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Аннотация. В статье представлены результаты, полученные в рамках се-
тевого исследовательского проекта „Энциклопедия замечательных плоских 
кривых: пишем сами“ участниками из России. Проект был направлен на сис-
тематизацию и развития, силами учащихся, знаний о замечательных плоских 
кривых. Взаимодействие участников проектов осуществлялось с использова-
нием облачных сервисов Google. Исследование проводилось методами ана-
литической геометрии с использованием программного продукта GeoGebra.

Keywords: circle; curve; equation; GeoGebra; Pascal’s limacon

Авторы статьи уже третий раз принимают участие в международных 
сетевых исследовательских проектах совместно с учащимися из Болга-
рии и Казахстана (Shabanova & al., 2016), (Shabanova & al., 2017). От-
личительной чертой данного проекта является то, что он реализуется 
открытым сетевым сообществам и имеет формат краудсорсинг-проекта. 
Трое ученых из разных вузов России (Г. А. Клековкин, В. Р. Майер и А. 
В. Ястребов) решили привлечь учащихся к созданию электронной энци-
клопедии плоских кривых. Для этой цели подготовили введение, оглав-
ление и серии исследовательских задач для некоторых разделов будущей 
энциклопедии и разместили их на специально созданном (М. Ю. Алфё-
ровым) сайте Googl1). Взаимодействие участников обеспечивал коорди-
натор (М. В. Шабанова).

В данной статье рассматриваются результаты, которые были получены в 
период с сентября 2017 года по апрель 2018 года в ходе решения задач, пред-
ложенных профессором В. Р. Майером.

1. Кинематическое определение улитки Паскаля. Решим задачу: Пусть 
окружность катится с внешней стороны по другой окружности того же 
радиуса. Нарисуйте кривую, которую описывает при этом точка, закреплён-
ная: на окружности; на радиусе внутри катящейся окружности; на продол-
жении радиуса катящейся окружности (Smirnova & Smirnov, 2004).

Используя компьютерное моделирование, мы получили следующий ре-
зультат: точка B  катящейся окружности описывает кривую, изображённую 
на рис. 1.
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Плоская кривая, которая описывается точкой окружности радиуса r, 
катящейся по окружности с таким же радиусом, называется кардиои-
дой.

Она получила своё название из-за схожести своих очертаний со стилизо-
ванным изображением сердца (от греч. „кардиоида“ — сердце).

Точка A  называется каспом кардиоиды или точкой возврата1), а точка V  – 
вершиной кардиоиды2), а окружности – производящими.

Продолжив решение данной задачи с помощью компьютерного моделиро-
вания, мы получили следующее:

Если точку B ’ брать не на катящейся окружности, а на радиусе или 
его продолжении, то получим кривые, изображённые на рисунках 2 и 3. 
Первую из них называют укороченной, а вторую — удлинённой кардио-
идой.

2 
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Все три вида кривых получили название улиток Паскаля. Такое название им дал 

французский математик Жюль Роберваль (1602 – 1675) по имени их открывателя 
Этьена Паскаля – отца Блеза Паскаля (Vilenkin & al., 1996). 

Сформулируем определение Улитки Паскаля следующим образом. 
Плоская кривая, которая описывается точкой, лежащей на луче с вершиной 

в центре окружности радиуса r , катящейся без скольжения по неподвижной 
окружности с таким же радиусом, называется улиткой Паскаля. 

2. Определение улитки Паскаля как конхоиды окружности. Из начала 

координат проведён луч, пересекающий данную окружность 2 2 2x y ax    0a   в 

точке B ; на луче по обе стороны от точки B  отложены равные между собой отрезки 
BM  и BN  постоянной длины l . При вращении луча точки M  и N  описывают 
кривую, изображённую на рисунке 4, называемую улиткой Паскаля. 

                                                           
1 Точка, в которой две различные ветви кривой имеют общую касательную и расположены по 

разные стороны от касательной, называется точкой возврата первого рода. 
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Конхоида – плоская кривая, которая получается при увеличении или уменьшении 

радиус – вектора каждой точки данной плоской кривой на постоянную величину. 
Докажем, что определения 1 и 2 улитки Паскаля эквивалентны. Возьмём рисунок 

улитки Паскаля из её кинематического определения, на котором окружность с центром 
B  и радиуса r  катится без скольжения по окружности с центром A  того же радиуса, 
кривую вычерчивает точка M , находящаяся от B  на расстоянии r d . Дополним 
рисунок окружностью с центром A  и радиусом r d  из определения улитки Паскаля 
через конхоиду (рис.5). Так как подвижная окружность катится без скольжения по 
неподвижной, то дуги HK  и KG  равны, отсюда HAK KBG   и четырёхугольник 
OABM  – равнобедренная трапеция, в которой OA MB r d    и MOA OMB  . 

