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Резюме. Разгледани са някои от основните хипотези за простите числа, 
които определят техни важни за математиката свойства.

Keywords: prime number; perfect number; Mersenne prime number; twin prime 
numbers; hypothesis

По време на Световния конгрес на математиците през 1912 г. в Кеймбридж, 
Англия, немският математик Едмунд Ландау (1877 – 1938) формулира 4 основни 
проблема относно простите числа, характеризирани от докладчика като „невъз-
можни да бъдат атакувани при съвременното състояние на математиката“.  Към 
днешна дата, повече от 100 години след доклада на Ландау пред делегатите на 
конгреса, проблемите на Ландау, както са известни в математиката, продължават 
да бъдат нерешени. Става дума за:

1. хипотезата на Голдбах (за Голдбах ще стане дума по-нататък), че всяко четно 
естествено число, по-голямо от 2, е сбор на две прости числа;

2. хипотезата за простите числа близнаци, че съществуват безброй много прос-
ти числа p, за които числото p + 2 е също просто;

3. хипотезата на Лежандър (Андре-Мари Льожандър (1752 – 1833) е френски 
математик), че между всеки две последователни съвършени числа съществува 
поне едно просто число;

4. хипотезата, че съществуват безброй много прости числа p, за които числото  
p − 1 е точен квадрат, т.е. че съществуват безброй много прости числа от вида n2 + 1.

Основно настоящата статия е посветена на втория проблем на Ландау.
Английският математик Годфри Харди (1877 – 1947) е защитник на тезата, че 

качествена математика се прави от млади умове. В книгата си (Hardy, 2004), която 
се счита за едно от най-добрите описания на прозренията на един действащ мате-
матик, предназначено за непрофесионалисти, той пише: „Не познавам голямо пос-
тижение в математиката, което да е дело на човек, преминал петдесетте“. Разбира 
се, подобно твърдение може да се приеме и като проява на скромност от страна на 
Харди за качествата на книгата му, която той публикува през 1940 г. на 62-годишна 
възраст. По-нататък авторът продължава: „Ако човек на зряла възраст загуби инте-
рес към математиката и се отдалечи от нея, това едва ли е голяма загуба за матема-
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тиката и за самия него“. Изключение от подобно твърдение със сигурност е свър-
зано с родения в Китай през 1955 г. американски математик Уитанг Занг (Yitang 
Zhang). В продължение на десетина години след завършване на докторската си 
дисертация въпросният Занг даже не работел като математик, а като счетоводител 
в щата Кентъки. Той напуснал службата си, която заемал в един ресторант за бързо 
хранене в станция на метрото, и станал преподавател в Университета в щата Ню 
Хемпшир. През 2013 г., когато е на 57 години, Занг анонсира изключително важно 
математическо откритие в (Yitang, 2014). През следващата година публикацията 
в цитираното първокласно списание му носи една от най-престижните награди в 
математиката – тази на фондация „МакАртър“ (625 хил.щ. долара), а така също и 
професорска позиция в Калифорнийския университет в Санта Барбара. Публика-
цията на Уитанг Занг е свързана с т.нар. „хипотеза за простите числа близнаци“, 
която е с около 200-годишна история. Занг не доказва хипотезата, но прави значи-
телна стъпка към потвърждаването Ӝ. И макар че оттогава нещата не са отишли 
много далеч, откритието му вдъхновява получаването на обещаващи резултати и 
нови прозрения в областта на простите числа. Постижението на Уитанг Занг се 
отнася до първата крайна оценка за разликата между две последователни прости 
числа.

