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ХОМОТЕТИЧНИ КОНИЧНИ СЕЧЕНИЯ 
В РАВНИНАТА НА ТРИЪГЪЛНИК

1Сава Гроздев, 2Веселин Ненков
1Българска академия на науките

2Технически колеж - Ловеч

Резюме. В настоящата статия е описан един начин за обединяване на коничните 
сечения в равнината на даден триъгълник в класове от хомотетични криви. Тези 
класове се определят от описаните за триъгълника конични сечения.

Keywords: triangle, homothety, conic, pole, polar

Всяко конично сечение, описано около фиксиран DABC, притежава характер-
ни афинни и метрични параметри, по които то се различава от всички останали 
описани конични сечения за DABC. Оказва се освен това, че всяко такова конично 
сечение определя цял клас от конични сечения в равнината на DABC с хомотетич-
ни свойства. В следващите редове ще опишем аналитично тези класове, като за 
целта ще използваме барицентрични координати спрямо DABC с A(1,0,0), B(0,1,0) 
и C(0,0,1).

Нека k̀ (O) е описано около DABC конично сечение с център O(x0,y0,z0). Ако 
k (O) е елипса или хипербола, то x0+y0+z0= 1, а ако е парабола, имаме x0+y0+z0= 0. 
Точките от кривата k̀ (O) се описват с уравнението:

(1) ( ) :k O ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0x y z x yz x y z y zx x y z z xy− + + + − + + + − = .
Разглеждаме крива от втора степен c  в равнината на DABC, която е определена 

със следното уравнение:
(2) :c ( )( )23 31 12 11 22 33 0a yz a zx a xy a x a y a z x y z+ + + + + + + = ,

където aij (i,j = 1,2,3) са реални числа. По-нататък, в няколко етапа ще опишем при 
какви условия кривата c е хомотетична на k (O) и ще се спрем на някои свойства 
на k (O) и c, свързани с тяхната хомотетичност.

1. Уравнение на крива, хомотетична на k (O). Ако c е хомотетична на k (O), 
двете криви имат едни и същи безкрайни точки. Те са общите решения на урав-
ненията  (1), (2) и уравнението на безкрайната права x + j + z = 0. Следователно 
безкрайните точки, принадлежащи на кривата c, са решения на уравнението 
a31x2 + (a23 + a31 - a12) xy + a23y2 = 0, а тези на k (O) са решения на уравнението
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( ) ( )( ) ( )2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x y z y x x y z x y z xy x y z x y− + + − + + − + + − + + = .

Последните уравнения имат едни и същи решения тогава и само тогава, ко-
гато са изпълнени равенствата ( )23 0 0 0 0.a k x y z x= − + + , ( )31 0 0 0 0.a k x y z y= − +  и 

( )12 0 0 0 0.a k x y z z= + − , където k е различно от нула реално число. Така показахме, 
че когато c и k (O) са хомотетични, кривата c може да се представи с уравнение 
от вида:

(3)     :c
( ) ( ) ( )

( )( )
0 0 0 0 0 0 0 0 0 0 0 0

11 22 33

.

0.

k x y z x yz x y z y zx x y z z xy

a x a y a z x y z

− + + + − + + + − +  
+ + + + + =

Обратно, ако кривата c се представя с уравнение (3), тя има същите безкрайни 
точки като k (O). Следователно видът на c съвпада с вида на  k (O). Оттук обаче 
не следва, че двете криви са хомотетични. Последното може да се забележи по 
следния начин. Нека c е хипербола, която лежи в ъгъл a, определен от асимптотите 
на c. Ако c е хомотетична на  k (O), а c  е хипербола, която има същите асимптоти 
като c, но лежи в ъгъла, допълнителен на a, то за c  са в сила проведените по-горе 
разсъждения за криви с общи безкрайни точки. Следователно хиперболата c  също 
може да се представи с уравнение от вида (3), но тя не е хомотетична на  k (O). 
По-нататък кривите от този вид ще включим в специален клас хомотетични криви, 
определени от  k (O).

2. Център на крива c, определена с уравнение (3). Ако k (O) е парабола, както 
беше отбелязано, кривата c с уравнение (3) има същата безкрайна точка като k (O). 
Тъй като в този случай безкрайната точка е център, то параболата c има за център 
безкрайната точка ( )0 0 0, ,O x y z  ( )0 0 0 0x y z+ + = . По-нататък ще определим коор-
динатите на центъра на кривата c , когато тя е елипса или хипербола. За целта от 
барицентрични координати спрямо DABC ще преминем към афинни координати 
спрямо координатна система с център O и координатни вектори CA



 и CB


.
Нека W е произволна точка в пространството, а ( )1 1 1 1, ,e a b ɣ



 и ( )2 2 2 2, ,e a b ɣ


 
( )0; 1,2i i i ia b ɣ+ + = =  са неколинеарни вектори. За произволна точка ( ), ,P x y z
( )1x y z+ + =  от равнината на DABC са изпълнени равенствата P xOA yOB zOCΩ = + +

   

 
и 

1 2OP P O X e Y e= Ω − Ω = +
     , където (X,Y) са координатите на P спрямо афинната коор-

динатна система 1 2Oe e


. От последното равенство получаваме 1 2P O X e Y eΩ = Ω + +
   

 . 
Сега,  като използваме,  че  

0 0 0O x OA y OB z OCΩ = + +
    ,  

1 1 1 1e OA OB OCa b ɣ= + +
     и 

2 2 2 2e OA OB OCa b ɣ= + +
    , намираме формулите, свързващи барицентричните коор-
динати (x, y, z) с афинните (X, Y) във вида
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(4)            0 1 2x x X Ya a= + + , 0 1 2y y X Yb b= + + , 0 1 2z z X Yɣ ɣ= + + .

