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Abstract. The aim of this research was to compute the number of microstates 
for 2p configuration 6n =  and 2,x =  for 2d  configuration 10n =  and 2x =  
and 2f  configuration 14n =  and 2x =  using vectors and the math function 
factorial as well as to describe in detail the microstates for 2p  configuration 

6n =  and 2x = . The following results were obtained: for 2p  configuration 
6n = and 2x = , 15N =  microstates; for 2d  configuration 10n =  and 2x = , 

microstates; for 2f  configuration 14n =  and 2x = , 91N =  microstates. It was 
established that the 15 microstates of the 2p  configuration. It was found that the 15 
microstates of the 2p  electron configuration belonged to three terms as followed: 
5 microstates corresponding to the 1D term; 9 microstates to the 3Р term and 1 
microstate to the 1S term. 
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Introduction
Linear algebra and analytical geometry theory and methods are increasingly 

applied in chemistry. The states of multi-electron atoms or ions in chemistry are 
described and classified by two schemes (Russell-Saunders (L-S) and j-j coupling 
schemes). Both use vectors and factorials.

Vectors
Definitions
A vector is a geometric object that has both magnitude (length) and direction.
The tail of the vector is the end opposite the arrow. It represents where the 

vector is moving from.
The head of the vector is the end with the arrow. It represents where the vector 

is moving to.
The zero vector is denoted

o . It has zero length and all the properties of 
zero.

New Approaches
Нови подходи
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Two vectors are equal is they have both the same magnitude and the same direction.
Two vectors are parallel if they have the same ( )or↑↑ ↑↓   or opposite ( )↑↓  

directions. That is, if the angles of the vectors are the same or 180⁰ different. 

Two vectors are perpendicular if the difference of the angles of the vectors is 
90⁰ or 270⁰ 1,2) (Gantert, 2016; Shriver & Atkins, 2002).

Magnitude of a vector
The magnitude of a vector  AB



 is the distance between the initial point  1 1( , )A x y  
and the end point  2 2( , )B x y . In symbols the magnitude of AB



 is written as  AB


.  
If the coordinates of the initial point and the end point of  a vector is given, 
the distance formula can be used to find its magnitude:

2 2
2 1 2 1( ) ( )AB x x y y= = − + −



v .

Let us remark that AB BA=
 

. The directions of the two vectors are opposite, 
but their magnitudes are the same1,2) (Gantert, 2016; Shiver & Atkins, 2002). 

Adding and subtracting of vectors
To add or subtract two vectors, add or subtract the corresponding components.
 Let 1 2,u u=

u   and 1 2,v v=
v  be two vectors. Then, the sum of u  and v  is 

the vector
1 2 1 2 1 1 2 2, , ,u u v v u v u v+ = + = + +

 u v .

The difference of u  and v  is 
1 1 2 2( ) ,u v u v− = + − = − −

   u v u v .

The sum of two or more vectors is called the resultant. The resultant of two vectors 
can be found using either the parallelogram method or the triangle method.

Factorial 
In mathematics, the factorial of a non-negative integer n , denoted by !n , is the 

product of all positive integers less than or equal to n , 

! 1.2 ( 2).( 1),n n n= − −  
0! 1! 1.= =  

The aim of this research was to calculate the number of microstates for  for  2p  
configuration 6n =  and 2x = , for 2d  configuration 10n =  and 2x =  and 2f  
configuration 14n =  and 2x =  using vectors and the math function factorial as 
well as to describe in detail the microstates for 2p configuration 6n =  and 2x = .
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Methodology
It is acknowledged that the movement of an electron in an atom could be 

represented by the orbital angular momentum. Similarly, the intrinsic motion 
of the electron is given by the spin angular momentum. Both angular momen-
ta should be presented by vectors which have length and direction. Vectors 
will be identified by letters, their projections with m  (for a single electron) or 
M  (for more than 1 electron), and lengths will be represented by m  and 
, respectively. For an electron with quantum numbers l and s, and orbital and 
spin angular momenta l



 and s , the total angular momentum describing both 
motions is a sum of vectors: j l s= +





