесето, четиринадесето, 
петнадесето и шестнадесето уравнение следва непосредствено, че: 

, , , , , , , . 
Наредената осморка числа (0,0,0, 0, 0, 0, 0, 0) е решение на системата и при това 

единствено, тъй като всяко от числата , , , , , , ,  може да заеме само 
стойност 0. 

Следователно осморката магически квадрати (Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8) е 
линейно независима система. 

3) Нека Δ, където 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Това означава, че: 
.

От осмо, десето, единадесето, дванадесето, тринадесето, четиринадесето, 
петнадесето и шестнадесето уравнение следва непосредствено, че:

, , , , , , , .
Наредената осморка числа (0,0,0, 0, 0, 0, 0, 0) е решение на системата и при 

това единствено, тъй като всяко от числата , , , , , , ,  може 
да заеме само стойност 0.
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Следователно осморката магически квадрати (Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8) е 
линейно независима система.

3) Нека Δ, където

 Δ =  
e магически квадрат. 
Като се използват дефиницията за умножение на число с числов квадрат, 

дефиницията за алгебричен сбор на числови квадрати и доказаните зависимости, може 
да се провери, че магическият квадрат Δ е линейна комбинация на Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, 
Δ7, Δ8 с коефициенти, съответно k, l, m, n, p, q, r, s,  т.е. 

Δ = k.Δ1 + l.Δ2 + m.Δ3 + n.Δ4 + p.Δ5 + q.Δ6 + r.Δ7 + s.Δ8. 

С това доказателството на теоремата е завършено. 

6. Построяване на магически квадрати от четвърти ред по предварително 
избрани осем от неговите елементи 

От теоремата за векторното пространство на магическите квадрати и нейното 
доказателство следва, че при построяване на магически квадрат от четвърти ред 
съществуват осем елемента, които могат да бъдат избрани произволно. Също така беше 
показано как може да стане това, когато избраните елементи са: , , , , , 

, , . 
В следващото изложение ще бъдат построени магически квадрати от четвърти 

ред по дадени 8 от елементите (и техните места), различни от  наредената осморка ( , 
, , , , , , . 

Задача 1. Да се построи магически квадрат от четвърти ред по дадени 
елементите:  

= 1, = 2, = 3, = 4, = 5, = 6, = 7, = 8.  
Решение 
Да въведем следните означения:  

= x, = y, = z, = u, = v, = w, = r, = t. 
На този етап търсеният квадрат Δ изглежда така: 

 =  
Като вземем предвид зависимостите между дадените и неизвестните числа в Δ, 

достигаме до следната система от 9 уравнения с 8 неизвестни: 
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e магически квадрат.
Като се използват дефиницията за умножение на число с числов квадрат, 

дефиницията за алгебричен сбор на числови квадрати и доказаните зависи-
мости, може да се провери, че магическият квадрат Δ е линейна комбинация 
на Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8 с коефициенти, съответно k, l, m, n, p, q, r, s,  т.е.

Δ = k.Δ1 + l.Δ2 + m.Δ3 + n.Δ4 + p.Δ5 + q.Δ6 + r.Δ7 + s.Δ8.
С това доказателството на теоремата е завършено.

6. Построяване на магически квадрати от четвърти ред по предвари-
телно избрани осем от неговите елементи

От теоремата за векторното пространство на магическите квадрати и ней-
ното доказателство следва, че при построяване на магически квадрат от чет-
върти ред съществуват осем елемента, които могат да бъдат избрани произ-
волно. Също така беше показано как може да стане това, когато избраните 
елементи са: , , , , , , , .

В следващото изложение ще бъдат построени магически квадрати от чет-
върти ред по дадени 8 от елементите (и техните места), различни от  нареде-
ната осморка ( , , , , , , , .

Задача 1. Да се построи магически квадрат от четвърти ред по дадени еле-
ментите: 

= 1, = 2, = 3, = 4, = 5, = 6, = 7, = 8. 

Решение
Да въведем следните означения: 

= x, = y, = z, = u, = v, = w, = r, = t.
На този етап търсеният квадрат Δ изглежда така:
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 Δ =  
e магически квадрат. 
Като се използват дефиницията за умножение на число с числов квадрат, 

дефиницията за алгебричен сбор на числови квадрати и доказаните зависимости, може 
да се провери, че магическият квадрат Δ е линейна комбинация на Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, 
Δ7, Δ8 с коефициенти, съответно k, l, m, n, p, q, r, s,  т.е. 