Просто число е такова естествено число 1n > , което се дели само на числото 1 
и на себе си. Прости са числата 2, 3, 5, 7, 11, 13, 17, 19, … и т.н. Те са с важно 
приложение в съвременната криптография и са свързани например със сигур-
ността на кредитните ни карти. Но истинската роля, която играят, е в областта 
на теорията на числата, в тази част от математиката, която е посветена на целите 
числа. Простите числа са градивните елементи на числата, защото всяко естест-
вено число, по силата на основната теорема на аритметиката, може да се пред-
стави по единствен начин като произведение на прости числа и техните степени. 
Известният английски математик Джеймс Мейнард (р. 1987 г.) от Оксфордския 
университет в Англия, който дава ново доказателство на теоремата на споменатия 
Уитанг Занг, казва: „Същата идея съществува и в химията. За да изучите свойства-
та на някое сложно съединение, следва да разберете от кои атоми е съставено то 
и как тези атоми са свързани помежду си“. Основната теорема на аритметиката 
гласи: всяко естествено число 1n >  може да се представи по единствен начин във 
вида 1 2

1 2. ... mkk k
mn p p p= , където 1 2, , ..., mp p p  са всички прости делители на n, а 

1 2, , ..., mk k k  са съответните им кратности.
Интересът към простите числа датира от времето на древните гърци. В своите 

Елементи Евклид (III – IV в.пр.н.е.) дава едно красиво доказателство на факта, че 
простите числа са безброй много. Ето това доказателство. Да допуснем, че прости-
те числа са краен брой, и да означим техния брой с n. Нека самите прости числа са 

1 2, , ..., np p p . Да разгледаме числото 1 2. . ... 1nq p p p= + . Ясно е, че остатъкът 
при деление на q с кое да е просто число от списъка, е равен на 1, т.е. q не се дели 
на никое просто число. Следователно q е просто и това е противоречие.
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От факта, че простите числа са безброй много, следва, че не съществува най-голя-
мо просто число. Проблемите се появяват, когато искаме да разберем как са разпре-
делени простите числа върху числовата права. В края на XIX век френският матема-
тик Жак Адамар (1865 – 1963) и белгийският математик Шарл Пусен (1866 – 1962) 
(когото кралят на Белгия удостоява с титлата барон) независимо един от друг до-
казват т.нар. теорема за простите числа, която дава оценка за броя на простите чис-
ла, които са по-малки от предварително зададено число. Тази теорема е свързана с 
информация за осредненото разпределение на простите числа по числовата права, 
което наподобява разпределението на простите числа до 100. Например първите 
прости числа са 2, 3 и 5, които са близо едно до друго. Разстоянието между двете 
най-големи прости числа до 100, т.е. между 89 и 97, е значително по-голямо.  След 
100 обаче са простите числа 101, 103, 107 и 109, които са отново близо едно до 
друго. И макар че разпределението на по-големите прости числа е с по-големи 
разстояния между тях, в осреднен смисъл се оказва, че съседните прости числа, 
които  са близо едно до друго, са много. В това се състои  интуитивната същност 
на теоремата на Уитанг Занг. И точно тук идва хипотезата за простите числа близ-
наци. С изключение на 2 и 3, които са едно до друго, няма друга двойка прости 
числа, които се различават с 1. Причината е, че 2 е единственото четно просто 
число. За сметка на това примерите на съседни прости числа, които се различават 
с 2, са много: 3 и 5, 17 и 19, 41 и 43, …., 107 и 109, и т.н. Такива прости числа се 
наричат прости числа близнаци.

Хипотезата за простите числа близнаци гласи, че те са безброй много. След 
като простите числа са безброй много, естествено е да се очаква, че и близнаците 
са безброй много. Съществуват сериозни основания за това. Едно от важните е, 
че с помощта на компютри са намерени доста големи прости числа близнаци, при 
това значителен брой. Въпросът е дали компютърът е успял да открие най-голя-
мата двойка. Съмненията се засилват от наличието на модел за формулиране на 
съдържателни хипотези относно броя на двойките близнаци, които се намират до 
дадена точка от числовата права. В същото време, тази точка може да се фиксира 
произволно далеч. Всичко това обаче е недостатъчно за потвърждаване на хипо-
тезата за простите числа близнаци, защото математиците се нуждаят от неопро-
вержимо доказателство, т.е. от математическо доказателство, което да не поражда 
съмнения, както доказателството на Евклид за безкрайния брой на простите числа 
не допуска каквато и да е мисъл за противното. За съжаление, такова доказател-
ство все още липсва.