 
Поскольку OAN  равнобедренный, то NOA ONA  . Тогда прямые NA  и MB  

параллельны и четырёхугольник ABMN  – параллелограмм по определению. По 
свойству параллелограмма, MN AB , 2AB r , тогда 2MN r . Получили: от точки N  

Рисунок 5 
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Поскольку OAN∆  равнобедренный, то NOA ONA∠ = ∠ . Тогда прямые 
NA  и MB  параллельны и четырёхугольник ABMN  – параллелограмм 
по определению. По свойству параллелограмма, MN AB= , 2AB r= , то-
гда 2MN r= . Получили: от точки N  откладывается отрезок постоянной 
длины 2r , который обозначим a . Значит, точка N  принадлежит конхои-
дальной окружности, а улитка Паскаля является конхоидой окружности с 
центром A  радиуса r d+  относительно точки O . Несложно показать, что 
все рассуждения обратимы. Значит, определения 1 и 2 улитки Паскаля эк-
вивалентны.

3. Уравнение улитки Паскаля в полярной системе координат. Мно-
жества точек на плоскости можно определить при помощи различных ко-
ординатных систем, выбор которых определяется различными факторами. 
Прямоугольную систему координат выбирают, когда в условии задачи 
даны прямые углы или параллельные прямые. Для удобства проведения 
вычислений в нашем случае – дана окружность – лучше выбрать поляр-
ную систему координат. Выведем уравнение улитки Паскаля в полярной 
системе координат (рис. 5). Пусть точка O  полюс полярной системы коор-
динат, а полярная ось совпадает с направлением луча OA . Рассмотрим тре-
угольник ONF . Треугольник ONF  прямоугольный, 90ONF∠ = °  (впи-

санный угол, опирающийся на диаметр), cosON
OF

ϕ= , cosON OF ϕ= , 

2OF OA= , OA  – радиус конхоидальной окружности, обозначим его R . 

Тогда 2 cosON R ϕ= , NM a= , OM ON NM= ± , 2 cosOM R aϕ= ± , 
2 cosR aρ ϕ= ± .

Таким образом, уравнение улитки Паскаля имеет вид: 2 cosR aρ ϕ= ± . 
Проверить полученное уравнения можно в ИГС GeoGebra, но данная среда не 
строит кривых, заданных в полярной системе координат.

4. Параметрические уравнения улитки Паскаля. Итак, возник вопрос: 
как построить кривую, если в среде можно строить графики только в декарто-
вой системе координат? Вопрос решает уравнение улитки Паскаля, заданной 
параметрически и возможность среды строить траектории движения точки с 
помощью инструментов След и Локус.

Параметрические уравнения улитки Паскаля следующие:
( )cos 2 cosx r aϕ= + , ( )sin 2 siny r aϕ= + .

Теперь в ИГС GeoGebra можно задать координаты точки M  с помощью 
полученных формул, а саму кривую построить с помощью инструментов 
След или Локус (рис. 6). Получилась улитка Паскаля.
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Проведём компьютерный эксперимент: будем менять численные значения 
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1) Если 2a r , то полученная кривая является удлинённой кардиоидой (рис. 8); 
2) Если 2a r  — кардиоидой (рис.9); 
3) Если 2a r  — укороченной кардиоидой (рис.10). 

 
Однако, построенная нами кривая не является графиком уравнения. Вопрос 

построения графика улитки Паскаля остаётся открытым. 
5. Уравнение улитки Паскаля в декартовой системе координат. Выведем 
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Преобразуем уравнение. Сначала избавимся от дроби, а потом от 
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Преобразуем уравнение. Сначала избавимся от дроби, а потом от ирраци-
ональности: 

2 2
2 2

2 2

2rx a x y
x y

x y

± +
+ =

+
, 2 2 2 22x y rx a x y+ = ± + ,

2 2 2 22x y rx a x y+ − = ± + , ( ) ( )22 2 2 2 22x y rx a x y+ − = + .
Итак, улитка Паскаля — алгебраическая кривая четвёртого порядка, имею-

щая в прямоугольной декартовой системе координат уравнение:
( ) ( )22 2 2 2 22x y rx a x y+ − = + .

