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Abstract. In this paper, we unify the study of the geodesics in the Bondi-
Gold-Hoyle universe model. Thus, we obtain analytical solutions of the geodesic
equations which describe the motion of space-like, time-like and light-like particles
in the considered model. In the case of light-like geodesics, we get the solutions
obtained by Marcheva & Ivanov, 2017.
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Introduction

Investigating the nature of the universe and the motion of the particles are among
the most important problems in natural sciences and physics education. These prob-
lems are closely related to the general relativity, i.e., to the geometric theory of
gravitation. It is well known that the different solutions of the Einstein field equa-
tions, yield different metrics of the spacetime. Depending on the metric, there are
a lot of universe models presented in the literature (see e.g., Carroll, 2004); Wein-
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berg, 2008 and references therein). Nevertheless, cosmology is dominated by two
alternative paradigms. The first one is called Big Bang model and the second one is
called Steady-State theory (Aguirre & Gratton, 2002). The steady-state theory was
first proposed by Einstein in 1931 (in unpublished manuscript). Seventeen years
later, steady-state models of the expanding universe were independently proposed
by Bondi & Gold (1948) and Hoyle (1948). Recall that, the Bondi-Gold-Hoyle uni-
verse model can be defined in a four-dimensional Lorentzian manifold (M ", g)
by the following de Sitter sphere:
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where 7 is the radii of S14 s ju |2: (u2)2 + (u3 )2 + (u4 )2 . For a more detailed

historical survey of the Bondi-Gold-Hoyle model, we refer the reader to the elegant
paper of O’I}aifeartaigh & Mitton (2015). 4
Let (M", g) be a Lorentzian manifold, then the curve ¥ :J C R —> M

defined by J : u =u" (S) is called geodesic if it satisfies the following equations
(see e.g., Weinberg (1972; Busemann, 2005; Toponogov, 2006):

d’u* . du' du’
P 1_‘ij e
ds ds ds
where Ff;. are the Christoffel symbols defined by

= lgkl 08 j n 08y 08 3)
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and (g kl) is the inverse of the matrix (g, ) . In the light of the general relativity,
the freely moving particles in a curved spacetime always move along a geodesic
(Gron & Nass, 2002). Therefore, it is not surprising that one of the most interest-
ing problems in mathematical physics is solving the geodesic Eq. (2). It is well

=0 (i, /,k=1,...,4), )
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known that in Cartesian coordinates the Christoffel symbols, Eq. (3), are zeros for
all i, J, k and therefore Eq. (2) become equations of straight line. An interesting
1nteract1ve tool which can be used in the physics education for studying the geo-
desics in the different universe models has been presented and studied by Miiller &
Grave (2010) and Miiller & Frauendiener (2011).

Let p € 7, then the tangent vector to ) in the point p is defined by

du' dv® du’ du’

Tp = ds ds  ds  ds
So, we have ) ,
2 ﬂduj (4)
v =870 ds

in terms of Einstein summation convention. Note that, 1f )/ is a nonzero vector,
then the curve ¥ is called tzme like in the point p if ]/ < 0 , light-like or null if
}/ =0 and space-like if ]/ > 0 (Yilmaz & Turgut, 2008; ilarslan & Nesovi¢,

2009 and references therein).

Recently, Marcheva & Ivanov (2017) have obtained an analytical solution of
the geodesic Egs. (2) in Bondi-Gold-Hoyle universe model. Eq. (1), in the case of
light-like geodesics. In this paper, using a unified approach, we obtain analytical
solutions of the geodesic Egs. (2) which describe the motion of space-like, light-
like and time-like particles in Bondi-Gold-Hoyle model and complement the result
obtained by Marcheva & Ivanov (2017).

Exact analytical solutions
Since the metric tensor of the model, Eq. (1), has nonzero components

2ut/r

g1 =-L8y=85=8u=e€ (%)
then from Eq. (3), we obtain the following nonzero Christoffel symbols
2u' /7
1

r,=r.=r, :eT’ 2, =T2 =T =0 =T} =T = 6)

Furthermore, for all i € N we use the notation #' = du' / ds and consid-
. 1 2 3
er the set of real constants {Cl.} . Hence, setting ¥4 =f,u” =X,u” =y and

u* =z from Egs. (2) and (6), we get the following system of equations:
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2t/r
't'+—(jc2+jz2+z'2)=0;

: (7)
.2, . 2., L2,
X+—tx=0;y+—ty=0;z4+—¢z=0.

r r r

From the last third equations of Eq. (7), we get ) = ¢ X and Z = C, X where-
from, we obtain the following relations
y=c¢x+c,z=c,x+c, (8)
and
X442 = AR, 9)

where A =1+ C12 + Ci . Taking into account (9), the system, Eq. (7), reduces to
the following one

B AeZI/r .
t+ ¥ =0;

) r (10)
X+=fx=0.

r

Let €R\ {0} be fixed. Dividing both sides of the second equality by X and
integrating with respect to S , we get
. -2t/
x=c;e . (11)
From Eq. (11) and the first equation of (10), we obtain the equation

. Acr
f+—= 2" =0.

r
Reducing the order of the last equation, we get
i+ Acie? =a, aeR. (12)

It is important to note that, according to (4), from Egs. (5), (9), (11) and (12) it
follows that
jo=—i’+& (P 4+’ +2 )= + A e =a.
This identity shows that the choice of the constant ¢ determines whether the
geodesic ¥ is time-like, light-like or space-like.
In what follows, replacing successively X from Eq. (11) and A 052 e from
Eq. (12) in the first equation of (10), we obtain the following system of equations:

=2t/r
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i ta_,

2r (13)
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r

In the case & =0, i.e., in the case of lightlike geodesic the solutions of (13)
coincide with the solutions obtained by Marcheva & Ivanov (2017, Eq. (7)). Let
a # 0, then a solution of the first equation of (13) is the function

J-a
((s) = rin| ¢ S s (14)
s)=rln e —Be ,
2N-«a
_ 2 2\/3/?‘ 26/ r 2 .
where B = Ac; / (66 ) whenever Co * 0 and " # AcZ/ a . Substitut-
ing ¢ from (14) into (11), we get the equation
-2
. Ao ¢ N - V-a
YEmae| e T hBe
Co
whose solution is
-1
2reN—a i\/?S
X(S):iﬁ B-e . (15)
Co

Finally, from (15) and (8), we obtain the following solutions for } and Zz:
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Conclusions

In this paper, we have obtained analytical solutions of the geodesic equations

in the Bondi-Gold-Hoyle universe model. Reducing the order of the first equation
of the main system, Eq, (7), we have extracted a constant ¢¢ which determines
whether the geodesic ) is time-like, light-like or space-like. More precisely, for

a < 0 the solutions, Eqgs. (14) — (17), describe the paths of time-like particles in

the considered model, for & = 0 — the paths of massless particles and for ¢ > 0

— the paths of massive particles.
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