Всъщност през 2013 г. Уитанг Занг доказа, че съществуват безброй много двой-
ки съседни прости числа, разстоянията между които са по-малки от 70 милиона. 
На пръв поглед, 2 и 70 милиона са несравними, но 70 милиона е крайно число и 
затова теоремата на Занг е важна. „Самият факт, че е получено някакво число, е 
необикновен – споделя английският математик Ендрю Гранвил (р. 1962 г.) от Уни-
верситета в Монреал и Унивърсити колидж в Лондон, който е специалист по тео-
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рия на числата. – Много хора са се опитвали и не са успявали. Изобщо не вярвах, 
че това е възможно да се случи.“

Макар че оценката е подобрена, за което ще стане дума по-долу, до този момент 
сериозен напредък за доказване на хипотезата за простите числа близнаци не е 
направен. Постижението на Уитанг Занг е значимо и по друга причина. В доказа-
телството си Занг използва подход, който много математици пренебрегват. Става 
дума за т.нар. „метод на решето“, който датира от времето на древногръцкия мате-
матик Ератостен  (276 г.пр.н.е. – 195 г.пр.н.е.). За да отдели простите числа от ос-
таналите, Ератостен методично задрасквал всички естествени числа от 1 нататък, 
които не са прости. Например, за да отделим простите числа, които са по-малки от 
100, тръгваме от простото число 2 (преди това сме задраскали 1, което не е просто 
по дефиниция) и задраскваме всички числа, които се делят на 2, т.е. всяко второ 
число. Първото число след 2, което остава незадраскано, е 3 и следователно то е 
просто. По-нататък задраскваме всички числа, които се делят на 3, т.е. всяко трето 
число от незадрасканите. Първото незадраскано число след 3 е 5 и следователно 
5 е просто. Продължаваме по същия начин до изчерпване на списъка. Остават не-
задрасканите числа, които са простите числа от 1 до 100. В този случай решето се 
нарича „решето на Ератостен“.

Методът на решето е ръчен метод и предизвиква отегчение, но все пак е рабо-
тещ. Подобна идея в по-съвършен вид използва и Уитанг Занг в доказателството 
на своята теорема. Методът на решето е усъвършенстван в различни посоки. Така, 
преди десетина години (преди анонса на Уитанг Занг) американският математик 
Даниел Голдстън (р. 1954 г.), унгарският математик Януш Пинтс (р. 1950 г.) и тур-
ският математик Цем Уилдирим (р. 1961 г.) използват модифицирана версия на 
метода на решето (различна от тази на Уитанг Занг) и получават резултат, който, 
базиран на хипотезата на Елиот – Халберстам (Питър Елиот, р. 1941 г., е американ-
ски математик, а Хейни Халберстам, 1926 – 2014, е английски математик), подо-
брява резултата на Уитанг Занг от 70 милиона на 16. Тук сме свидетели на подход, 
който е доста често срещан в математиката – от една хипотеза се отива към друга, 
от верността на която следва придвижване на първата. Междупрочем по подобен 
начин Ендрю Уайлс (Grozdev & Nenkov, 2016) атакува Великата теорема на Фер-
ма, при доказателството на която потвърждава хипотезата на Танияма – Шимура 
(Grozdev & Nenkov, 2016). Да отбележим изрично, че резултатът на Уитанг Занг 
е чист и не се позовава на друга хипотеза, т.е. не се позовава на недоказани твър-
дения.