Улитку паскаля в ИГС GeoGebra можно построить, введя её уравнение в 
строку ввода.

6. Повороты улитки Паскаля. Исходя из определения улитки Паскаля, 
данная кривая может иметь различные положения на плоскости (до сих пор 
рассматривались положения, когда касп располагался слева, а полюс – спра-
ва). Возникает вопрос: как будут выглядеть уравнения улитки Паскаля при 
других её расположениях?

Рассмотрим следующее расположения улитки Паскаля:

6 

 
Преобразуем уравнение. Сначала избавимся от дроби, а потом от 

иррациональности:  
2 2

2 2

2 2

2rx a x y
x y

x y

 
 


, 2 2 2 22x y rx a x y    , 

2 2 2 22x y rx a x y     ,    22 2 2 2 22x y rx a x y    . 

Итак, улитка Паскаля — алгебраическая кривая четвёртого порядка, имеющая в 
прямоугольной декартовой системе координат уравнение: 

   22 2 2 2 22x y rx a x y    . 

Улитку паскаля в ИГС GeoGebra можно построить, введя её уравнение в строку 
ввода. 

6. Повороты улитки Паскаля. Исходя из определения улитки Паскаля, данная 
кривая может иметь различные положения на плоскости (до сих пор рассматривались 
положения, когда касп располагался слева, а полюс – справа). Возникает вопрос: как 
будут выглядеть уравнения улитки Паскаля при других её расположениях? 

Рассмотрим следующее расположения улитки Паскаля: 

 
Начнём компьютерный эксперимент с изменения знака. Пусть 2 cosr a    . 

Тогда параметрические уравнения примут вид: 
 
 

2 cos cos ,
2 cos sin .

x r a
y r a

 

 

   


  
 

Рисунок 11 Рисунок 12 Рисунок 13 Рисунок 14 

Рисунок 10 

Рисунок 11         Рисунок 12            Рисунок 13 	            Рисунок 14
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Начнём компьютерный эксперимент с изменения знака. Пусть 
2 cosr aρ ϕ= − ± . Тогда параметрические уравнения примут вид: 

( )
( )

2 cos cos ,
2 cos sin .

x r a
y r a

ϕ ϕ

ϕ ϕ

 = − ±


= − ±
Получим улитку Паскаля, изображённую на рис. 12. Вывод: изменение 

знака симметрично отображает улитку Паскаля относительно вертикальной 
оси, и уравнение улитки Паскаля имеет вид 2 cosr aρ ϕ= − ± .

Продолжим экспериментировать с уравнением улитки Паскаля. Заменим 
функцию cosϕ  на sinϕ± . Тогда 2 sinr aρ ϕ= ± ± . Получим следующие па-
раметрические уравнения: 

( )
( )

2 cos cos ,
2 cos sin .

x r a
y r a

ϕ ϕ

ϕ ϕ

 = ± ±


= ± ±
Данным уравнениям соответствует улитка Паскаля, изображённая на 

рис. 13 и 14. Вывод: если в уравнении улитки Паскаля заменить функцию 
cosϕ  на sinϕ± , то улитка Паскаля поворачивается на 90°  по или против 
часовой стрелки. Объяснить это можно с помощью формул приведения: 

( )cos 90 sinϕ ϕ± ° =  .
А что получится, если к углу ϕ  прибавить произвольный угол α ? Ком-

пьютерный эксперимент показывает, что в этом случае улитка Паскаля пово-
рачивается на угол α .

Таким образом, уравнение улитки Паскаля в полярной системе координат 
может принимать вид: ( )2 cosr aρ ϕ α= ± + ±  или ( )2 sinr aρ ϕ α= ± + ±  
в декартовой системе координат: ( ) ( )22 2 2 2 22 .x y r x a x y+ − = +  или 
( ) ( )22 2 2 2 22 .x y r y a x y+ − = +  (См. Таблицу 1).