От (4) при ( )1 1,0, 1e CA= −
 

 и ( )2 1, 1,0e CB= −
 

 получаваме равенствата

(5)                           0x x X Y= + + , 0y y Y= − , 0z z X= − .
Нека κ  е произволна крива от втора степен в равнината на DABC, представена 

с уравнението
(6)                 :κ 2 2 2

11 22 33 23 13 122 2 2 0a x a y a z a yz a zx a xy+ + + + + = .
След заместване на (5) в (6) определяме афинното уравнение на произволна 

крива κ  във вида

(7)     :κ  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2
11 33 13 11 12 23 13 11 22 12

11 13 0 12 23 0 13 33 0

11 12 0 12 22 0 13 23 0

2 2 2
11 0 22 0 33 0 23 0 0 13 0 0 12 0 0

2 2 2

2

2

2 2 2 0.

a a a X a a a a XY a a a Y

a a x a a y a a z X

a a x a a y a a z Y

a x a y a z a y z a z x a x y

+ − + − + − + + − +

+ − + − + − +  
+ − + − + − +  
+ + + + + + =

След прилагане на (7) за кривите k (O) и c, представени с уравненията (1)  и 
(3), получаваме съответните им афинни уравнения

(8)    ( ) :k O ( ) ( )( ) ( )2 2
0 0 0 0 0 0 0 0 01 2 1 2 1 2 1 2 0y y X y z XY z z Y x y z− + − − + − − = ,

(9)     :c ( ) ( )( ) ( )
( ) ( ) ( )

2 2
0 0 0 0 0 0

33 11 22 11 0 0 0 11 0 22 0 33 0

1 2 1 2 1 2 1 2

0.

k y y X k y z XY k z z Y

a a X a a Y kx y z a x a y a z

− + − − + − +

+ − + − − + + + =

Сега, според аналитичната геометрия (Мартинов, 1989) центърът на крива с 
уравнение (9) се определя от системата уравнения

( ) ( )( )
( )( ) ( )

0 0 0 0 33 11

0 0 0 0 22 11

2 1 2 1 2 1 2 0,

1 2 1 2 2 1 2 0.

k y y X k y z Y a a

k y z X k z z Y a a

− + − − + − =

− − + − + − =

Тази система има следните решения:
( ) ( )

( )( )
11 0 22 0 33 0

0
0 0

1 2 1 2 2
1 2 1 2

a x a y a z
X

k x y
− + − −

= −
− −

, ( ) ( )
( )( )

11 0 22 0 33 0
0

0 0

1 2 2 1 2
1 2 1 2

a x a y a z
Y

k z x
− − + −

= −
− −

.

Ако ( )1 1 11 , ,O O OO x y z  е центърът на кривата c, след заместване на последните 
равенства в (5) намираме координатите на O1 чрез формулите
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(10)                     

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

1

1

1

11 0 22 0 33 0
0

0 0

11 0 22 0 33 0
0

0 0

11 0 22 0 33 0
0

0 0

2 1 2 1 2
,

1 2 1 2

1 2 2 1 2
,

1 2 1 2

1 2 1 2 2
.

1 2 1 2

O

O

O

a x a y a z
x x

k y z

a x a y a z
y y

k z x

a x a y a z
z z

k x y

− + − + −
= −

− −

− − + −
= −

− −

− + − −
= −

− −

3. Радикална ос на кривите k (O) и c. От уравненията (1) и (3) се вижда, че 
ако кривите k (O) и c имат общи крайни точки, тези точки лежат върху права r  с 
уравнение

(11)    11 22 33: 0r a x a y a z+ + = .
Следователно, изпълнено е следното
Твърдение 1. Кривите k (O) и c имат най-много две общи крайни точки.
Правата r съществува независимо от това, дали k (O) и c имат, или нямат общи 

точки. Оказва се, че правата r притежава редица свойства, които има радикалната ос 
на две окръжности. Затова правата r ще наричаме радикална ос на кривите k (O) и c. 

Преминаваме към описване на някои свойства на радикалната ос r. Нека 

кривите k  (O) и c се пресичат в точки ( )1 1 11 , ,M M MM x y z  и ( )2 2 22 , ,M M MM x y z , а 

1 2 1 2 1 2, ,
2 2 2

M M M M M M
M M M

x x y y z z
M x y z

+ + + 
= = =  

 е средата на отсечката M1M2. След 

елиминиране на неизвестите y и z от системата уравнения, образувана от (1), (11)  
и x + y + z = 1, получаваме квадратното уравнение

( )( ) ( ){ ( )( )
( ) ( ) } ( )

2
22 33 0 0 0 0 0 0 0 0 0 0 11 22 33 0 0 0 0

2 2
22 0 0 0 0 33 0 0 0 0 22 33 0 0 0 0 0,

x a a x y z x y z x y z x a a a x y z x

a x y z y a x y z z x a a x y z x

τ − − + + − − − + + + + − + + −  

− − + − + − − − + + =
където

(12)     
( )( ) ( )( )

( )( ) ( )
( ) ( )

22 33 0 0 0 0 0 0 33 11 0 0 0 0 0 0

2
11 22 0 0 0 0 0 0 11 0 0 0 0

2 2
22 0 0 0 0 33 0 0 0 0.

a a x y z x y z a a x y z x y z

a a x y z x y z a x y z x

a x y z y a x y z z

τ = − + + − + + − − + + +

+ − + + − + − − + + −

− − + − + −

От формулата на Виет за сумата от корените на това уравнение следва равен-
ството

(13)

 

( )( ) ( )

( )( ) ( ) ( )

22 33 0 0 0 0 0 0 0 0 0 0

2 2
11 22 33 0 0 0 0 22 0 0 0 0 33 0 0 0 0

2

.
2

M

a a x y z x y z x y z x
x

a a a x y z x a x y z y a x y z z
τ

τ

− + + − − − + +  = +

+ − + + − − + − + −
+



143

Хомотетични конични сечения...