Веднага след анонса на Уитанг Занг се появиха опити да се вникне в подхода 
на автора. Оказа се, че границата 70 милиона не е най-добрата, до която може да се 
стигне с използваните от Занг аргументи. Онлайн беше стартирано т.нар. „Поли-
мат“ сътрудничество, инициатор на което е австралийският доцент по математи-
ка Скот Морисън (р. 1982 г.) от Австралийския национален университет. Един от 
първите, които се включиха в инициативата, е вероятно най-гениалният математик 
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на нашето време – носителят на милиондоларовата награда на Института Клей и 
Фийлдсов лауреат, известният американски математик с австралийско-китайски 
произход Теренс Тао (р. 1975 г.) от Калифорнийския университет в Лос Анджелис. 
Идеята на проекта „Полимат“ е да се работи публично върху нерешени проблеми 
чрез интернет. Само след няколко месеца беше доказано, че съществуват безброй 
много двойки последователни прости числа, разликите между които не надмина-
ват 4680. Така от 70 милиона се стигна до 4680.

Всичко възможно от подхода на Уитанг Занг беше  „изстискано“ и прогресът 
по проекта замря. Появи се необходимост от нови „оръжия“. Споменатият в на-
чалото Джеймс Мейнард предложи да се използват т.нар. прости дупки. Става 
дума за следното: ако np  и 1np +  са последователни прости числа, то разликата 

1n n ng p p+= −  се нарича n-та проста дупка. Пак чрез метода на решето, и по-точ-
но с използване на подобрена версия на подхода на Голдстън – Пинтс – Уилдирим 
(вж. по-горе), но вече приложена към прости дупки, Мейнард подобри оценката до 
600. Той успя да реши и „най-скъпата“ задача, поставена от унгарския математик 
Пол-Ердьош (1913 – 1996) и свързана с теоремата на шотландския математик Ро-
бърт Ранкин (1915 – 2001) от 1936 г., която гласи, че съществува такава константа 

0c > , че за безброй много стойности на n е изпълнено неравенството

2
log log log log log log log

(log log log )n
c n n ng

n
> .

Задачата на Ердьош е да се потвърди или опровергае твърдението, че констан-
тата c може да се вземе произволно голяма. През 2014 г. Мейнард решава поло-
жително задачата на Ердьош (независимо от него, но малко по-късно, задачата е 
решена и от Кевин Форд, Бен Грийн, Сергей Конягин и Теренс Тао) и получава 
определената от екстравагантния унгарец награда в размер на 10 хил. щ. долара. 
Освен със значимите си резултати и големия брой публикации, който го доближа-
ва до изключителната продуктивност на Леонард Ойлер, Пол Ердьош е известен 
и с това, че обявявал парични награди за успешното решаване на трудни мате-
матически задачи – колкото по-трудна била една задача, толкова по-голяма била 
паричната награда за нея.