Таблица 1. Уравнения улитки Паскаля

График
Полярная  
система  

координат
Параметрические  

уравнения
Декартовая  

система  
координат

2 cosr aρ ϕ= ±
( )
( )
2 cos cos ,
2 cos sin .

x r a
y r a

ϕ ϕ

ϕ ϕ

 = ±


= ±

( )
( )

22 2

2 2 2

2 .x y r x

a x y

+ − =

= +
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2 cosr aρ ϕ= − ±
( )
( )

2 cos cos ,
2 cos sin .

x r a
y r a

ϕ ϕ

ϕ ϕ

 = − ±


= − ±

( )
( )

22 2

2 2 2

2 .x y r x

a x y

+ + =

= +

2 sinr aρ ϕ= ±
( )
( )
2 sin cos ,
2 sin sin .

x r a
y r a

ϕ ϕ

ϕ ϕ

 = ±


= ±

( )
( )

2 2

2 2 2

2 .x y r y

a x y

+ − =

= +

2 sinr aρ ϕ= − ±
( )
( )

2 sin cos ,
2 sin sin .

x r a
y r a

ϕ ϕ

ϕ ϕ

 = − ±


= − ±

( )
( )

22 2

2 2 2

2 .x y r y

a x y

+ + =

= +

Для дальнейшего эксперимента с уравнениями улитки Паскаля перепишем 

параметрические уравнения 
( )
( )
2 cos cos ,
2 cos sin

x r a
y r a

ϕ ϕ

ϕ ϕ

 = +


= +
 в следующем виде: 

22 cos cos ,
2 cos sin sin .

x r a
y r a

ϕ ϕ
ϕ ϕ ϕ

 = +


= +
Преобразуем данные равенства, используя формулы понижения степени и 

формулы двойного аргумента, и сдвинем улитку Паскаля на r  единиц влево. 
Получим ещё одно параметрическое уравнение улитки Паскаля:

( )2 cos 2 cos ,
2 sin 2 sin .

x r a r
y r a

ϕ ϕ
ϕ ϕ

 = + +


= +

Прибавляем углы α  и β к углам 2ϕ  и ϕ :

 
( ) ( ) ( )
( ) ( )

2 cos 2 cos ,
2 sin 2 sin .

x r a r
y r a

ϕ α ϕ β

ϕ α ϕ β

 = + + + +


= + + +
 наблюдаем за поворотом улит-

ки Паскаля в ИГС GeoGebra. При изменении угла α  от 0°  до 360°  улитка 
Паскаля делает полный поворот по часовой стрелке, а при изменении угла β  
от 0°  до 360°  – против часовой стрелки (рис. 15).
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8 

 

2 sinr a     
 
 

2 sin cos ,
2 sin sin .

x r a
y r a

 

 

   


  
 

 
 

22 2

2 2 2

2 .x y r y

a x y

  

 
 

 
Для дальнейшего эксперимента с уравнениями улитки Паскаля перепишем 

параметрические уравнения 
 
 
2 cos cos ,
2 cos sin

x r a
y r a

 

 

  


 
 в следующем виде:  

22 cos cos ,
2 cos sin sin .

x r a
y r a

 
  

  


 
 

Преобразуем данные равенства, используя формулы понижения степени и 
формулы двойного аргумента, и сдвинем улитку Паскаля на r  единиц влево. Получим 
ещё одно параметрическое уравнение улитки Паскаля: 

 2 cos 2 cos ,
2 sin 2 sin .

x r a r
y r a

 
 

   


 
 

Прибавляем углы   и   к углам 2  и  : 
     
   

2 cos 2 cos ,
2 sin 2 sin .

x r a r
y r a

   

   

     


   
 

наблюдаем за поворотом улитки Паскаля в ИГС GeoGebra. При изменении угла   от 

0  до 360  улитка Паскаля делает полный поворот по часовой стрелке, а при 

изменении угла   от 0  до 360  – против часовой стрелки (рис. 15). 

 
7. Улитка Паскаля в комплексных числах. Статья С. В. Ларина 

„Геометрическое моделирование действий с комплексными числами средствами Geo-
Gebra“ (Shabanova & al., 2013), подсказала идею ещё одного способа моделирования 

Рисунок 16 Рисунок 15

7. Улитка Паскаля в комплексных числах. Статья С. В. Ларина „Гео-
метрическое моделирование действий с комплексными числами средствами 
GeoGebra“ (Shabanova & al., 2013), подсказала идею ещё одного способа мо-
делирования улитки Паскаля – построим в среде многочлен второй степени 
от комплексного переменного, модуль которого равен 1:

( ) 2 ,
1.

w z az bz c
z

 = + +


=
Эксперимент, проведённый в среде GeoGebra, показывает, что многочлен 
( )w z  описывает кривую, похожую на улитку Паскаля (рис.17).