Аналогично за другите две координати на M  получаваме формулите

(14)   

( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )

( )( ) ( ) ( )

33 11 0 0 0 0 0 0 0 0 0 0

2 2
22 33 11 0 0 0 0 33 0 0 0 0 11 0 0 0 0

11 22 0 0 0 0 0 0 0 0 0 0

2 2
33 11 22 0 0 0 0 11 0 0 0 0 22 0 0 0 0

2

,
2

2

.
2

M

M

a a x y z x y z x y z y
y

a a a x y z y a x y z z a x y z x

a a x y z x y z x y z z
z

a a a x y z z a x y z x a x y z y

τ

τ

τ

τ

+ − − + + − − +  = +

+ − + − + − − − + +
+

− + + − + − + −  = +

+ + − − − + + − − +
+

Трябва да се отбележи, че точката M от радикалната ос r съществува независимо 
от съществуването на точките M1 и M2. Освен това, след несложни пресмятания 

от (10), (12), (13) и (14) се вижда, че е изпълнено равенството 
1 1 1

0 0 0

0O O O

M M M

x y z
x y z

x y z

=

 

. 

Това означава, че когато k (O) и c са елипси или хиперболи, точките O, O1 и M 
лежат на една права. От друга страна, ако кривите k (O) и c  са параболи, то O1 ºO, 
което по тривиални причини също означава, че O, O1 и M лежат на една права. 
Така получихме следното:

Твърдение 2. Централата OO1 на k (O) и c пресича радикалната им ос r в 
точката M (Фиг. 1, 2, 3, 4).

От това твърдение непосредствено се получават следствията:
Следствие 1. Ако кривите k (O) и c имат две крайни общи точки M1 и M2, 

средата M на отсечката M1M2 лежи върху централата на двете криви.
Следствие 2. Ако кривите k (O) и c имат крайна допирна точка M, радикалната 

ос r на двете криви е тяхна обща допирателна в точката M.
От следствия 1 и 2 се вижда, че когато кривите k (O) и c имат поне една обща 

крайна точка, радикалната ос r е спрегната с OO1 както спрямо k (O), така и спрямо 
c. Затова възниква въпросът дали r има същото свойство и в случая, когато k (O) 
и c нямат общи крайни точки. В случая с параболи безкрайната точка (център) 

( )0 0 0, ,O x y z  ( )0 0 0 0x y z+ + =  определя общо особено направление спрямо k (O) 
и c, което е спрегнато с всяко направление в равнината на DABC, а следователно 
и с радикалната ос r (Мартинов, 1989). По-интересният случай, когато k (O) и c 
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са елипси или хиперболи, се изследва по следния начин. От аналитичната геоме-
трия е известно, че векторите ( ),u a b′ ′ ′



 и ( ),u a b′′ ′′ ′′


 (координатите са афинни) са 
спрегнати спрямо кривата κ , представена с афинното уравнение

(15)                :κ 2 2
11 12 22 13 23 332 2 2 0a X a XY a Y a X a Y a+ + + + + = ,

когато скаларната функция ( ) ( )11 12 22,u u a a aκ a a a b a b b b′ ′′ ′ ′′ ′ ′′ ′′ ′ ′ ′′Φ = + + +
 

 на вектор-
ните аргументи u′



 и u′′


 има стойност, равна на нула (Мартинов, 1989). Сега от (5) 
и (10) лесно се забелязва, че векторът

( ) ( ) ( ) ( ) ( ) ( )( )0 11 0 22 0 33 0 0 11 0 22 0 33 01 2 1 2 1 2 2 , 1 2 1 2 2 1 2u z a x a y a z y a x a y a z′ − − + − − − − − + −      


е колинеарен с централата OO1. След това отново от (5) намираме, че афинното 
уравнение на радикалната ос r е следното:

(16)           ( ) ( )11 33 11 22 11 0 22 0 33 0: 0r a a X a a Y a x a y a z− + − + + + = .

Следователно векторът ( )22 11 11 33,u a a a a′′ − −


 е колинеарен с правата r. Накрая, 
от (8) и (9) намираме ( ) ( ) ( ), , 0ck O u u u u′ ′′ ′ ′′Φ = Φ =

   

. Така получаваме следното:
Твърдение 3. Централата OO1 и радикалната ос r са спрегнати прави както 

спрямо k (O), така и спрямо c.
Следващото свойство на радикалната ос r на кривите k (O) и c е свързано с 

полярите на нейните точки. Затова ще определим уравнението на полярата на 

( )12 , ( )13 и ( )14 се вижда, че е изпълнено равенството 
1 1 1

0 0 0

0O O O

M M M

x y z
x y z

x y z

= . Това означава, 

че когато ( )k O и c са елипси или хиперболи, точките O , 1O и M лежат на една права. 

От друга страна, ако кривите ( )k O и c са параболи, то 1O O≡ , което по тривиални 

причини също означава, че O , 1O и M лежат на една права. Така получихме следното:

Твърдение 2. Централата 1OO на ( )k O и c пресича радикалната им ос r в 
точката M (Фиг. 1, 2, 3, 4).

От това твърдение непосредствено се получават следствията:
Следствие 1. Ако кривите ( )k O и c имат две крайни общи точки 1M и 2M ,

средата M на отсечката 1 2M M лежи върху централата на двете криви.

Следствие 2. Ако кривите ( )k O и c имат крайна допирна точка M ,
радикалната ос r на двете криви е тяхна обща допирателна в точката M .

От следствия 1 и 2 се вижда, че когато кривите ( )k O и c имат поне една обща 
крайна точка, радикалната ос r е спрегната с 1OO както спрямо ( )k O , така и спрямо c .

Затова възниква въпросът дали r има същото свойство и в случая, когато ( )k O и c
нямат общи крайни точки. В случая с параболи безкрайната точка (център) ( )0 0 0, ,O x y z

( )0 0 0 0x y z+ + = определя общо особено направление спрямо ( )k O и c , което е 

спрегнато с всяко направление в равнината на ABC∆ , а следователно и с радикалната ос r
(Мартинов, 1989). По-интересният случай, когато ( )k O и c са елипси или хиперболи, се 

Фиг. 1
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произволна точка ( ), ,P x y z  спрямо крива k с уравнение (6) в равнината на DABC. 
От аналитичната геометрия (Станилов, 1979) е известно, че полярата p на точка 

( ),P X Y  спрямо крива с уравнение (15) се определя с уравнението

(17)      ( ) ( )11 12 13 12 22 23 13 23 33: 0p a X a Y a X a X a Y a Y a X a Y a+ + + + + + + + = .