През м. април 2014 г. проектът „Полимат“ бил възобновен и с помощта на но-
вия метод на Мейнард оценката 600 била подобрена до 246. Засега всичко свършва 
дотук. Пътят от 246 до 2 е доста по-кратък в сравнение с пътя от 70 милиона до 
246, но трудността да се извърви този път, е обратно пропорционална на дължи-
ната му, и то с порядъци. Проблемът е в дефиницията на простите числа и начина, 
по който методът на решето работи. От една страна, простото число притежава 
само един делител (себе си), а от друга – методът на решето губи ефективност, 
когато се прилага за числа с нечетен брой прости делители. „Случаят наподобява 
радара, който засича нарушителя, но заедно с него и голям брой неправилно за-
подозрени – казва Джеймс Майнард. „Не е възможно да различиш „сигналите“, 
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които се отнасят до простите числа, от тези, които са свързани с числа, „прили-
чащи“ на прости, но притежаващи два или четири прости делителя“, продължава 
Мейнард. Сблъскваме се с т.нар. проблем за четността, за решаването на който все 
още не е открит подходящ подход. Все пак Мейнард споделя оптимистичното си 
усещане за краен успех, което се основава на неотдавнашно откритие: осреднено-
то поведение на числата върху далечни интервали от числовата права се поддава 
на модели за по-близки до началото. Тази идея е доста стара и е била считана за 
изключително трудно реализуема, дори невъзможна. Но през 2015 г. финландска-
та математичка Кайса Матомаки (р. 1985 г.) от Университета в Турку, Финлан-
дия, и канадският математик с руски произход Максим Раджиуил (р. 1988 г.) от 
Университета МакЖил в Монреал доказаха именно това. „Те установиха – казва 
Джеймс Мейнард, – че почти винаги, когато някой интервал от числовата права се 
„пренесе“ назад към началото, се получават числа с четен брой прости делители 
и числа с нечетен брой прости делители. Това е един технически резултат, който е 
много вълнуващ за нас, защото получаващите се по този начин „гайки“ и „болто-
ве“ могат да се използват в други области.“ Да отбележим, че по този начин Теренс 
Тао успя да потвърди хипотезата на Чоула (Сарвадаман Чоула, 1907 – 1995, е ин-
дийски математик, роден в Англия), известна като „бебешки вариант“ на хипоте-
зата за простите числа близнаци и появила се като преходен етап в доказването на 
оригиналната хипотеза. Тао разглежда редицата 1 3, 2 4, 3 5, 4 6, 5 7, ...× × × × ×  
и показва, че вероятността една число в тази редица да има нечетен брой прости 
делители, е равна на вероятността това число да има четен брой прости делители. 
Примерът е свързан с проблема за четността в термините на вероятностите. Нито 
един от тези резултати не е пряко свързан с хипотезата за простите числа близна-
ци. Макар че е бил шокиран от резултата на Матомаки и Раджиуил, споменатият 
по-горе Ендрю Гранвил не е убеден, че той (резултатът) ще помогне в потвържда-
ването на хипотезата за простите числа близнаци. „Изобщо не е ясно как би могло 
да стане това“, споделя Гранвил. За разлика от него Джеймс Мейнард е оптимист. 
„Всякакви резултати относно проблема за четността са добре дошли“, казва той. 
Различните мнения са повод да се смята, че краен успех не е реално да се очаква 
преди появата на звезда от рода на Уитанг Занг. Отново се сблъскваме с обстоя-
телство, типично за развитието на математиката – прогресът е бавен, докато не се 
появи някое зашеметяващо откритие.

През м. май 2016 г. се появи онлайн публикацията arXiv:1603.03720v4, в която 
се съобщава, че е открито ново, по-рано незабелязано свойство на простите числа. 
Автори на анонса са индийският математик Канан Саундарараджан (р. 1974 г.) 
от Станфордския университет в Калифорния и американският математик Робърт 
Лемке Оливър (р. 1987 г.) от Университета Тъфтс в гр. Медфорд, щата Масачузетс. 
Става дума за следното. Ясно е, че освен 2 и 5 всички прости числа завършват на  
1, 3, 7 или 9. Ако последната цифра на едно просто число се появява случайно, 
както се очаква, то не следва да има значение каква е последната цифра на пре-
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дходното просто число. Всяка една от четирите възможности 1, 3, 7 или 9 трябва 
да има 25% шанс да се появи в края му. Оказва се, че не е така. Проверявайки 
с помощта на компютър първия един милиард известни прости числа, двамата 
математици забелязали, че тези, които завършват на 1, са последвани от просто 
число с единица в края само в 18,5% от случаите – факт, който не би се получил, 
ако простите числа бяха разпределени случайно. Простите числа, завършващи на 
3 или 7, последвани от просто число с единица в края, са по 30%, докато простите 
числа, които завършват на 9, са последвани от прости числа с единица в края в 
22% от случаите. Проверката установява също, че вероятността след просто чис-
ло, завършващо на 9, да следва число, завършващо на 1, е с 65% по-голяма от веро-
ятността след него да следва число, отново завършващо на 9. Излиза, че простите 
числа не са разпределени съвсем случайно. „Беше много странно – споделя Са-
ундарараджан в английското сп. New Scientist. – Имаш чувството, че притежаваш 
картина, която познаваш отлично, но в един момент осъзнаваш, че има фигура от 
нея, която никога не си виждал преди това.“ Въз основа на наблюденията Саунда-
рараджан и Лемке Оливър създават модел (Lemke Oliver & Soundararajan, 2017), 
който описва поведението на окончанията на простите числа. Подобни модели се 
появяват и за комбинации от окончания. Те по аналогичен начин се отклоняват от 
очакваните произволни стойности. Тази закономерност е проверена и при други 
бройни системи, различни от десетичната. Оказва се, че и там е същото. Това озна-
чава, че закономерностите в моделите не са в резултат на десетичната бройна сис-
тема, а описват присъщо свойство на самите прости числа. Моделите обаче губят 
устойчивост при нарастване на числата. Саундарараджан и Лемке Оливър, заедно 
със свои сътрудници, са разработили компютърна програма за продължаване на 
изследванията сред първите 400 милиарда прости числа. Моделът им продължава 
да работи, но и тук той бавно намалява устойчивостта си с увеличаване големина-
та на числата. Двамата учени смятат, че продължавайки до безкрайност, простите 
числа ще стигнат до случайно разпределение, което математиците са свикнали да 
очакват и за други задачи.