  (Puri et al., 2002; Meena et al., 2011a; 
2011b; 2012; Kumar et al., 2012). Both vectors are in precession (rotation 
of an vector around an axis with only vectors’ initial point lying on the axis; 
the vector and the axis are under a specific angle). Due to this motion, both 
vectors described a cone each. The addition of l



 and s  could not be random. 
The angle between them remains constant in the course of precession. This re-
sults from the strict spatial orientation of both vectors. They could be oriented 
in a way such as their vector sum has strictly defined values of j



 projections. 
Also, the differences between these projections (h) should be integers3) (Mee-
na et al., 2013; 2014; Aggarwal & Keenan, 2014; Peters et al., 2014; Polinski 
et al., 2014; Thakral et al., 2014; Van den Heuvel et al., 2015). . 

The above mentioned is illustrated in Fig. 1 for an electron on р-АО.

 Fig. 1. Addition of vectors of orbital and spin angular momenta for 1l =


 and 
1 2s =



. Both circles represent the space quantization of the total angular mo-
mentum j



. The lengths of vectors are shown below the circles.
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 Fig. 2. Addition of vectors of  orbital angular momentum l


 and spin angular 
momentum s  for 1l =



 and 1s =


.

The total angular momentum j


 or J


 for one or more electrons, respectively is 
quantized in space in the same way, as shown on both figures.

Russell-Saunders coupling scheme: LS scheme
In the Russell-Saunders scheme, the spin and orbital angular momenta are 

always summed independently: 

1 2
1

,
N

N i
i

L l l l l
=

= + + + =∑
   



     1 2
1

N

N i
i

S s s s s
=

= + + + =∑


   

 .

Then the resulting two vectors L


 and S


 are combined to obtain the total angular 
momentum :J



 J L S= +
 

.

j-j coupling scheme
The combination of angular momenta of a multi-electron atom according to the 

j-j coupling scheme is done by combining each individual orbital to respective spin 
momentum i i ij l s= +





  and thereafter, the total angular momentum is obtained as the 
sum of individual total angular momenta:

1 2
1

 
N

N i
i

J j j j j
=

= + +…+ =∑


   

.

This order of combining is derived from the nature of the j-j scheme – each electron 
determines its own momentum, and then follow the combination of total individual 
angular momenta of all electrons.

The spin multiplicity is denoted with 2S + 1. It is added as a superscript to 
the left of the letter expressing the sum of orbital momenta (electron state). For 
example, the electron state derived from the electronic configuration 1s1  is:

21 2 0 2 1 2s l s S= = + = .

The symbol 2S (read as doublet es) is an electron term derived from the electronic 
configuration 1 s1 and including two microstates
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m 1 2 m 0;
m 1 2 m 0.

s l

s l

= =

= − =

The six microstates of the electronic configuration 2р1 аre:

m 1 2 m 1,0, 1;
m 1 2 m 1,0, 1.

s l

s l

= + = −

= − = −

They could be grouped into: 
21 2 1 2 1 2 term. .s l s P= = + =

The symbol 2P (read as doublet pe), and 2S (read as doublet es) are called electron 
terms. Therefore, electron terms are a group of microstates (or combinations between 
them) with the same energy.

The Russell-Saunders scheme could be illustrated with several examples: (a) closed 
shell  — the general rule for this shell type that it always has S = 0 and L = 0 or term 1S; 
(b) open shell — only one of atomic orbitals making up a given electronic configuration 
without the maximum number of electrons is enough to have an open shell.

The total number of microstates for any configuration can be counted using by 
following expression (Dougles et al., 1994).

Number of ways of filling electrons N:

( )
2(2 1)!

! 2(2 1)! !
lN

x l x
+

=
+ −

  or 
( )

!
! ! !

n
x n x−

n = 2(2l+1) or double of the total number of orbital’s (for s-AO = 2, p-AO = 6, 
d-AO = 10, f-AO = 14); x = total number of electrons in sub shell.