Δ = k.Δ1 + l.Δ2 + m.Δ3 + n.Δ4 + p.Δ5 + q.Δ6 + r.Δ7 + s.Δ8. 

С това доказателството на теоремата е завършено. 

6. Построяване на магически квадрати от четвърти ред по предварително 
избрани осем от неговите елементи 

От теоремата за векторното пространство на магическите квадрати и нейното 
доказателство следва, че при построяване на магически квадрат от четвърти ред 
съществуват осем елемента, които могат да бъдат избрани произволно. Също така беше 
показано как може да стане това, когато избраните елементи са: , , , , , 

, , . 
В следващото изложение ще бъдат построени магически квадрати от четвърти 

ред по дадени 8 от елементите (и техните места), различни от  наредената осморка ( , 
, , , , , , . 

Задача 1. Да се построи магически квадрат от четвърти ред по дадени 
елементите:  

= 1, = 2, = 3, = 4, = 5, = 6, = 7, = 8.  
Решение 
Да въведем следните означения:  

= x, = y, = z, = u, = v, = w, = r, = t. 
На този етап търсеният квадрат Δ изглежда така: 

 =  
Като вземем предвид зависимостите между дадените и неизвестните числа в Δ, 

достигаме до следната система от 9 уравнения с 8 неизвестни: 
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Като вземем предвид зависимостите между дадените и неизвестните числа 
в Δ, достигаме до следната система от 9 уравнения с 8 неизвестни:

 Привеждаме уравненията в нормален вид и представяме системата в мат-
ричен (табличен) вид – таблица 1.

x y z u v w r t
(1) 1 1 -1 -1 0 0 0 0 4
(2) 1 1 0 0 -1 -1 0 0 8
(3) 1 1 0 0 0 0 -1 -1 12
(4) 1 1 -1 0 0 0 -1 0 3
(5) 0 1 0 0 -1 0 0 0 7
(6) 1 1 0 -1 0 0 0 0 13
(7) 1 0 0 0 0 -1 0 -1 1
(8) 1 1 0 0 0 0 0 -1 7
(9) 1 0 0 -1 -1 0 -1 0 -3

Таблица 1

Извършваме последователно елементарни преобразувания на матрицата 
(еквивалентни преобразувания на системата) по метода на Гаус – Жордан с 
цел да достигнем до „единична матрица“ в стълбовете на неизвестните.
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След (19) елементарни преобразувания достигаме до таблица 2.
x y z u v w r t

(1) 1 0 0 0 0 0 0 0 -7
(2) 0 0 0 0 0 0 0 1 0
(3) 0 0 0 0 1 0 0 0 7
(4) 0 0 0 0 0 0 0 0 0
(5) 0 1 0 0 0 0 0 0 14
(6) 0 0 1 0 0 0 0 0 9
(7) 0 0 0 1 0 0 0 0 -6
(8) 0 0 0 0 0 0 1 0 -5
(9) 0 0 0 0 0 1 0 0 -8

Таблица 2

От таблица 2 става ясно, че системата има единствено решение:
x = 7; y = 14; z = 9; u = 6; v = 7;w= 8  r = 5; t = 0

Проверка:
1 + x+ 2 +y= 1 – 7 + 2 + 14 = 10; z + 3 + u + 4 = 9 + 3 – 6 + 4 = 10;

5 + v + 6 + w = 5 + 7 + 6 – 8 = 10; r + 7 + 8 + t = - 5 + 7 + 8 + 0 = 10;
1 + z + 5 + r = 1 + 9 + 5 – 5 = 10; x + 3 + v + 7 = - 7 + 3 + 7 + 7 = 10;
2 + u + 6 + 8 = 2 – 6 + 6 + 8 = 10; y + 4 + w + t = 14 + 4 – 8 + 0 = 10;
1 + 3 + 6 + t = 1 + 3 + 6 + 0 = 10; y + u + v + r = 14 – 6 + 7 – 5 = 10.