От (5), (7) и (17) получаваме, че полярата p на ( ), ,P x y z  спрямо k в барицен-
трични координати има следното уравнение

(18)    ( ) ( ) ( )11 12 13 12 22 23 13 23 33 0a x a y a z x a x a y a z y a x a y a z z+ + + + + + + + = .

Сега от (18), (8) и (9) намираме полярите pk и pc на произволна точка ( ), , ,P x y z  
съответно спрямо k (O) и c във вида:

(19) :kp
( ) ( ) ( ) ( )

( ) ( )
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.

x y z z y x y z y z x x y z x z x y z z x y

x y z y x x y z x y z

+ − + − + + − + + + + − +      
+ − + + − + + =  

(20)  :cp
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

11 11 22 0 0 0 0 11 33 0 0 0

22 11 0 0 0 0 22 22 33 0 0 0 0

33 11 0 0 0 0 33 22 0 0 0 0 33

2

2

2 0.

a x a a k x y z z y a a k x y z z x

a a k x y z z x a y a a k x y z x z y

a a k x y z y x a a k x y z x y a z z

+ + + + − + + + − + +      

+ + + + − + + + + − + + +      

+ + + − + + + + − + + + =      

изследва по следния начин. От аналитичната геометрия е известно, че векторите ( ),u α β′ ′ ′


и ( ),u α β′′ ′′ ′′


(координатите са афинни) са спрегнати спрямо кривата κ , представена с
афинното уравнение
( )15 :κ 2 2

11 12 22 13 23 332 2 2 0a X a XY a Y a X a Y a+ + + + + = ,

когато скаларната функция ( ) ( )11 12 22,u u a a aκ α α α β α β β β′ ′′ ′ ′′ ′ ′′ ′′ ′ ′ ′′Φ = + + +
 

на векторните 

аргументи u′


и u′′


има стойност, равна на нула (Мартинов, 1989). Сега от ( )5 и ( )10
лесно се забелязва, че векторът

( ) ( ) ( ) ( ) ( ) ( )( )0 11 0 22 0 33 0 0 11 0 22 0 33 01 2 1 2 1 2 2 , 1 2 1 2 2 1 2u z a x a y a z y a x a y a z′ − − + − − − − − + −      


е колинеарен с централата 1OO . След това отново от ( )5 намираме, че афинното 
уравнение на радикалната ос r е следното:
( )16 ( ) ( )11 33 11 22 11 0 22 0 33 0: 0r a a X a a Y a x a y a z− + − + + + = .

Следователно векторът ( )22 11 11 33,u a a a a′′ − −


е колинеарен с правата r . Накрая, от ( )8 и 

( )9 намираме ( ) ( ) ( ), , 0ck O u u u u′ ′′ ′ ′′Φ = Φ =
   

. Така получаваме следното:

Твърдение 3. Централата 1OO и радикалната ос r са спрегнати прави както 

спрямо ( )k O , така и спрямо c .

Следващото свойство на радикалната ос r на кривите ( )k O и c е свързано с 
полярите на нейните точки. Затова ще определим уравнението на полярата на произволна 
точка ( ), ,P x y z спрямо крива κ с уравнение ( )6 в равнината на ABC∆ . От аналитичната 

Фиг. 2
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Ако ( ), ,P x y z r∈ , то от (11) следва, че е изпълнено равенството 11 22 33 0a x a y a z+ + =  . 
Оттук и от (20) намираме, че полярата pc  на P спрямо c има следното уравнение

(21) :cp
( ) ( )
( ) ( )
( ) ( )

11 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0.

a k x y z z y k x y z z x

a k x y z x z k x y z z x y

a k x y z y x k x y z x y z

+ + − + − + +  
+ + − + + + + − +  
+ + − + + − + + =  

Като умножим (19) с -k и съберем с (21), получаваме равенството 

11 22 33 0a x a y a z+ + = , което е уравнението (11) на правата r. Следователно поля-
рите pk и pc се пресичат върху r. Така доказахме следното:

Твърдение 4. Полярите pk и pc на произволна точка P от радикалната ос r на 
кривите k (O) и c се пресичат в точка от r.

По-нататък е интересно да намерим полюсите на радикалната ос r  на кривите 
k (O) и c спрямо всяка от двете криви. Преди това ще намерим координатите на 
полюса ( ), ,P x y z  на произволна права : 0l ux vy wz+ + =  спрямо произволна крива 
k, определена с уравнението (6). За да намерим полюса на l, ще потърсим поля-
рите на две точки от l. Както е известно, те се пресичат в полюса P на l (Матеев, 

1979). Нека l пресича правите BC и CA съответно в точките 0, ,a
w vP

w v v w
 
 − − 

 и 

,0,b
w uP

w u u w
 
 − − 

. От (18) намираме полярите pa и pb , съответно на точките Pa и 

Pb, във вида

:ap ( ) ( ) ( )12 13 22 23 23 33 0a w a v x a w a v y a w a v z− + − + − = ,

:bp ( ) ( ) ( )11 13 12 23 13 33 0a w a u x a w a u y a w a u z− + − + − = .