Саундарараджан разказва пред Quanta magazine, че идеята за проверка на слу-
чайността на простите числа му хрумнала по време на лекция на американския 
математик с японски произход Токиеда Тадаши (р. 1967 г.) от Станфордския уни-
верситет в САЩ. Лекторът обърнал внимание на следния пример от теорията на 
вероятностите. Ако Алис реши да хвърля монета, докато не получи тура, послед-
вана от ези, а Боб – дотогава, докато не получи два пъти поред ези, то на Алис, 
ще Ӝ трябват средно 4 хвърляния на монетата, докато на Боб – съответно 6. При 
това вероятността да се падне ези или тура, е една и съща. Саундарараджан и 
Лемке Оливър намират обяснение на този факт, основавайки се на друга известна 
хипотеза, която ще бъде обсъдена в друга публикация. Хипотезата е свързана с 
имената на споменатия в началото Годфри Харди и английския математик Джон 
Литълууд (1885 – 1977). Тя описва по-точно разпределението на двойки, тройки и 
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по-големи групи прости числа, отколкото основното очакване, че простите числа 
са равномерно разпределени. Засега не е ясно дали откритието на Саундарара-
джан и Лемке Оливър е изолирано явление, или е свързано с по-дълбоки свойства 
на простите числа. Дори то да няма някакви непосредствени приложения в ма-
тематиката, както казва Ендрю Гранвил: „Ако това, което приемаме за даденост, 
излезе погрешно, следва да преосмислим обясненията и на други факти, които 
знаем“.

Хипотези, проблеми на Ландау, пак хипотези и нови хипотези – това е пътят за 
развитие на съвременната математика. Ето още някои подробности.

Хипотеза на Голдбах от 1742 г. (Кристиан Голдбах, 1690 – 1764, е нем-
ски математик). Всяко четно число, по-голямо от 2, може да се представи 
като сбор на две прости числа. Например  4 2 2= + , 6 3 3= + , 8 3 5= + , 
10 3 7= + , 12 5 7= + , 14 3 11 7 7= + = + , …, 78 31 47= + , … Хипотезата е 
недоказана. До 2014 г. тя е потвърдена за всички числа до 184.10 . Това, което е 
известно още, е, че всяко четно число може да се представи като сума на шест 
прости числа, но от 6 до 2…..?	