9 

улитки Паскаля – построим в среде многочлен второй степени от комплексного 
переменного, модуль которого равен 1: 

  2 ,
1.

w z az bz c
z

   



 

Эксперимент, проведённый в среде GeoGebra, показывает, что многочлен  w z  
описывает кривую, похожую на улитку Паскаля (рис.17). 

 
Попробуем доказать, что это действительно улитка Паскаля. Пусть z x iy  , 

тогда 2 2 2 2z x y ixy   . Перейдем к полярной системе координат: cosx r  , 

siny r  . Так как 1z  , имеем 1r  , 2 2 2 2cos sin cos2x y       , 

2 2cos sin sin 2xy     . Выполним преобразования: 

       
   

2 2 2 cos sin
cos 2 sin sin 2 sin .

w z a x y ixy b x iy b i
a b i a b

 

   

       

   
 

Получили уравнение, похожее на параметрическое уравнение улитки Паскаля: 
cos2 sinx a b   , sin 2 siny a b   , правда, с комплексными коэффициентами a  

и b . Дальнейшие преобразования в общем виде являются сложными, так как требуется 
введение вспомогательного аргумента угла. Если же данную задачу решить для 
конкретного многочлена, то гипотеза подтверждается, представим вывод. 

Рассмотрим многочлен    2 1w z z k i z   , 1z  . Тогда 
     
   

2 2 2 2

cos sin cos 2 cos sin sin 2

2 cos cos 2 2 sin sin 2 .
4 4

w z x y ixy i kx ky xy

k i k

k i k

     

    

      

            
                       

 

Отсюда 
cos 2 2 cos ,

4

sin 2 2 sin .
4

x k

y

 

 

       


       

 

Рисунок 17 Рисунок 16

Попробуем доказать, что это действительно улитка Паскаля. Пусть z x iy= + , 
тогда 2 2 2 2z x y ixy= − + . Перейдем к полярной системе координат: cosx r ϕ= , 

siny r ϕ= . Так как 1z = , имеем 1r = , 2 2 2 2cos sin cos 2x y ϕ ϕ ϕ− = − = , 
2 2cos sin sin 2xy ϕ ϕ ϕ= = . Выполним преобразования:

       
   

2 2 2 cos sin
cos 2 sin sin 2 sin .

w z a x y ixy b x iy b i
a b i a b

 

   

       

   
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Получили уравнение, похожее на параметрическое уравнение улитки Па-
скаля: cos 2 sinx a bϕ ϕ= + , sin 2 siny a bϕ ϕ= + , правда, с комплексными 
коэффициентами a  и b . Дальнейшие преобразования в общем виде являют-
ся сложными, так как требуется введение вспомогательного аргумента угла. 
Если же данную задачу решить для конкретного многочлена, то гипотеза под-
тверждается, представим вывод.

Рассмотрим многочлен ( ) ( )2 1w z z k i z= + + , 1z = . Тогда
( ) ( ) ( )

( ) ( )

2 2 2 2

cos sin cos 2 cos sin sin 2

2 cos cos 2 2 sin sin 2 .
4 4

w z x y ixy i kx ky xy

k i k

k i k

ϕ ϕ ϕ ϕ ϕ ϕ

π πϕ ϕ ϕ ϕ

= − + + + + =

   = − + + + + =   
      = + + + + +            

Отсюда 
cos 2 2 cos ,

4

sin 2 2 sin .
4

x k

y

πϕ ϕ

πϕ ϕ

  = + +   


  = + +   
Замена 

4
πϕ α− =  приводит к уравнениям улитки Паскаля:

sin 2 2 sin ,

cos 2 2 cos .

x k

y k

α α

α α

 = − −


= +
Дальнейшие исследования в ИГС GeoGebra показали: если дан многочлен 

второй степени от комплексного переменного, модуль которого равен 1, вида 
( ) 2w z az= , где a  – фиксированное комплексное число, z  – комплексная пе-

ременная, то многочлен ( )w z  – описывает центральную окружность (рис. 17).