Отговор: = 

От таблица 2 става ясно, че системата има единствено решение: 
x = 7; y = 14;z = 9; u = 6; v = 7;w= 8 r = 5; t = 0 

Проверка: 
1 + x+ 2 +y= 1 – 7 + 2 + 14 = 10; z + 3 + u + 4 = 9 + 3 – 6 + 4 = 10; 

5 + v + 6 + w = 5 + 7 + 6 – 8 = 10; r + 7 + 8 + t = - 5 + 7 + 8 + 0 = 10; 
1 + z + 5 + r = 1 + 9 + 5 – 5 = 10; x + 3 + v + 7 = - 7 + 3 + 7 + 7 = 10; 
2 + u + 6 + 8 = 2 – 6 + 6 + 8 = 10; y + 4 + w + t = 14 + 4 – 8 + 0 = 10; 
1 + 3 + 6 + t = 1 + 3 + 6 + 0 = 10; y + u + v + r = 14 – 6 + 7 – 5 = 10. 

Отговор: = . 

Задача 2. Да се построи магически квадрат от четвърти ред по дадени 
елементите:  

= A, = B, = C, = D, = E, = F, = G, = H. 
Решение 
Тъй като са известни елементите по главния диагонал, то е известно и 

характеристичното число S на търсения квадрат Δ, т.е. S = А + C + F + H. 
Да въведем следните означения:  

= x, = y, = z, = u, = v, = w, = r, = t. 
На този етап квадратът Δ изглежда така: 

 =  
Като вземем предвид зависимостите между дадените и неизвестните в Δ, 

достигаме до система от 9 уравнения с 8 неизвестни, поместени в таблица Т1. 
 

 x y z u v w r t  

(1) 1 1 0 0 0 0 0 0 A1 

(2) 0 0 1 1 0 0 0 0 A2 

(3) 0 0 0 0 1 1 0 0 A3 

(4) 0 0 0 0 0 0 1 1 A4 

(5) 0 0 1 0 0 0 1 0 A5 

(6) 1 0 0 0 1 0 0 0 A6 

(7) 0 0 0 1 0 0 0 1 A7 

(8) 0 1 0 0 0 1 0 0 A8 
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.
Задача 2. Да се построи магически квадрат от четвърти ред по дадени еле-

менти: 
= A, = B, = C, = D, = E, = F, = G, = H.

Решение
Тъй като са известни елементите по главния диагонал, то е известно и ха-

рактеристичното число S на търсения квадрат Δ, т.е. S = А + C + F + H.
Да въведем следните означения: 

= x, = y, = z, = u, = v, = w, = r, = t.

На този етап квадратът Δ изглежда така:
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 = 

От таблица 2 става ясно, че системата има единствено решение: 
x = 7; y = 14;z = 9; u = 6; v = 7;w= 8 r = 5; t = 0 

Проверка: 
1 + x+ 2 +y= 1 – 7 + 2 + 14 = 10; z + 3 + u + 4 = 9 + 3 – 6 + 4 = 10; 

5 + v + 6 + w = 5 + 7 + 6 – 8 = 10; r + 7 + 8 + t = - 5 + 7 + 8 + 0 = 10; 
1 + z + 5 + r = 1 + 9 + 5 – 5 = 10; x + 3 + v + 7 = - 7 + 3 + 7 + 7 = 10; 
2 + u + 6 + 8 = 2 – 6 + 6 + 8 = 10; y + 4 + w + t = 14 + 4 – 8 + 0 = 10; 
1 + 3 + 6 + t = 1 + 3 + 6 + 0 = 10; y + u + v + r = 14 – 6 + 7 – 5 = 10. 

Отговор: = . 

Задача 2. Да се построи магически квадрат от четвърти ред по дадени 
елементите:  

= A, = B, = C, = D, = E, = F, = G, = H. 
Решение 
Тъй като са известни елементите по главния диагонал, то е известно и 

характеристичното число S на търсения квадрат Δ, т.е. S = А + C + F + H. 
Да въведем следните означения:  

= x, = y, = z, = u, = v, = w, = r, = t. 
На този етап квадратът Δ изглежда така: 

 =  
Като вземем предвид зависимостите между дадените и неизвестните в Δ, 

достигаме до система от 9 уравнения с 8 неизвестни, поместени в таблица Т1. 
 