Хипотеза на Жермен (Софи Жермен, 1776 – 1831, е френска математичка). 
Едно просто число се нарича просто число на Жермен, ако след удвояването му 
и прибавяне на 1 се получава отново просто число. Например 7 е просто число 
на Жермен, защото 7 2.3 1= +  и 3 е просто. 11 е също просто число на Жермен, 
защото 11 2.5 1= +  и 5 е просто. Друг пример е 59, защото 59 2.29 1= +  и 29 е 
просто число. Хипотезата е, че простите числа на Жермен са безброй много, което 
също е все още недоказано.

Хипотеза на Риман от 1859 г. (Бернхард Риман, 1826 – 1866, е немски мате-
матик, ученик на великия Карл Фридрих Гаус). Ето как изглежда т. нар. Риманова 

дзета функция: 
1 1 1( ) ...
1 2 3z z zzζ = + + + , където z x iy= +  е комплексно число. 

Тя се дефинира с горния ред на Дирихле, който е сходящ при 1x > . Функцията е 
аналитична и притежава аналитично продължение в цялата комплексна равнина с 
изключение на 1z = . Анулира се за всяко четно отрицателно цяло число, т.е. 

0 ( 2) ( 4) ( 6) ...ζ ζ ζ= − = − = − =

Всички тези нули се наричат тривиални нули. Доказано е, че останалите нули 
(наречени нетривиални) са разположени в ивицата 0 1x≤ ≤  симетрично относно 

т.нар. критична права линия 
1
2

x = . Хипотезата на Риман гласи, че всички нетри-

виални нули на Римановата дзета функция са разположени по тази права. Потвърж- 
даването на хипотезата ще изясни много неща около разпределението на прости-
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те числа. Връзката между Римановата взета функция и простите числа се дава с 

тъждеството на Ойлер  
1( )

1 z
p

z
p

ζ −=
−∏ , в което безкрайното произведение е 

взето по всички прости числа. Хипотезата на Риман е сред 7-те хипотези на XXI 
век, за решаването на всяка от които Институтът Клей е обявил награда от 1 млн. 
щ. долара (досега е доказана само хипотезата на Поанкаре).

Наскоро, на 26 декември 2017 г., бе обявено, че компютрите в Great Internet 
Mersenne Prime Search (GIMPS) (Голямото търсене в интернет на Мерсенови 
прости числа) в резултат на усилена работа са открили най-голямото известно 
досега просто число 77 232 9712 1− . Да се запише това число при основа 10, е не-
възможно, защото дължината му е с повече от 23 милиона цифри и компресиран, 
текстовият файл с неговия десетичен запис ще бъде с обем 10 мегабайта. Новото 
математическо „чудовище“ е открито от един от участниците в GIMPS – амери-
канския инженер Джонатан Пейс (р. 1968 г.). Предишното най-голямо просто чис-
ло е 74 207 2812 1− , което подобрява още по-предишния рекорд с близо 5 милиона 
цифри. Това пък математическо „чудовище“ е открито от американския професор 
(в пенсия) по компютърни науки Къртис Купър от Университета на Централен 
Мисури в гр. Варенсбург, щата Мисури, отново в рамките на проекта GIMPS. Този 
проект обединява доброволци, които получават безплатен софтуер за търсене на 
Мерсенови прости числа. Инициатор на проекта е американският компютърен 
специалист Джордж Уолтмен (р. 1957 г.). Числото 74 207 2812 1−  има 22 338 618 
цифри. Купър го открива на 17 септември 2015 г., но заради заразяване на соф-
туера той успява да направи анонса няколко месеца по-късно. Купър е автор и 
на по-предишното най-голямо просто число 57 885 1612 1− , за което съобщава през  
м. февруари 2013 г. Това число е с повече от 17 млн цифри. За всяко от двете пости-
жения Къртис Купър получава награда от GIMPS в размер на по 3000 щ. долара. 
От 2009 г. е актуална обявената от GIMPS награда от 100 000 щ. долара за онзи, 
който пръв намери просто число с поне 10 млн. цифри.