10 

Замена 
4
    приводит к уравнениям улитки Паскаля: 

sin 2 2 sin ,

cos 2 2 cos .

x k

y k

 

 

   


   

Дальнейшие исследования в ИГС GeoGebra показали: если дан многочлен второй 
степени от комплексного переменного, модуль которого равен 1, вида   2w z az , где 
a  – фиксированное комплексное число, z  – комплексная переменная, то многочлен 
 w z  – описывает центральную окружность (рис. 17). 

 
Тогда возникает новая задача: Написать уравнение улитки Паскаля в 

комплексных числах. 
8. Свойства и признаки улитки Паскаля 
Задача 1. Что представляет собой множество оснований перпендикуляров, 

опущенных из данной точки на всевозможные касательные к окружности? 

 
Решение данной задачи в ИГС, показывает, что получается улитка Паскаля, если 

точка лежит вне окружности и кардиоида, если точка лежит на окружности. 
Докажем этот факт геометрически. Пусть дана окружность радиуса R  с центром в 

точке A , a  – касательная к окружности в т. C  (рис. 21). 

Рисунок 18 Рисунок 19 Рисунок 20 

Рисунок 17 Рисунок 17
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Тогда возникает новая задача: Написать уравнение улитки Паскаля в ком-
плексных числах.

8. Свойства и признаки улитки Паскаля
Задача 1. Что представляет собой множество оснований перпендикуля-

ров, опущенных из данной точки на всевозможные касательные к окружно-
сти?

10 

Замена 
4
    приводит к уравнениям улитки Паскаля: 

sin 2 2 sin ,

cos 2 2 cos .

x k

y k

 

 

   


   

Дальнейшие исследования в ИГС GeoGebra показали: если дан многочлен второй 
степени от комплексного переменного, модуль которого равен 1, вида   2w z az , где 
a  – фиксированное комплексное число, z  – комплексная переменная, то многочлен 
 w z  – описывает центральную окружность (рис. 17). 

 
Тогда возникает новая задача: Написать уравнение улитки Паскаля в 

комплексных числах. 
8. Свойства и признаки улитки Паскаля 
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Построим b a⊥  и 90PMC∠ = ° . Докажем, что множество всех точек, 
построенных таким образом, являются улиткой Паскаля. Точка C  – точка 
касания, тогда 90MCA∠ = °  (Касательная к окружности перпендикулярна к 
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опущенного из полюса P  на касательную в точке C  – к окружности. Геоме-
трическое место таких точек – улитка Паскаля. Следовательно, улитка Паска-
ля и будет поэдрой окружности относительно полюса P .

Поэдера окружности относительно точки P  – множество оснований пер-
пендикуляров, опущенных из точки Р на касательные к окружности.

Задача 2. Что представляет собой множество всех точек, симметрич-
ных определённой точке относительно всевозможных касательных к этой 
окружности?

Решение данной задачи в ИГС, показывает, что получается улитка Паска-
ля, если точка лежит вне окружности (рис. 22, 23) и кардиоида (рис.24), если 
точка лежит на окружности.
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Пусть дана окружность с центром в точке A , D  – определённая точка, 
a  – касательная к окружности, D′  – точка, симметричная точке D  относи-
тельно прямой a . Построим окружность, симметричную данной относитель-
но касательной, проходящей через точку C . Тогда построенную окружность 
можно рассматривать как окружность, катящуюся по данной (рис. 25).
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через точку C . Тогда построенную окружность можно рассматривать как окружность, 
катящуюся по данной (рис. 25). 

 
Кроме того окружности имеют одинаковые радиусы, точка D , лежит на луче с 

вершиной в центре окружности радиуса r , катящейся по неподвижной окружности с 
таким же радиусом. Тогда кривая, которую описывает точка D , называется улиткой 
Паскаля (кинематическое определение улитки Паскаля). 
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Кроме того окружности имеют одинаковые радиусы, точка D′ , лежит 
на луче с вершиной в центре окружности радиуса r , катящейся по непод-
вижной окружности с таким же радиусом. Тогда кривая, которую описывает 
точка D′ , называется улиткой Паскаля (кинематическое определение улит-
ки Паскаля).