 x y z u v w r t  

(1) 1 1 0 0 0 0 0 0 A1 

(2) 0 0 1 1 0 0 0 0 A2 

(3) 0 0 0 0 1 1 0 0 A3 

(4) 0 0 0 0 0 0 1 1 A4 

(5) 0 0 1 0 0 0 1 0 A5 

(6) 1 0 0 0 1 0 0 0 A6 

(7) 0 0 0 1 0 0 0 1 A7 

(8) 0 1 0 0 0 1 0 0 A8 
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Като вземем предвид зависимостите между дадените и неизвестните в Δ, 
достигаме до система от 9 уравнения с 8 неизвестни, поместени в таблица Т1.

x y z u v w r t
(1) 1 1 0 0 0 0 0 0 A1

(2) 0 0 1 1 0 0 0 0 A2

(3) 0 0 0 0 1 1 0 0 A3

(4) 0 0 0 0 0 0 1 1 A4

(5) 0 0 1 0 0 0 1 0 A5

(6) 1 0 0 0 1 0 0 0 A6

(7) 0 0 0 1 0 0 0 1 A7

(8) 0 1 0 0 0 1 0 0 A8

(9) 0 1 0 1 1 0 1 0 A9

Таблица Т1
където:

A1 = – B + C + F + H; A2 = A – D + F + H; A3= A + C – E + H;
A4 =A + C + F – G; A5 = C – E + F + H; A6 = A + F – G + H;
A7 = A – B + C + H; A8 = A + C – D + F; A9=А + C + F + H.

След (шест) елементарни преобразувания на матрицата (еквивалентни пре-
образувания на системата) по метода на Гаус – Жордан достигаме до таблица Т2,

x y z u v w r t
(1) 1 0 0 0 1 0 0 0 D1

(6) 0 1 0 0 -1 0 0 0 C6

(3) 0 0 0 0 1 1 0 0 A3

(4) 0 0 0 0 0 0 1 1 A4

(5) 0 0 1 0 0 0 1 0 A5

(2) 0 0 1 1 0 0 0 0 A2

(7) 0 0 0 1 0 0 0 1 A7

(8) 0 0 0 0 1 1 0 0 D8

(9) 0 0 0 1 2 0 1 0 D9

Таблица Т2
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където:
D1 = A + F – G + H;Е6= A – C – D + E;D8 =2A + B – D + F – G;

D9 = 2A + B – G + F + H.
От таблица Т2 се вижда, че когато D8 ≠ A3, системата няма решение.
 Нека D8= A3, т.е. 

A + B + E + F = C + D + G + H
След още (3) елементарни преобразувания на матрицата (по метода на 

Гаус – Жордан) достигаме до таблица Т3.

x y z u v w r t
(1) 1 0 0 0 1 0 0 0 D1
(6) 0 1 0 0 -1 0 0 0 C6
(3) 0 0 0 0 1 1 0 0 A3
(4) 0 0 0 0 0 0 1 1 A4
(5) 0 0 1 0 0 0 1 0 A5
(2) 0 0 0 1 0 0 -1 0 E6
(7) 0 0 0 0 0 0 1 1 F7
(9) 0 0 0 0 2 0 2 0 F9

Таблица Т3

където:
E6 = A – C – D + E; F7 = -B + 2C + D – E + H; F9 = A + B + C + D – E + F – G + H.

От таблица Т3 се вижда, че когато A4≠ F7, системата няма решение.
Нека A4 = F7, т.е.

A + B + E + F = C + D + G + H
(Нека отбележим, че до това условие достигаме за втори път.)
След още еквивалентни преобразувания на системата (по метода на Гаус – 

Жордан) достигаме до таблица Т4.
x y z u v w r t

(1) 1 0 0 0 0 0 0 J1 -1

(6) 0 1 0 0 0 0 0 J2 +1
(3) 0 0 0 0 1 0 0 J3 +1
(4) 0 0 0 0 0 0 1 A4 -1

(5) 0 0 1 0 0 0 0 H5 +1
(2) 0 0 0 1 0 0 0 H6 -1
(9) 0 0 0 0 0 1 0 I7 -1

Таблица Т4
където:
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J1 = (3A – B + C – D + E + 3F – 3G + H);

J2 = (–3A – B + C + D – E - F + H + 3G);