Събития като горните бяха доста чести преди. През първите 8 години на насто-
ящото хилядолетие рекордът е бил чупен седем пъти, но през последните 9 години 
са добавени само трима рекордьори. Всички прости числа по проекта GIMPS са 
Мерсенови прости числа, т.е. числа от вида 2p – 1, където p е също просто. Такива 
са например 531 2 1= −  и 7127 2 1= − . До днес са известни само 50 Мерсенови 
числа, като последните 16 са открити по проекта GIMPS. Числата се наричат така 
по името на френския математик и богослов Мерен Мерсен (1588 – 1648).

Най-новото просто число е толкова голямо, че бяха необходими шест дни, за да 
се провери, че то няма други делители освен себе си. Едва след проверката GIMPS 
обяви, че е открито най-голямото досега просто число, което е 50-ото известно до-
сега Мерсеново просто число. Мерсеновите прости числа вълнуват теоретиците, 
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защото те могат да се използват за генериране на т.нар. „съвършени числа“, т.е. 
такива, които са равни на сбора на всички свои собствени (т.е. без самото число) 
делители, включително и единицата. Съвършени числа са например 6 и 28, защо-
то 6 1 2 3= + +  и 28 1 2 4 7 14= + + + + . Следващите (подредени по големина) 
са 496, 8128, 33 550 336, 8 589 869 056 и т.н. В своите Елементи Евклид използва 
формулата 12 (2 1)n n− − , където 2 1n −  е просто, за пресмятане на първите чети-
ри съвършени числа. Така при 2n =  получаваме 1 22 (2 1) 2.3 6− = = , при 3n =  
имаме 2 32 (2 1) 4.7 28− = = , при 5n =  получаваме 4 52 (2 1) 16.31 496− = = , 
а при n = 7 имаме 6 72 (2 1) 64.127 8128− = = . Петото съвършено число е от-
крито преди 1461 г. неизвестно от кого, докато следващите две са постижения на 
италианския математик Пиетро Каталди (1548 – 1626) през 1588 г. Идва ред на 
Ойлер, който през 1722 г. открива осмото поред съвършено число. Деветото хро-
нологично, но не и по големина, е открито от френския математик Едуард Лукà  
(1842 – 1891) през 1876 г. Лукà открива 12-ото по големина съвършено число. След 
него през 1883 г. руският свещеник и математик Иван Первушин (1827 – 1900) от-
крива деветото по големина, а десетото и единадесетото по големина са открити от 
американския математик аматьор Ралф Пауърс (1875 – 1952) съответно през 1911 г. 
и 1914 г. (Powers, 1911).

Разбира се, за да бъде числото 2 1n −  просто, очевидно трябва и n да е 
просто. Да отбележим, че обратното не е вярно. Така числото 11 е просто, но 

112 1 2047 23.89− = =  е съставно. През XVIII в. великият Леонард Ойлер доказ-
ва, че с помощта на формулата на Евклид се получават всички четни съвършени 
числа. По този начин Ойлер установява взаимно еднозначно съответствие между 
съвършените числа и Мерсеновите прости числа. Резултатът е известен в матема-
тиката като теорема на Евклид – Ойлер. След като до момента са познати 50 Мер-
сенови прости числа, то до момента са познати и 50 съвършени числа. Всички те 
са четни. Не е известно дали съществуват нечетни съвършени числа.

Някои биха запитали дали този стремеж към все по-големи числа не е само 
загуба на време и на огромна изчислителна мощност. Истината е, че търсенето на 
големи прости числа не е само математически еквивалент на изкачването на все 
по-високи планини. То (но не само то) тласка компютрите и развитието на софт-
уера до достигане границите на възможностите на техниката. Освен това търсено-
то стимулира съпътстващи дейности по същия начин, както например космиче-
ската надпревара доведе до създаването на нови технологии. Нещо повече, както 
вече беше отбелязано, изучаването на простите числа е важно за криптографията, 
а откриването на големи прости числа подпомага тестването на теориите за тяхно-
то разпределение, което един ден, без съмнение, ще се окаже полезно.
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