NOTES/ЗАМЕТКИ
1. Сайт для организации сетевых исследовательских проектов по матема-

тике „Пишем сами“ (URL: https://sites.google.com/site/pisemsami/home). 
[Website for organization of net research projects in Mathematics “We write 
alone” (URL: https://sites.google.com/site/pisemsami/home)]

2. Акопян, А. Геометрия кардиоиды. Cайт МЦНМО. Режим доступа: http://
www.mccme.ru/~akopyan/papers/cardioid.pdf. [Agopjan, A. Geometry of 
the cardioid. Website of MCCME. Regime of access: http://www.mccme.
ru/~akopyan/papers/cardioid.pdf]

3. Скляревский, Е. С. Улитка на паутине в стиле Поп-Арт. Блог „Арбуз“. Ре-
жим доступа: http://arbuz.uz/x_ulitka.html. [Skljarevkii, E.S. Limacon on silk 
in Pop-Art’ style. Blog “Arbuz”. Regime of access: http://arbuz.uz/x_ulitka.
html.]

4. Математическая энциклопедия. Т. 5. Москва: „Советская Энциклопедия“, 1984. 
[Mathematical Encyclopedia. T. 5. Moscow: “Soviet Encyclopedia”, 1984.] 

REFERENCES/ЛИТЕРАТУРА
Alexandrova, N. (2008). Istoria matematicheskih terminov, ponyatii, 

oboznachenii. Slovar-spravochnik. Moscow: LKI (in Russian). 
[Александрова, Н. (2008). История математических терминов, 
понятий, обозначений. Словарь-справочник. Москва: ЛКИ.]

Alexandrova, N. (1984). Matematicheski termini. Sofia: Nauka i 
izkustvo (in Bulgarian). [Александрова, Н. (1984). Математиче-
ски термини. София: Наука и изкуство.]

Vasilev, N. B. & V. L. Gutenmaher (2000). Pryamye i krivye. Moscow: 
MTsNMO (in Russian). [Васильев, Н. Б. & В. Л. Гутенмахер (2000). 
Прямые и кривые. Москва: МЦНМО.]

Vilenkin, N. Y. et al (1996). Za stranitsami uchebnika matematiki: 
Arifmetika. Algebra. Geometria: Kn. Dlya uchashtihsya 10 – 11 kl. 
Obshteobrazovat. Uchrejdenii. Moscow: Prosveshtenie (in Russian). 
[Виленкин Н. Я. & др. За страницами учебника математики: Ари-
фметика. Алгебра. Геометрия: Кн. для учащихся 10 – 11 кл. обще-
образоват. учреждений. Москва: Просвещение: АО „Учеб. Лит.“.]



478

Дарья Коптева, Ксения Горская

Vygotskii, M. Y. (1972). Spravochnik po vyshei matematike. Moscow: 
FIZMATLIT (in Russian). [Выгодский, М. Я. (1972). Справочник 
по высшей математике. Москва: ФИЗМАТЛИТ.]

Gindikin, S. G.  (2006). Rasskazy o fizikah i matematikah. Moskow: 
MTsNMO (in Russian). [Гиндикин, С. Г. (2006). Рассказы о физи-
ках и математиках. Москва: МЦНМО.]

Markushevich, A. (1978). Notable curves. Moscow: Nauka (in Russian). 
[Маркушевич, А. (1978). Замечательные кривы. Москва: Наука.]

Shabanova, M. V. et al (2013). Obuchenie matematiki s ispolzovaniem 
vozmojnostey GeoGebra. Moscow: Pero (in Rusian). [Шабанова, М. 
В. & др. (2013). Обучение математике с использованием возмож-
ностей GeoGebra: коллективная монография. Москва: Перо.]

Smirnova, I. M. & V. A. Smirnov (2004). Geometria. Nestandartye 
i issledovatelskie zadachi: Uchebnoe posobie dlya 7 – 11 kl. 
Obshteobrazovat. Uchrejdenii. Moscow: Mnemozina (in Russian). 
[Смирнова, И. М. & В. А. Смирнов (2004). Геометрия. Нестан-
дартные и исследовательские задачи: Учебное пособие для 7 – 11 
кл. общеобразоват. учреждений. Москва: Мнемозина.]

Smirnova, I. M. & V. A. Smirnov (2003). Geometria: Uchebnik dlya 10-
11 kl. Estestv. –nauch. Profilya obuchenia. Moscow: Prosveshtenie 
(in Russian). [Смирнова, И. М. & В. А. Смирнов (2003). Геомет-
рия: Учебник для 10 – 11 кл. естеств.-науч. профиля обучения. 
Москва: Просвещение.]