J3 = (–A + B – C + D – E – F + G + H);
H5 = –A – E + G + H;
H6  = 2A – D + E + F – G;
I7 = (3A – B + 3C – D – E + F – G + H).
Следователно: 
x = J1 – t = (3A – B + C – D + E + 3F – 3G + H) – t;

y = J2 + t = (–3A – B + C + D – E - F + H + 3G) + t;
z = H5 + t = – A – E + G + H + t;
u = H6 - t = 2A – D + E + F – G – t;
v = J3 + t = (– A + B – C + D – E – F + G + H) + t;

w = I7 – t = (3A – B + 3C – D – E + F – G + H) – t;
r = A4 – t = A + C + F – G – t;
t – параметър.
Проверка:
А + x + B + y = A + (–3A + B – 5C + D + 3E + F – G – H) – t + 

+ B + (3A – 3B + 7C – D – 3E + F + G + 3H) + t =
= A + C + F + H = S;
z + C + u + D = – A – E + G + H + t + C + 2A – D + E + F – G – t + D = 
= A + C + F + H = S;
E + v + F + w = E + (5A – B + 5C – D – 3E + F – G + 3H)+ F + 

+ (–3A + B – 3C + D + E – F + G – H) + t =
= A + C + F + H = S;
r + G + t + H= A + C + F – G – t + G + t + H = A + C + F + H = S
A + z + E + r = A – A – E + G + H + t + E + A + C + F – G – t = 
= A + C + F + H = S
x + C + v + G = (–3A + B – 5C + D + 3E + F – G – H) – t + C + 
+ (5A – B + 5C – D – 3E + F – G + 3H) + t + G = 
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= A + C + F + H = S;
B + u + F + t= B + 2A – D + E + F – G – t + F + t = 
= A + C + F + H + A + B – C – D + E – G + F – H = 
= A + C + F + H = S;
y + D + w + H = (3A – 3B + 7C – D – 3E + F + G + 3H) + t + D + 

+ (–3A + B – 3C + D + E – F + G - H) – t + H =
= –B + 2C + D – E + G + 2H = A + C + F + H – A – B + C + D – E + G – F + H =
= A + C + F + H = S;
y + u + v + r= (–3A – B + C + D – E – F + H + 3G) + t + 2A – D + E + F – G – t +

+ (–A + B – C + D – E – F + G + H) + t + A + C + F – G – t =

= (–3A – B + C + D – E – F + H + 3G) + (–A + B – C + D – E – F + G + H) +
+ 2A – D + E + F – G + A + C + F – G =
= –2A + D – E – F + 2G + H + 2A – D + E + F – G + A + C + F – G =
= A + C + F + H = S.

Изводи
1) Ако A + B + E + F ≠ C + D + G + H, то задачата няма решение, т.е. не 

съществува магически квадрат.
2) Ако A + B + E + F = C + D + G + H, то задачата има безброй много реше-

ния, зависещи от един параметър, т.е. съществуват безброй много магически 
квадрати.

5. Вместо заключение 
Тази работа може да се разглежда като продължение на предишно из-

следване  (Lalchev, Varbanova, Stoimirov, Voutova, (2020) за векторното 
пространство на магическите квадрати от трети ред, в която чрез директно 
доказателство беше потвърдено, че размерността на това пространство е 
числото 3. Накрая ще кажем и това, че за да се намали обемът на публика-
цията, значителна част от алгебричните преобразувания в изследването са 
пропуснати, като са дадени указания за тяхното допълване при желание от 
страна на читателя.
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ABOUT THE VECTOR SPACE OF THE FOURTH ORDER MAGIC
SQUARES (IN RECREATIONAL MATHEMATICS)

Abstract. In the present study a more general (than the traditional) definition of the term 
magic squares of the fourth order is adopted and sufficient conditions for their existence 
are indicated. Essential vector-algebraic properties of the fourth-order magic squares have 
been studied by elementary means of linear algebra. A direct proof of the theorem for the 
dimensionality of their vector space is made, without using the more general theorem for 
the dimensionality of the vector space of the magic squares of order n (n ≥3). By solving 
a linear system of 10 linear equations with 17 unknowns, it is shown that when compiling 
a fourth-order magic square (in the general case), eight (of the sixteen) coordinates can be 
given arbitrarily. There are two formulated and solved problems which corroborate the 
propositional. The present paper is meant for some lessons in recreational mathematics.

Keywords: magic squares; vector space; Gauss – Jordan elimination; recreational 
mathematics
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