След това решаваме системата уравнения, образувана от последните две 
уравнения и равенството x + y + z = 1. Така получаваме координатите на полюса 

( ), ,P x y z  във вида:

(22) 	

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
23 22 33 12 33 13 23 22 13 12 23

2
12 33 13 23 13 11 33 11 23 12 13

2
13 22 12 23 23 11 12 13 33 11 22

,

,

,

a a a u a a a a v a a a a w
x

a a a a u a a a v a a a a w
y

a a a a u a a a a v a a a w
z

− + − + −
=

∆
− + − + −

=
∆

− + − + −
=

∆
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където 

(24)                      
( )
( )
( )

23 23 12 13 12 33 13 22 22 33

13 13 12 23 12 33 23 11 33 11

12 12 23 13 23 11 13 22 11 22 .

a a a a a a a a a a u

a a a a a a a a a a v

a a a a a a a a a a w

∆ = − − + + − +  
+ − − + + − +  
+ − − + + −  

Нека ( ), ,
k k kk P P PP x y z  и ( ), ,

c c cc P P PP x y z  са полюсите на r съответно спрямо k (O) 
и c. От (24), (1) и (3) за координатите на тези точки намираме формулите

(25)

( ) ( ) ( ) ( )
( )( )( )( )

( ) ( ) ( ) ( )
( )( )( )

0 0 0 0 11 0 0 0 0 22 0 0 0 0 33 0 0 0 0

0 0 0 0 0 0 0 0 0 11 0 22 0 33 0

0 0 0 0 11 0 0 0 0 22 0 0 0 0 33 0 0 0 0

0 0 0 0 0 0 0 0 0 11 0 22

,
k

k

P

P

x y z x a x y z x a x y z y a x y z z
x

x y z x y z x y z a x a y a z

x y z y a x y z x a x y z y a x y z z
y

x y z x y z x y z a x a y

− + + − − + + + − + + + −  =
− + + − + + − + +

− + − + + − − + + + −  =
− + + − + + − +( )

( ) ( ) ( ) ( )
( )( )( )( )

0 33 0

0 0 0 0 11 0 0 0 0 22 0 0 0 0 33 0 0 0 0

0 0 0 0 0 0 0 0 0 11 0 22 0 33 0

,

,
kP

a z

x y z z a x y z x a x y z y a x y z z
z

x y z x y z x y z a x a y a z

+

+ − − + + + − + − + −  =
− + + − + + − + +

(26)

( ) ( ) ( ){
( ) ( )( )

( )( ) ( )( ) }
( ) ( ) ( )

11 0 0 0 0 22 0 0 0 0 33 0 0 0 0

0 0 0 0 11 22 11 33 22 33 0 0 0 0

22 22 33 0 0 0 0 33 33 22 0 0 0 0

11 0 0 0 0 22 0 0 0 0 33 0 0 0 0

1

2

,

1

c

c

P
c

P
c

x k a x y z x a x y z y a x y z z

x y z x a a a a a a x y z x

a a a x y z y a a a x y z z

y k a x y z x a x y z y a x y z z

= − − + + + − + + + − ×  ∆

× − + + + − + − − + + +
+ − − + + − + − 

= − + + − − + + + −
∆ {

( ) ( )( )
( )( ) ( )( ) }

( ) ( ) ( ){
( ) ( )( ) ( )

0 0 0 0 11 11 33 0 0 0 0

22 11 22 33 11 33 0 0 0 0 33 33 11 0 0 0 0

11 0 0 0 0 22 0 0 0 0 33 0 0 0 0

0 0 0 0 11 11 22 0 0 0 0 22 22 11 0

2 ,

1
cP

c

x y z y a a a x y z x

a a a a a a x y z y a a a x y z z

z k a x y z x a x y z y a x y z z

x y z z a a a x y z x a a a x y

×  

× − + + − − + + −
− + − − + + − + − 

= − + + + − + − + − ×  ∆

× + − + − − + + + − −( )
( )( ) }

0 0 0

33 11 33 22 11 22 0 0 0 02 ,

z y

a a a a a a x y z z

+ +
− + − + − 

където

(27)     

( )( )( )( )
( )( ) ( )( )
( )( ) ( )

( ) ( )

0 0 0 0 0 0 0 0 0 11 0 22 0 33 0

22 33 0 0 0 0 0 0 33 11 0 0 0 0 0 0

2
11 22 0 0 0 0 0 0 11 0 0 0 0

2 2
22 0 0 0 0 33 0 0 0 0

2 2

2 2

2 2 .

c k x y z x y z x y z a x a y a z

a a x y z x y z a a x y z x y z

a a x y z x y z a x y z x

a x y z z a x y z z

∆ = − + + − + + − + + −

− − + + − − + − − + + −

− − + + − + + − + + +

+ − + + + −
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Като приравним съответните координати на Pk и Pc, от (25) и (26) получаваме, 
че Pk º Pс тогава и само тогава, когато е изпълнено равенството

(28) 
( )( ) ( )( )
( )( )

( ) ( ) ( )

22 33 0 0 0 0 0 0 0 0 33 11 0 0 0 0 0 0 0 0

11 22 0 0 0 0 0 0 0 0

2 2 22 2 2 2 2 2
11 0 0 0 0 22 0 0 0 0 33 0 0 0 0

2 2

2

.

a a x y z x y z y z a a x y z x y z z x

a a x y z x y z x y

a x y z x a x y z y a x y z z

− + + − + + − − + + +

+ − + + − + =

= − + + + − + + + −
От друга страна, равенството (28) е необходимо и достатъчно условие точките 

Pk и Pс да лежат на правата r. Следователно радикалната ос r има един и същ полюс 
спрямо k (O) и c само когато двете криви са допирателни. Оттук получаваме още:

Следствие 3. Кривите k (O) и c се допират тогава и само тогава, когато е 
изпълнено равенството (28).

4. Хомотетичност на централните криви с уравнение ( )3 . Нека кривата c има 

уравнение ( )3 и център ( )1 1 11 , ,O O OO x y z . Разглеждаме транслация с вектор 1OO


. Ако 

( )1 1 11 , ,P P PP x y z е точка от кривата c и ( ), ,P P PP x y z е съответната й точка от образа ( )c O

на c при разглежданата транслация, то е изпълнено равенството 1 1PP O O=
 

. Последното 

води до формулите: 
1 1 0P P Ox x x x= + − ,

1 1 0P P Oy y y y= + − ,
1 1 0P P Oz z z z= + − . След заместване 

на тези равенства в ( )3 получаваме, че произволна точка ( ), ,P P PP x x y y z z≡ ≡ ≡

( )1x y z+ + = от ( )c O удовлетворява уравнението

( )29 ( ) :c O

( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( ) ( )

1 1

1 1

1 1

1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

11 0 22 0 33 0

.

