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Abstract. In this paper, we unify the study of the geodesics in the Bondi-
Gold-Hoyle universe model. Thus, we obtain analytical solutions of the geodesic 
equations which describe the motion of space-like, time-like and light-like particles 
in the considered model. In the case of light-like geodesics, we get the solutions 
obtained by Marcheva & Ivanov, 2017. 

Keywords: universe models; steady state theory; differential geometry; 
differential equations; geodesic equations

Introduction
Investigating the nature of the universe and the motion of the particles are among 

the most important problems in natural sciences and physics education. These prob-
lems are closely related to the general relativity, i.e., to the geometric theory of 
gravitation. It is well known that the different solutions of the Einstein field equa-
tions, yield different metrics of the spacetime. Depending on the metric, there are 
a lot of universe models presented in the literature (see e.g., Carroll, 2004); Wein-
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berg, 2008 and references therein). Nevertheless, cosmology is dominated by two 
alternative paradigms. The first one is called Big Bang model and the second one is 
called Steady-State theory (Aguirre & Gratton, 2002). The steady-state theory was 
first proposed by Einstein in 1931 (in unpublished manuscript). Seventeen years 
later, steady-state models of the expanding universe were independently proposed 
by Bondi & Gold (1948) and Hoyle (1948). Recall that, the Bondi-Gold-Hoyle uni-
verse model can be defined in a four-dimensional Lorentzian manifold 4( , )M g  
by the following de Sitter sphere: 
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where r  is the radii of 4
1S ;      2 2 22 2 3 4| u | u u u    . For a more detailed 

historical survey of the Bondi-Gold-Hoyle model, we refer the reader to the elegant 
paper of O’Raifeartaigh & Mitton (2015).

	Let 4( , )M g  be a Lorentzian manifold, then the curve 4: J Mγ ⊂ →  
defined by : ( )k ku u sγ =  is called geodesic if it satisfies the following equations 
(see e.g., Weinberg (1972; Busemann, 2005; Toponogov, 2006):
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where k
ijΓ  are the Christoffel symbols defined by 
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and ( )klg  is the inverse of the matrix ( )klg . In the light of the general relativity, 
the freely moving particles in a curved spacetime always move along a geodesic 
(Grøn & Næss, 2002). Therefore, it is not surprising that one of the most interest-
ing problems in mathematical physics is solving the geodesic Eq. (2). It is well 
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known that in Cartesian coordinates the Christoffel symbols, Eq. (3), are zeros for 
all , ,i j k  and therefore Eq. (2) become equations of straight line. An interesting 
interactive tool which can be used in the physics education for studying the geo-
desics in the different universe models has been presented and studied by Müller & 
Grave (2010) and Müller & Frauendiener (2011).

Let p γ∈ , then the tangent vector to γ  in the point p  is defined by 

	
1 2 3 4

, , ,p
du du du du
ds ds ds ds

γ
 

=  
 

  .

So, we have 

	 2
i j

p ij
du dug
ds ds

γ =  	 (4)

in terms of Einstein summation convention. Note that, if pγ  is a nonzero vector, 
then the curve γ  is called time-like in the point p  if 2 0pγ < , light-like or null if 

2 0pγ =  and space-like if 2 0pγ >  (Yilmaz & Turgut, 2008; İlarslan & Nešović, 
2009 and references therein). 

Recently, Marcheva & Ivanov (2017) have obtained an analytical solution of 
the geodesic Eqs. (2) in Bondi-Gold-Hoyle universe model. Eq. (1), in the case of 
light-like geodesics. In this paper, using a unified approach, we obtain analytical 
solutions of the geodesic Eqs. (2) which describe the motion of space-like, light-
like and time-like particles in Bondi-Gold-Hoyle model and complement the result 
obtained by Marcheva & Ivanov (2017).

Exact analytical solutions
Since the metric tensor of the model, Eq. (1), has nonzero components 

	
12 /

11 22 33 441, u rg g g g e= − = = =  	 (5)

then from Eq. (3), we obtain the following nonzero Christoffel symbols
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Furthermore, for all i∈  we use the notation /i iu du ds=  and consid-
er the set of real constants { }ic . Hence, setting 1 2 3, ,u t u x u y= = =  and 

4u z=  from Eqs. (2) and (6), we get the following system of equations:
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From the last third equations of Eq. (7), we get 1y c x=   and 2z c x=   where-
from, we obtain the following relations

	 1 3y c x c= + , 2 4z c x c= + 	 (8)
and
	 2 2 2 2x y z A x+ + =   ,	 (9)

where 2 2
1 21A c c= + + . Taking into account (9), the system, Eq. (7), reduces to 

the following one 
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Let \ {0}∈  be fixed. Dividing both sides of the second equality by x  and 
integrating with respect to s , we get   

	 2 /
5

t rx c e−= . 	 (11)
From Eq. (11) and the first equation of (10), we obtain the equation

	
2
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r

−+ = . 

Reducing the order of the last equation, we get

	 2 2 2 /
5 ,t rt Ac e α α−− + = ∈

 .	 (12)
It is important to note that, according to (4), from Eqs. (5), (9), (11) and (12) it 

follows that
	 ( )2 2 2 / 2 2 2 2 2 2 /

5
t r t r

p t e x y z t Ac eγ α−= − + + + = − + = 

    .

This identity shows that the choice of the constant α  determines whether the 
geodesic γ  is time-like, light-like or space-like. 

In what follows, replacing successively x  from Eq. (11) and 2 2 /
5

t rAc e−  from 
Eq. (12) in the first equation of (10), we obtain the following system of equations: 
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In the case 0α = , i.e., in the case of lightlike geodesic the solutions of (13) 
coincide with the solutions obtained by Marcheva & Ivanov (2017, Eq. (7)). Let 

0α ≠ , then a solution of the first equation of (13) is the function
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where 2 2 /
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ing t  from (14) into (11), we get the equation 
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whose solution is 
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Finally, from (15) and (8), we obtain the following solutions for y  and z : 
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Conclusions
In this paper, we have obtained analytical solutions of the geodesic equations 

in the Bondi-Gold-Hoyle universe model. Reducing the order of the first equation 
of the main system, Eq, (7), we have extracted a constant α  which determines 
whether the geodesic γ  is time-like, light-like or space-like. More precisely, for 

0α <  the solutions, Eqs. (14) – (17), describe the paths of time-like particles in 
the considered model, for 0α =  – the paths of massless particles and for 0α >  
– the paths of massive particles. 
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