Results and discussion
So, for 2p  configuration 6n =  and 2 :x =

( )
6! ,

2! 6! 2!
N =

−
 6.5.4.3.2.1,

4.3.2.1.2.1
N =  15N =  microstates.

For 2d  configuration 10n =  and 2 :x =

( )
10! ,

2! 10! 2!
N =

−
 10.9.8.7.6.5.4.3.2.1,

8.7.6.5.4.3.2.1.2.1
N =  45N =  microstates.

For 2f  configuration 14n =  and 2 :x =

( )
14! ,

2! 14! 2!
N =

−
 14.13.12.11.10.9.8.7.6.5.4.3.2.1,

12.11.10.9.8.7.6.5.4.3.2.1.2.1
N =  91N =  microstates.
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In Table 1 we present 15 microstates obtained for р2 configuration 6n =   and 
2x =   (ML and MS denote the projections of respective L



 and S


 vectors).

Table 1.  Мicrostates of the electronic configuration p2

Ms
ML 1 0 -1

2 1,1
+ − 
 
 

1 1,0
+ + 
 
 

1,0 , 1,0
+ − − +   
   
   

1,0
− − 
 
 

0 1, 1
+ + − 
 

1, 1 , 0,0 , 1, 1
+ − + − − +     − −     
     

1, 1
− − − 
 

-1 0, 1
+ + − 

 
0, 1 , 0, 1
+ − − +   − −   

   
0, 1
− − − 

 

-2 1, 1
+ − − − 

 

Let us now take a look on Table 1 from another aspect. If we begin with the 

microstate with highest LM  value – this is 1,1
+ − 
 
 

, after addition of the two vectors, 

each with length 2  and projection on the selected axis 1, we obtain a vector with 

length of 6  and projection on the same axis 2 (in 2h π  units). In other words, the 

microstate 1,1
+ − 
 
 

 has to be a function of this vector. Once obtained however, this 

vector is quantized in the space and apart the projection +2, it could be also oriented 
in a way such as to have projections equal to +1, 0, -1, -2. Also, the orientation of 
the spins of both electron should be always opposite. It is important to understand 

that one of respective combinations in the column with Ms = 0 belongs to the vector 

derived from 1,1
+ − 
 
 

. Тhis vector is denoted with the letter D. The spin multiplicity 

is 2S 1 1,+ =  or there is one term 1D (singlet de), which includes 5 microstates 
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or combinations, all of which (without exceptions) are arranged vertically in the 
middle column of Table 1.

As these combinations are unknown to us, we will randomly remove one 
microstate from each row of the second column as belonging to the term 1D. The 
result is illustrated in the new Table 2.

Table 2. Microstates of р2 after removing 1D
Ms

ML 1 0 -1
2

1 1,0
+ + 
 
 

1,0
+ − 
 
 

1,0
− − 
 
 

0 1, 1
+ + − 
 

0,0 , 1, 1
+ − − +   −   

   
1, 1
− − − 
 

-1 0, 1
+ + − 

 
ù
− + − 

 
0, 1
− − − 

 
-2

With the new table, we proceed in the same way as with Table 1 – choosing the micro-

state with highest value for ML. Тhese are 1,0 , 1,0 , 1,0
+ + + − − −     
     
     

. From them, we retain the 

microstate with maximum value for MS, i.e. 1,0
+ + 
 
 

. It corresponds to ML = 1 and MS = 1 

or it is derived from vectors L


 and S


 each with a length of 2 , whose projections could 
be 1, 0, -1. These two vectors determine the existence of nine microstates with different 
energy, differing in projections on a random axis. These nine microstates constitute the 
electron term 3Р. If these microstates (or their combination in the middle column) are 
removed from Table 2, only one combination of microstates is left, which is not men-
tioned so far and whose energy in different from the energy of 1D and 3Р terms. It is 

1 23 0,0 1, 1 1,1
+ − + − + −

−       − − − −      
      

and due to the fact that it has ML = 0 and MS = 0, it forms the term 1S.

Conclusions
Ultimately, the description of the 15 microstates derived from the electronic 
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configuration Р2 led to the following result. These microstates fell into three energy terms 
as follows: (A) five microstates included in the electron term 1D; (B) nine microstates 
included in the electron term 3Р; (C) one microstate included in the electron term 1S.

NOTES
1. http://hotmath.com
2.   http://mathguy.us/Handbooks/GeometryHandbook.pdf
	 3. http://www.chem.helsinki.fi/~sundholm/winterschool/lecture_notes_2014/

Slageren-helsinki14.pdf
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