0.

O O

O O

O O

O O O

k x y z x y y y z z z

x y z y z z z x x x

x y z z x x x y y y

a x x x a y y y a z z z

− + + + − + − +
+ − + + − + − +

+ + − + − + − +
+ + − + + − + + − =

Нека сега l е права през O с направляващ вектор ( ), ,l α β ɣ


( )0α β ɣ+ + = .
Правата l има следните параметрични уравнения:
( )30 0x x tα= + , 0y y tβ= + , 0z z tɣ= + .

След заместване на ( )30 в ( )29 намираме, че общите точки (ако съществуват) на l и 
( )c O се получават при стойности на параметъра ct t= , за които е изпълнено равенството

Фиг. 3

4. Хомотетичност на централните криви с уравнение (3). Нека кривата 
c има уравнение (3) и център ( )1 1 11 , ,O O OO x y z . Разглеждаме транслация с вектор 

1OO


 . Ако ( )1 1 11 , ,P P PP x y z  е точка от кривата c и ( ), ,P P PP x y z  е съответната й точка 
от образа ( )c O  на c при разглежданата транслация, то е изпълнено равенството 

1 1PP O O=
 

. Последното води до формулите: 
1 1 0P P Ox x x x= + − , 

1 1 0P P Oy y y y= + − , 

1 1 0P P Oz z z z= + − . След заместване на тези равенства в (3) получаваме, че произволна 
точка ( ), ,P P PP x x y y z z≡ ≡ ≡ ( )1x y z+ + =  от ( )c O  удовлетворява уравнението
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(29) ( ) :c O

 

( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( ) ( )

1 1

1 1

1 1

1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

11 0 22 0 33 0

.

0.

O O

O O

O O

O O O

k x y z x y y y z z z

x y z y z z z x x x

x y z z x x x y y y

a x x x a y y y a z z z

− + + + − + − +
+ − + + − + − +

+ + − + − + − +
+ + − + + − + + − =

Нека сега l е права през O с направляващ вектор ( ), ,l a b ɣ


 ( )0a b ɣ+ + = . Правата 
l има следните параметрични уравнения:

(30)                              0x x ta= + , 0y y tb= + , 0z z tɣ= + .
След заместване на (30) в (29) намираме, че общите точки (ако съществуват) на 

l и ( )c O  се получават при стойности на параметъра ct t= , за които е изпълнено 
равенството

(31)       
( ) ( ) ( )

( ) ( ) ( )
1 1 1 1 1 1

1 1 1

2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

11 22 33

.

.

0.

c

O O O O O O

O O O

k x y z x x y z y x y z z t

k x y z x y z x y z y z x x y z z x y

a x a y a z

bɣ ɣa ab− + + + − + + + − +  
+ − + + + − + + + − +  
+ + + =

По-нататък заместваме равенствата (10) в (31) и след несложни преобразувания 
получаваме

(32)   

( )( )( )
( ) ( ) ( )

( )( )( )
( )( )( )( )

2
0 0 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 11 0 22 0 33 0 0,

c

k x y z x y z x y z

x y z x x y z y x y z z t

k x y z x y z x y z x y z

kx y z x y z x y z x y z a x a y a z

bɣ ɣa ab

τ

− + + − + + − ×

× − + + + − + + + − +  
+ − + + − + + − +

+ − + + − + + − + + − =

където t се изразява с равенството (12).
По отношение на общите точки (когато съществуват) на l и k (O) от (1) и (30)  

намираме, че стойностите на t = tk, при които се получават тези точки, удовлет-
воряват равенството

(33) ( ) ( ) ( ) 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0kx y z x x y z y x y z z t x y zbɣ ɣa ab− + + + − + + + − + =   .

От (32) и (33) се вижда, че отношението

(34)     
( )( )( )

( )( )( )
( )( )( )( )

2

2 2
0 0 0 0 0 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 11 0 22 0 33 0

1c

k

th
t k x y z x y z x y z x y z

k x y z x y z x y z x y z

k x y z x y z x y z a x a y a z τ

= = ×
− + + − + + −

× − + + − + + − +
+ − + + − + + − + + − 
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не зависи от направлението на вектора l


. Нека правата l пресича k (O) в точките 
M ′  и M ′′ , а ( )c O  – в точките N ′  и N ′′ . От (30) лесно следва, че са изпълнени 
равенствата:

2 2 2 2

2 2 2 2
ON ON ON ON h
OM OM OM OM

′ ′′ ′ ′′
= = = =

′ ′′ ′′ ′
.

Тези равенства означават, че кривата ( )c O  се получава от ( )k O  при хомотетии 
с център O и коефициенти h  и h− . Така получаваме следните твърдения:

Твърдение 5. Ако кривите ( )k O  и c  са елипси, те са хомотетични (Фиг. 1).
Твърдение 6. Ако кривите ( )Ok  и ( )c O  са хиперболи, лежащи в един и същ ъгъл, 

определен от общите им асимптоти, то хиперболите k (O) и c са хомотетични 
(Фиг. 2).

Нека ( )k O  и ( )c O  са хиперболи, които са разположени в различните ъгли, 
образувани от общите им асимптоти. Тогава никоя от правите l не пресича едно-
временно ( )k O  и ( )c O , поради което числото h е отрицателно. Хиперболата ( )k O  , 
която има следното уравнение:

( ) :k O ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 01 2 1 2 1 2 2 0x x yz y y zx z z xy x y z x y z− + − + − − + + = ,
е спрегната с ( )k O  (Моденов, 1969). За ( )k O  равенството (33) се заменя със след-
ното

( )33′   ( ) ( ) ( ) 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0kx y z x x y z y x y z z t x y zbɣ ɣa ab− + + + − + + + − − =   .