Sobolev, A. B., M. A. Vigura et al. (2005). Analiticheskaya geometria 
na ploskosti. Poverhnosti vtorovo poryadka: Uchebnoe posobie. 
Ekaterinburg: GOU VPO UGTU-UPI (in Russian). [Соболев, А. Б., 
М. А. Вигура & др. (2005). Аналитическая геометрия на плос-
кости. Поверхности второго порядка: Учебное пособие. Екате-
ринбург: ГОУ ВПО УГТУ-УПИ.]

Gellert, W., H. Kastner & S. Nueber (1983). Matematicheski 
enciklopedichen rechnik. Sofia: Nauka i izkustvo (in Bulgarian). [Ге-
лерт, В., Х. Кестнер & З. Нойбер (1983). Математически енцик-
лопедичен речник. София: Наука и изкуство.]

Grozdev, S. & V. Nenkov (2012). Around the orthocenter in the plane 
and the space. Sofia: Archimedes (in Bulgarian). [Гроздев, С. &  
В. Ненков (2012). Около ортоцентъра в равнината и простран-
ството. София: Архимед.]

Grozdev, S. & V. Nenkov (2012). Three notable points on the medians 
of the triangle. Sofia: Archimedes 2000 (in Bulgarian). [Гроздев, С. 
& В. Ненков (2012). Три забележителни точки върху медианите 
на триъгълника. София: Архимед 2000.]



479

Улитка Паскаля

Markushevich, A. (1952). Notable curves. Moscow: Gos. iz-vo teoretiko-
tehnicheskoy literatury (in Russian). [Маркушевич, А. (1952). За-
мечательные кривы. Москва: Гос. изд-во теоретико-технической 
литературы.]

Savelov, A. (1960). Ploskie krivy. Moscow: Gos. iz-vo fiziko-
matematicheskoy literatury (in Russian). [Савелов, А. Плоские кри-
вые. (1960). Москва: Гос. изд-во физико-математической литера-
туры.]

Sergeeva, T., M. Shabanova & S. Grozdev (2014). Foundations of 
Dynamic Geometry. Moscow: ASOU (in Russian). [Сергеева, Т., М. 
Шабанова & С. Гроздев (2014). Основы динамической геометрии. 
Москва: АСОУ.]

Grozdev, S. & V. Nenkov (2017). Gaining new knowledge by computer 
experiments. Journal of Educational Sciences & Psychology, vol. VІІ 
(LXIX), No 1B. Special Issue – International Conference Education 
and Psychology Challenges – Teachers for the knowledge society – 
4th edition, May, 122 – 125, ISSN 2247-6377. (ISSN online version 
2247-8558).

Grozdev, S. (2007). For High Achievements in Mathematics: The 
Bulgaria Experience (Theory and Practice). Sofia: ADE (ISBN 978-
954-92139-1-1).

Shabanova, M., R. Atamuratova. M. Belorykova, V. Nenkov & 
M. Pavlova (2016). The game “Geometry scrabble in cloud” an 
organizational form of the international student research groups. 
Mathematics and education in mathematics, 45, 223 – 228. (ISSN 
1313-3330).

Shabanova, M., M. Belorykova, R. Atamuratova & V. Nenkov (2016). 
The First international set research project of secondary students 
in the frames of MITE, Mathematics and Informatics, 6, 567 – 571 
(in Russian).] (ISSN 1310-2230). [Шабанова, M., М. Белорукова, 
Р. Атамуратова & В. Ненков (2016). Первый международный се-
тевой исследовательский проект учащихся в рамках MITE, Ма-
тематика и информатика, 6, 567 – 571.]

Shabanova, M., M. Belorykova, R. Atamuratova & V. Nenkov (2017). 
Second international set research student ptoject in the frames of 
MITE, Mathematics and Informatics, 5, 457 – 465. (in Russian).] 
(ISSN 1310-2230). [Шабанова, М., М. Белорукова, Р. Атамуратова 
& В. Ненков (2017). Второй международный сетевой исследова-
тельский проект учащихся в рамках MITE, Математика и ин-
форматика, 5, 457 – 465.]



480

Дарья Коптева, Ксения Горская

PASCAL’S LIMACON

Аbstract. The paper presents results of the Russian participants in the net 
research project “Encyclopedia of notable plane figures: we work by ourselves”. 
The project aimed at systematization and development of knowledge on notable 
plane curves by secondary students. The net interaction between the participants 
was realizes using Google Cloud Service. The investigation was carried out by 
analytical geometry methods applying the software product GeoGebra.
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