От (32) и ( )33′  получаваме, че числото (-h) съвпада с дясната част на равен-
ството (34). Следователно хомотетиите с център O и коефициенти h  и h−  (h 
се пресмята по формулата (34)) преобразуват ( )k O  в хиперболата ( )c O . Следова-
телно хиперболата c  е хомотетична с хиперболата ( )k O , спрегната с ( )k O . Така 
получаваме следното:

Твърдение 7. Ако кривите ( )Ok  и ( )c O  са хиперболи, лежащи в различните 
ъгли, определени от общите им асимптоти, то c  е хомотетична с хиперболата 

( )k O , която е спрегната с ( )k O  (Фиг. 3).
Към хомотетичността, описана в твърдения 5 и 6, трябва да се добави и уточне-

нието, че кривите k (O) и c са хомотетични и в случаите, когато са еднакви. Кривите 
k (O) и c са еднакви по смисъла на твърдения 5 и 6, когато ( ) ( )c O k O≡ , т.е. когато  
h = 1. Следователно k (O) и c са еднакви, в случай че е изпълнено равенството

(35) ( )( )( )( )0 0 0 0 0 0 0 0 0 0 0 0 11 0 22 0 33 0kx y z x y z x y z x y z a x a y a z τ− + + − + + − + + = .
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Кривите ( )k O  и c  са еднакви по смисъла на твърдение 7, когато h = -1. Сле-
дователно хиперболите ( )k O  и c  са еднакви, в случай че

(36)     
( )( )( )

( )( )( )( )

2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 11 0 22 0 33 0

2

.

k x y z x y z x y z x y z

kx y z x y z x y z x y z a x a y a z τ
− + + − + + − +

+ − + + − + + − + + =

От твърдения 5, 6 и 7 следва, че при произволни реални стойности на констан-
тите k, a11, a22 и a3 уравнението (3) задава централна крива, която е хомотетична 
на k (O) или на нейната спрегната ( )k O  (в случай на хиперболи). Следователно, 
когато k (O) е елипса, всички криви в равнината на DABC, които имат уравнение 
(3), образуват клас от елипси, хомотетични на k (O). Когато k (O) е хипербола, 
всички криви в равнината на DABC, които имат уравнение (3), образуват два класа 
от хиперболи. Единият се състои от хиперболи, хомотетични с k (O), а другият – от 
хиперболи, хомотетични със спрегнатата на k (O) хипербола ( )k O .

5. Хомотетичност на параболите с уравнение ( )3 . Ако ( )k O и c са параболи, то 

0 0 0 0x y z+ + = . Затова уравненията им ( )1 и ( )3 се записват съответно във вида:

( )1′ ( ) :k O 2 2 2
0 0 0 0x yz y zx z xy+ + = ,

( )3′ :c ( ) ( )( )2 2 2
0 0 0 11 22 33. 0k x yz y zx z xy a x a y a z x y z+ + − + + + + = .

Изразът τ от ( )12 се представя във вида
( )12′ ( )2

11 0 22 0 33 02 a x a y a zτ = + + ,

а координатите ( )13 и ( )14 на точката M (която е среда на отсечката, определена от 
общите точки на параболите, когато те се пресичат) от радикалната ос r на ( )k O и c се 
представят с равенствата:

( )37

( )( ) ( )
( )

( )( ) ( )
( )

( )( )

22 0 33 0 11 0 22 0 33 0 0 22 33 0 33 11 0 11 22 0
2

11 0 22 0 33 0

33 0 11 0 11 0 22 0 33 0 0 22 33 0 33 11 0 11 22 0
2

11 0 22 0 33 0

11 0 22 0 11 0 22 0 33 0 0 22 33

,
2

,
2

M

M

M

a y a z a x a y a z x a a x a a y a a z
x

a x a y a z

a z a x a x a y a z y a a x a a y a a z
y

a x a y a z

a x a y a x a y a z z a a
z

+ + + + + +
=

+ +

+ + + + + +
=

+ +

+ + + +
= ( )

( )
0 33 11 0 11 22 0

2
11 0 22 0 33 0

.
2

x a a y a a z
a x a y a z

+ +
+ +

Най-естественият начин да се докаже, че параболите ( )k O и c са хомотетични, е 
този, при който могат да се определят центърът и коефициентът на хомотетията, която 
привежда едната крива в другата. Ако съществува хомотетия между параболите ( )k O и 
c , правата g , минаваща през точката M успоредно на вектора ( )0 0 0, ,x y z , пресича ( )k O

и c съответно в точки kT и cT , които са съответни при тази хомотетия. Затова ще търсим 

Фиг. 4

5. Хомотетичност на параболите с уравнение (3). Ако ( )k O  и c  са параболи, 
то 0 0 0 0x y z+ + = . Затова уравненията им (1) и (3) се записват съответно във вида:

( )1′                              ( ) :k O 2 2 2
0 0 0 0x yz y zx z xy+ + = ,

( )3′  :c ( ) ( )( )2 2 2
0 0 0 11 22 33. 0k x yz y zx z xy a x a y a z x y z+ + − + + + + = .
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Изразът t от (12) се представя във вида
( )12′                             ( )2

11 0 22 0 33 02 a x a y a zτ = + + ,
а координатите (13) и (14) на точката M (която е среда на отсечката, определена от 
общите точки на параболите, когато те се пресичат) от радикалната ос r на k (O) 
и c се представят с равенствата:

(37) 

( )( ) ( )
( )

( )( ) ( )
( )

( )( )

22 0 33 0 11 0 22 0 33 0 0 22 33 0 33 11 0 11 22 0
2

11 0 22 0 33 0

33 0 11 0 11 0 22 0 33 0 0 22 33 0 33 11 0 11 22 0
2

11 0 22 0 33 0

11 0 22 0 11 0 22 0 33 0 0 22 33

,
2

,
2

M

M

M

a y a z a x a y a z x a a x a a y a a z
x

a x a y a z

a z a x a x a y a z y a a x a a y a a z
y

a x a y a z

a x a y a x a y a z z a a
z

+ + + + + +
=

+ +

+ + + + + +
=

+ +

+ + + +
= ( )

( )
0 33 11 0 11 22 0

2
11 0 22 0 33 0

.
2

x a a y a a z
a x a y a z

+ +
+ +

Най-естественият начин да се докаже, че параболите k (O) и c са хомотетични, 
е този, при който могат да се определят центърът и коефициентът на хомотети-
ята, която привежда едната крива в другата. Ако съществува хомотетия между 
параболите k (O) и c , правата g, минаваща през точката M успоредно на вектора 
(x0, y0, z0), пресича k (O) и c съответно в точки Tk и Tc , които са съответни при тази 
хомотетия. Затова ще търсим центъра на хомотетия за параболите k (O) и c върху 
правата g. Тази права има следните параметрични уравнения:

(38)                    :g 0Mx x x t= + , 0My y y t= + , 0Mz z z t= + ,

където за xM, yM и zM са изпълнени равенствата (37).
За коефициента на хомотетията, изобразяваща параболата k (O) в c, можем 

да предполагаме, че се получава от коефициента на хомотетията, изобразя-
ваща централната крива k (O) в c при условието x0 + y0 + z0 = 0. Така от (34) 
получаваме, че предполагаемият коефициент на хомотетия се изразява по 
следния начин

(39)                            
0 0 0 11 0 22 0 33 0

0 0 0

2
2P

kx y z a x a y a zh
kx y z

+ + += .

След заместване на ( )38  в ( )1′  и ( )3′  (като се вземат предвид равенствата (37)), 
се вижда, че съответните стойности kt  и ct  на t , при които се получават коорди-
натите съответно на kT  и cT , се пресмятат по формулите:
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(40)         
( )

( )( )

2
0 0 0 11 0 22 0 33 0

2
0 0 0 11 0 22 0 33 0 11 0 22 0 33 0

,
4

2 ,
4 2

k

c

t
x y z a x a y a z

kt
x y z a x a y a z a x a y a z

ϑ

ϑ

=
+ +

=
+ + + + +

където

(41)         2 4 2 4 2 4 2 2 2 2 2 2
11 0 22 0 33 0 22 33 0 0 33 11 0 0 11 22 0 02 2 2a x a y a z a a y z a a z x a a x yϑ = + + − − − .

(Любопитно е да се отбележи, че равенствата (39) и (40) водят до зависимостта 
k

P
c

t h
t

= .)

Сега да разгледаме хомотетия с център H и коефициент hP (за който е изпълнено 
равенството (39)), която изобразява kT  в cT . Следователно е изпълнено векторното 
равенство c P kHT h HT=

 

, което води до координатното представяне на H във вида:

(42)                    0 0 0, ,
1 1 1M M M

P P P

m m mH x x y y z z
h h h

 + + + − − − 
,

където

(43) 
( )

( )( )
0 0 0 11 0 22 0 33 0

2 2 2
0 0 0 0 0 0 11 0 22 0 33 0 11 0 22 0 33 0

4
8 2c P k

kx y z a x a y a z
m t h t

kx y z kx y z a x a y a z a x a y a z
ϑ + + +

= − = −
+ + + + +

.

Нека сега ( ), ,N N NN x y z  ( )1N N Nx y z+ + =  е произволна точка от параболата 
( )k O , а ( ), ,N N NN x y z′ ′ ′′  е нейният образ при разглежданата хомотетия. От вектор-

ното равенство PHN h HN′ =
 

 и (42) намираме, че координатите на N ¢ зависят от 
координатите на N по следния начин:

(44) ( ) 01N P N P Mx h x h x mx′ = + − + ( ) 01N P N P My h y h y my′ = + − + , ( ) 01N P N P Mz h z h z mz′ = + − + .

След заместване на (44) в лявата страна на (3¢), като се вземат предвид равен-
ствата (37), (39),  (41) и  (43), се установява, че получената стойност е равна на 
нула. Следователно N ¢ е точка от параболата c. Така доказахме следното:

Твърдение 8. Ако кривите k (O) и c са параболи, те са хомотетични (Фиг. 4).
Към хомотетичността, описана в твърдение 8, трябва да се добави и уточнението, 

че считаме параболите k (O) и c за хомотетични и в случаите, когато са еднакви. Па-
раболите k (O) и c са еднакви, когато c се получава чрез транслация от k (O), т.е. при 
hP = 1. Според (39) последното условие е изпълнено точно когато е в сила равенството

(45)                                          11 0 22 0 33 0 0a x a y a z+ + = .
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Кривите k (O) и c са еднакви и в случая, когато са централно симетрични, т.е. 
при hP = -1. Според (39) последното условие е изпълнено точно когато е в сила 
равенството

(46)                                 0 0 0 11 0 22 0 33 04 0x y z a x a y a z+ + + = .
От твърдение 8 следва, че при произволни реални стойности на константите k, 

a11, a22 и a33 уравнението (3¢) задава парабола, която е хомотетична на предварително 
зададената описана парабола k (O). Следователно всички параболи в равнината 
на DABC, които имат уравнение (3¢), са хомотетични помежду си. Последното 
наблюдение означава още, че всички параболи в равнината, които имат успоредни 
оси, са хомотетични.

Накрая ще отбележим, че описаните идеи за изследване на разпределянето на 
коничните сечения от равнината на DABC в хомотетични класове позволяват за 
дадена описана крива k (O) при всеки избор на константите a11, a22, a33 и k да се 
построи съответната хомотетична на k (O) крива c .
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HOMOTHETIC CONICS IN THE PLANE OF A TRIANGLE

Abstract. The present paper considers a method for the classification of the conics 
in the plane of a triangle into classes of homothetic curves. The classes are determined 
by the circumscribed conics of the triangle. 
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